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Abstract—In recent years, there has been significant growth in the
commercial applications of generative models, licensed and distributed
by model developers to users, who in turn use them to offer services.
In this scenario, there is a need to track and identify the responsible
user in the presence of a violation of the license agreement or any kind
of malicious usage. Although there are methods enabling Generative
Adversarial Networks (GANs) to include invisible watermarks in the
images they produce, generating a model with a different watermark,
referred to as a fingerprint, for each user is time- and resource-consuming
due to the need to retrain the model to include the desired fingerprint.
In this paper, we propose a retraining-free GAN fingerprinting method
that allows model developers to easily generate model copies with the
same functionality but different fingerprints. The generator is modified
by inserting additional Personalized Normalization (PN) layers whose
parameters (scaling and bias) are generated by two dedicated shallow
networks (ParamGen Nets) taking the fingerprint as input. A watermark
decoder is trained simultaneously to extract the fingerprint from the
generated images. The proposed method can embed different fingerprints
inside the GAN by just changing the input of the ParamGen Nets and
performing a feedforward pass, without finetuning or retraining. The
performance of the proposed method in terms of robustness against both
model-level and image-level attacks is also superior to the state-of-the-art.

Index Terms—IPR Protection, DNN watermarking, GAN fingerprint-
ing, Box-free Watermarking, Security of Deep Learning

I. INTRODUCTION

Synthetic image generation has made significant progress in recent
years and generative models are now widely used in commercial
applications. These models are provided to commercial users as
production tools or for selling services. Protecting the Intellectual
Property Rights (IPR) of model owners has become a pressing issue
to avoid potential copyright infringements, such as unauthorized
duplication or model theft, when these models are delivered to
malicious users. Deep Neural Network (DNN) watermarking has
been proposed as a solution to protect the IPR associated with
DNN models [1]. Most DNN watermarking methods focus on the
protection of discriminative models, namely, networks developed for
classification tasks, and less attention is paid to generative models.
Yet, some methods for the watermarking of generative models have
started appearing recently. Given the large entropy of the output of
generative models, the watermark can be directly extracted from the
output produced by the model, thus permitting to verification of the
watermark in a so-called box-free setting. In this way, it is possible to
determine the source of images produced by generative models and
associate any image to the generative model that produced it [2].

With the exception of a few scattered works [3], the existing ap-
proaches for the watermarking of generative models, notably GANs,
are designed for ownership verification, aiming at making it possible
to retrieve the model authorship information from the generated
images. These methods embed a fixed watermark, linking the model
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Fig. 1. The GAN fingerprinting scenario considered in this paper.

to the owner, and require retraining or finetuning if different a
watermark has to be embedded in the model.

In this paper, we focus on a different scenario, hereafter referred to
as GAN fingerprinting, illustrated in Fig. 1. In this scenario, the model
distributor, simply referred to as the model owner, releases distinct
watermarked model instances to different users, in such a way that the
user-specific fingerprint can be recovered from the images produced
by these models for copyright authentication and to trace back to the
guilty user in case of a violation of the license agreements (traitor
tracing). A problem with this scenario is that the model owner must
produce several instances of the model each containing a different
watermark, in this case referred to as a fingerprint, which in general
requires training or finetuning a new model for each user. In this
paper, we propose a retraining-free GAN fingerprinting method for
box-free watermarking of GAN models, permitting to easily create
different model instances each containing a different fingerprint,
without any need to retrain or finetuning the watermarked model. This
goal is achieved by introducing a new Personalized Normalization
(PN) layer into the generator’s architecture, whose scaling factor
and bias parameters are determined by two independent shallow
networks, called the Parameters Generation Networks (ParamGen
Nets), that are fed with the input fingerprint sequence. The generator
and the ParamGen Nets are trained jointly with the watermark
decoder, by varying the fingerprint sequence during training across
the iterations. Once the model is trained, the model distributor can
easily get GAN models with different fingerprints by just changing
the fingerprint sequence at the input of the ParamGen Nets and
performing a feedforward pass to modify the parameters of the
PN layers of the GAN accordingly. Our idea of embedding the
watermark information in the normalization layers is inspired by
passport-based approaches [4] proposed for the protection of the IPR
of DNN classifiers, which use passports, namely digital signatures, to
unlock the normalization layer and use the network at inference time,
achieving remarkable robustness against both removal and ambiguity
attacks. Robustness is a crucial requirement for DNN watermarking
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algorithms aimed at IPR protection [1]. Malicious users can conduct
watermark removal attacks by model-level modifications, moreover,
box-free GAN watermarking is also subject to image-level attacks.
An additional strength of our method is that the watermark embedded
in the GAN models is a very robust one. In particular, the experiments
we run show that good robustness is achieved against both model-
level attacks, specifically finetuning and model compression (pruning
and quantization), and image post-processing operations, like JPEG
compression, noise addition, and Gaussian blur.

To the best of our knowledge, the only work proposing a retraining-
free, GAN fingerprinting method is [3], which uses the fingerprint
sequence to modulate the parameters of the convolutional kernels.
Compared to [3], our approach can achieve improved robustness
against both image-level and model-level removal attacks. We believe
that this gain comes from the different approach we are considering
for watermark embedding, namely the PN-based embedding.

The rest of the paper is organized as follows. In Section II,
we briefly discuss the state of the art of GAN watermarking. The
proposed method is described in Section III. Section IV reports the
experimental methodology, settings, and results. Finally, in Section V,
we conclude the paper with some final remarks and hints for future
research.

II. RELATED WORK

The goal of DNN watermarking is to embed watermarks into
deep learning networks, that can be used for ownership verification,
fingerprinting, and traitor tracing, among other possible applications,
without impairing their functionality (unobtrusiveness) [1], [5]. While
DNN watermarking has been mostly applied to CNN based classi-
fiers, the watermarking of GAN has recently started receiving atten-
tion [2], [6]–[8]. Depending on the kind of access required for the
watermark extraction, watermarking algorithms can be categorized
as white-box, black-box, and box-free. White-box methods require
access to the internal parameters of the model during verification.
With black-box methods, instead, the watermark is extracted by
looking at the output of the network in correspondence to a set
of specific querying inputs. Finally, box-free watermarking methods
do not require any kind of access to the suspicious model, and the
watermark can be directly extracted from the output produced by the
model. Box-free methods are only possible with generative models,
for which case the entropy of the output is large enough. Black-box
and box-free methods have been proposed for GAN watermarking.
In [2], [9], [10], the authors utilize black-box watermarking to protect
the IPR of generative models where the watermark is embedded
by instructing the model to learn to produce specific output images
when fed with certain inputs. Several methods have been provided
performing box-free watermarking [6]–[8]. In particular, Wu et al. [6]
imposed an additional constraint on the output of the generator in
the loss, in such a way as to embed a specific watermark image into
any generated image. This method is a zero-bit watermarking that
utilizes the PSNR between the extracted image and the ground-truth
for ownership verification. Yu et al. [7] discover that by training the
GAN using data with a watermark embedded via StegaStamp [11],
the generated images will also contain the watermark. Fei et al. [8]
propose to improve the method in [7] by embedding the watermark
in a supervised manner, using a pre-trained watermark decoder to
guide the training and incorporating a loss term in the optimization
to make sure that the watermark extracted from the generated images
is close to the true watermark.

The above watermarking methods are developed with the owner-
ship verification application in mind. In fingerprinting applications,

a company may want to distribute to different users model instances
having the same functionality but with distinct (user-specific) fin-
gerprints. In this scenario, the above box-free watermarking meth-
ods would require retraining a new generative model for every
user, with enormous costs. To address this problem, Yu et al. [3]
propose a method for the efficient fingerprinting of GAN models.
This method enables the efficient generation of model instances
with the same image generation functionality with different user-
specific fingerprints, achieved by exploiting watermark autoencoders
and modulating the parameters of the convolutional kernels based
on the to-be-embedded watermark. To the best of our knowledge,
[3] is the only one proposing a method for retraining-free GAN
fingerprinting. As a drawback, this method has limited robustness
against network modification and re-use (model-level attack) and
against image post-processing (image-level attacks), which hinders
its practical applicability.

In this paper, we propose a retraining-free GAN fingerprinting
method with improved robustness against both model-level and
image-level attacks. In particular, the robustness against finetuning is
largely improved with respect to [3]. The cost in terms of time and
resources is the same as in [3], since both methods do not need any
retraining and a user-specific fingerprint can be embedded by feeding
the ParamGen Nets with the fingerprint, namely the watermark
message, and using the resulting parameters in the PN layer running a
feedforward pass thought the generation network to set the parameters
of the generator instance associated to the user. Table I summarizes
the capabilities of state-of-the-art GAN watermarking approaches in
terms of capacity, efficiency, and robustness. The term efficiency here
refers to the capability of changing the fingerprint, without retraining
or finetuning the model. Our method is the only one with all the
desired capabilities.

TABLE I
COMPARISONS OF STATE-OF-THE-ART BOX-FREE GAN WATERMARKING

METHODS AND THE PROPOSED METHOD.

Approach Capacity Retraining-free Robustness

Wu et al. [6] Zero-bit ✘ ✔
Yu et al. [7] Multi-bit ✘ ✘
Fei et al. [8] Multi-bit ✘ ✘
Yu et al. [3] Multi-bit ✔ ✘

Ours Multi-bit ✔ ✔

III. PROPOSED METHOD

In this section, we describe the proposed approach for robust
retraining-free GAN fingerprinting. In its simplest form, a GAN
model consists of a generator and a discriminator, denoted by G and
D, respectively. G takes a noise sample z ∈ Rdz ∼ Pz of dimension
dz as input and produces a synthetic image at the output. G and D
are updated alternatively during training. The loss that D wants to
maximize can be expressed as:

LD = E
x∼px

logD(x) + E
z∼Pz

w∼{0,1}dw

log(1−D(G(z))), (1)

where x denotes the real image and px its distribution, while G wants
to minimize

LG = E
z∼Pz

w∼{0,1}dw

log(1−D(G(z))). (2)

To watermark the generator G, we insert an additional inter-
mediate layer performing personalized normalization and consider
two (trainable) parameter generation networks Fs and Fb, named



ParamGen Nets, taking as input the watermark message w with dw
bits (w ∈ {0, 1}dw ) and producing respectively the scaling factor γ
and bias β used in the PN layer of the generator1, and a (trainable)
watermark decoder Dw. We denote with Gw the generator G with
the PN layer parameterized by w. The overall architecture is shown
in Fig. 2. A model with the desired retraining-free fingerprinting
functionality is achieved by training the architecture as described
below, by introducing three new loss terms for training.

To instruct the network to embed a different watermark inside the
images it produces for every different w, the watermark w ∈ {0, 1}dw
is randomly sampled and Dw is jointly trained to extract the water-
mark from Gw(z), in such a way to minimize the bit-wise error
between the watermark w and the output of the decoder, that is

Lwm = E
z∼Pz

w∼{0,1}dw

dw∑
i=1

wi log σ((Dw(Gw(z)))i)

+ (1− wi) log(1− σ((Dw(Gw(z)))i)),

(3)

where σ is the sigmoid function and (Dw(Gw(z)))i denote the i-th
element of Dw(Gw(z)).

To ensure that the content of the generated image Gw(z) is
regulated by the input noise z, by following [3] and [12], we instruct
the decoder Dw to recover the input noise z in addition to extracting
the watermark w. Therefore, the output of Dw is a vector of length
dw + dz where the first dw elements are dedicated to the watermark
(Eq. 3) and the last dz elements are used for input recovery. The
above goal is achieved by minimizing the L2 reconstruction loss

Lz = E
z∼Pz

w∼{0,1}dw

dz∑
i=1

(zi − (Dw(Gw(z)))dw+i)
2 . (4)

Finally, to ensure that various model instances behave in the same
way, regardless of the embedded watermark, we impose an additional
constraint requiring that for the same sample noise z the generators
parameterized by different w results in the same output image.
Following [3], this goal is achieved via an image consistency loss

Lconst = E
z∼Pz

w1,w2∼{0,1}dw

∥Gw1 (z)−Gw2 (z)∥
2
2 , (5)

where w1 and w2 are two distinct watermarks sampled randomly dur-
ing training. Eventually, the overall loss used to train the watermarked
generator is:

LG,tot = λ1LGw + λ2Lwm + λ3Lz + λ4Lconst, (6)

where λ1, λ2, λ3, and λ4 weight each term of the loss (and LGw is
the loss defined in (2) with Gw in place of G). The loss of D is the
same as in (1) with Gw replacing G.

Once the GAN fingerprinting model is trained, given a new user
m, the model Gwm containing the user-specific fingerprint wm is
obtained, by assigning PN layers the parameters obtained through
ParamGen Nets. The generator is then distributed to the user, while
Fs, Fb, and Dw are kept by the model owner.

A. Personalized Normalization

In this section, we provide the details of the ParamGen Nets Fs

and Fb. These are two independent networks that take as input w
and output γ = Fs(w) and β = Fb(w), that are used to normalize
the feature map F at the input of the PN layer. Normalization is

1The ParamGen Nets are described in details in Sect. III-A. Depending on
the variant of the method (two variants are considered, see Sect. III-A), γ and
β can be either vectors or tensors.

Fig. 2. Overview of the proposed GAN fingerprinting approach. Green blocks
in the generator represent the original layers, while the blue block represents
the PN layer added for watermark embedding.

performed in two different ways, referred to as channel-wise PN and
element-wise PN, with the output of the ParamGen Nets γ and β
having different dimensionality in the two cases.

1) Channel-wise PN: The output of the ParamGen Nets are γ ∈
Rc, β ∈ Rc, where c is the number of channels of the feature map
F , and Fs and Fb are fully-connected (FC) networks.2 Then, F is
scaled and translated by channels and we have

F ′
ijk = γkFijk + βk, (7)

for i ∈ [1, p], j ∈ [1, q], k ∈ [1, c], where p and q are the height and
width of F .

2) Element-wise PN: In this case, γ ∈ Rp×q×c and β ∈ Rp×q×c

produced by two convolutional networks Fs and Fb that consists
of an input FC layer followed by convolutional layers. Then, F is
scaled and translated by the corresponding entries of γ and β, that
is, F ′ = γ ◦ F + β, where ◦ denotes the element-wise product.

IV. EXPERIMENTAL METHODOLOGY AND ANALYSIS

A. Methodology and Settings

Models and dataset. We run experiments on several GAN ar-
chitectures, focusing on the generation of face images. Specifically,
we consider the following networks: Boundary Equilibrium GAN
(BEGAN) [13], Spectral Normalization GAN (SNGAN) [14], and
Progressive Growing GAN (PGGAN) [15]. As for the pristine set,
we consider 200k images with 64×64 resolution from CelebA [16].
The models are trained using the official code, but the architecture
and training procedure are modified to implement the proposed GAN
fingerprinting approach.

Architecture and training. In the proposed GAN fingerprinting
architecture, the PN layer is added as the penultimate layer of the
generator (default). Other positions for the PN layer are considered
in the ablation study presented in Sect. IV-D. The details of the
ParamGen Nets are provided in Table II for both channel-wise and
element-wise cases. For every layer (row), the type of layer, input
dimension, output dimension, and the type of activation are reported.

2The exact architecture of the ParamGen Nets is provided in the method-
ology section.



Regarding the parameters, we set p and q for the element-wise PN
equal to 32, while c, which corresponds to the number of channels in
the feature maps, takes a different value for the various architectures.
In particular, c = 128, 64, and 128, respectively for BEGAN,
SNGAN, and PGGAN. During training, the watermarks are randomly
selected for each sample in every batch, hence every image has a
different watermark message associated to it. The weights are set as
follows: λi = 1 for i = 1, 2, 4, λ3 = 0.1. All models are trained for
50 epochs. In the case of PGGAN, which implements a progressive
growing training procedure, blocks of layers are incrementally added
during training, and the output size of the generator model (image
resolution) progressively increases. Then, for this case, the generator
is trained normally at the beginning (with the LG and LD loss). The
PN layer and the watermark decoder are inserted only at a later stage,
when the image resolution reaches 64×64, and we started training
the generator with the new loss3. In all the experiments, we set dw
to 128, thus embedding a 128-bit fingerprint, that permits us to get
2128 ≈ 3.4× 1038 distinct generator instances.

To increase the robustness of the watermark against image pro-
cessing attacks, following [8], we introduce a preprocessing layer
before the watermark decoder. The considered processing includes
JPEG compression with quality factors selected uniformly in [20,
50], Gaussian blur, with kernel size in [0, 9], and Gaussian noise
addition with standard deviation in [0.001, 0.15]. Each processing is
applied with probability equal to 15%.

TABLE II
STRUCTURE OF PARAMGEN NETS IN THE CASE OF CHANNEL-WISE PN

(LEFT) AND ELEMENT-WISE PN (RIGHT).

FC, dw , 512, ReLu

FC, 512, 512, ReLu

FC, 512, 512, ReLu

FC, 512, c, ReLu

FC, dw , 8× 8× 32, ReLu

Conv, 8× 8× 32, 16× 16× 32, ReLu

Conv, 16× 16× 32, 32× 32× 64, ReLu

Conv, 32× 32× 64, p× q × c, ReLu

Metrics. To measure the quality of the generated images, we use
the Fréchet Inception Distance (FID) [17], commonly adopted in the
literature. The FID scores of the generated images are calculated on
a population of 5× 104 real and 5× 104 generated images, obtained
from random generator instances, that is generators with random
watermarks. To measure the effectiveness of watermark embedding,
we use bit-wise accuracy (Acc) of watermark extraction, namely the
percentage of bits that are correctly recovered. The bit-wise accuracy
reported in the experiments is averaged on 104 samples with random
watermarks.

B. Performance Analysis

The performance of our method for the various architectures is re-
ported in Table III, compared with the state-of-the-art box-free GAN
watermarking approaches. In the table, -cw and -ew refer to channel-
wise and element-wise PN layer. The ’No wm’ column shows the
baseline FID of the images generated by the non-watermarked model.

Regarding the quality, we observe that all methods get an FID
similar to the baseline, thus the quality of the generated images is
similar to that of the images generated by the non-watermarked GAN.
The watermark accuracy is also nearly perfect in all the cases for all
the methods, except for Yu et al. [7] (the lower effectiveness of this
method is probably due to the fact that it performs embedding in an

3In order to work properly, the watermark decoder requires that the input
size is fixed.

unsupervised manner, by simply training on watermarked images).
The row ’Overhead’ reports the time required by algorithms for
the embedding of a new watermark. For the method in [7], which
requires retraining on the watermarked dataset, the time consumption
is high. This value is high also for the method in [8], which however
only requires finetuning, with a lower overhead with respect to [7].
Yu et al. [3] and our method only requires hundreds of milliseconds
resulting in a huge gain (in the order of 104 to 105). In our case, this
is the time necessary for a single feedforward pass of the ParamGen
Nets.

TABLE III
WATERMARK ACCURACY, FID AND OVERHEAD FOR THE VARIOUS

ARCHITECTURES.

Model Metric No
wm Yu [7] Fei [8] Yu [3] -cw -ew

BEGAN
Acc - 93.69 99.10 100.00 99.87 100.00
FID 20.89 25.12 20.84 21.78 21.19 20.72

Overhead - 12h 4h 100ms 100ms 100ms

SNGAN
Acc - 92.77 99.45 99.99 100.00 99.99
FID 24.25 27.74 25.26 24.69 24.12 24.70

Overhead - 8h 2h 100ms 100ms 100ms

PGGAN
Acc - 90.26 98.74 99.50 99.89 99.85
FID 27.50 32.36 28.53 28.42 28.77 28.02

Overhead - 24h 8h 100ms 100ms 100ms

C. Robustness Analysis

We also evaluate the robustness of our GAN fingerprinting method
against both model-level and image-level attacks.

TABLE IV
PERFORMANCE (ACC/ FID) UNDER DIFFERENT MODEL-LEVEL ATTACKS.

Model Approach Finetune
(20k)

Prune
(10%)

Prune
(20%)

Quant
(10−1)

BEGAN

Yu [3] 53.6/20.6 99.1/21.2 62.1/76.6 97.1/34.8
Fei [8] 56.5/20.7 99.1/20.5 61.7/82.2 98.0/32.0

Ours -cw 75.9/20.9 99.5/22.0 66.6/74.2 98.8/37.1
Ours -ew 85.0/20.6 99.9/21.9 68.8/90.1 98.7/36.7

SNGAN

Yu [3] 60.0/24.3 99.9/24.8 82.6/43.1 98.4/26.2
Fei [8] 62.0/24.1 98.0/26.3 80.2/45.7 96.0/26.7

Ours -cw 84.5/23.9 98.9/25.8 79.6/39.5 99.9/27.8
Ours -ew 88.2/24.0 98.8/26.9 80.3/39.1 99.8/28.6

PGGAN

Yu [3] 64.2/28.4 98.9/29.6 88.4/37.1 99.1/30.1
Fei [8] 65.3/28.1 97.4/30.2 84.2/39.8 99.0/32.4

Ours -cw 73.0/27.2 99.5/29.6 84.2/42.3 99.5/32.1
Ours -ew 74.5/28.0 99.1/29.5 85.3/40.1 99.9/29.7

For model-level attacks, we consider finetuning and model com-
pression, namely pruning, and quantization. In the finetuning exper-
iments, we perform 20k iterations of the GAN fingerprinting model
on the same dataset used for training by removing the watermark
losses from the optimization, that is, setting λ1 = 1 and λi = 0,
i = 2, 3, 4, and leaving the parameters of the PN layer free to update.
For pruning, we set to 0 the smallest p% parameters of the network,
with p = 10% and 20%. Finally, for quantization, we reduce the
precision of the model parameters by rounding them to the first digit.

The results we got are shown in Table IV. We can observe that,
for all the architectures, the proposed approach is more robust against



finetuning compared to [3] and [8], especially in the case of element-
wise PN, where Acc is 20% higher with respect to the state-of-the-
art on the average. All approaches are robust against pruning and
quantization. Pruning with p = 20% can affect the watermark yet at
the price of a very large FID, corresponding to a bad quality of the
generated images, that makes the model useless.

Table V reports the results of robustness against image-level
attacks, in the case of JPEG compression (with quality factor 50),
Gaussian blur (with kernel size 5), and Gaussian noise (with standard
deviation 0.1). We can observe that our method achieves the best
robustness in all the cases, especially for JPEG compression, in which
case the gain in the Acc is about 15/20%.

TABLE V
WATERMARK ACC UNDER DIFFERENT IMAGE-LEVEL ATTACKS

Model Attack Yu [3] Fei [8] -cw -ew

BEGAN

JPEG 71.42 77.63 92.62 92.48
Blurring 76.31 70.35 81.49 80.37

Noise 75.93 74.17 88.50 89.33

SNGAN

JPEG 72.99 76.31 92.01 92.17
Blurring 77.17 72.34 83.23 80.45

Noise 74.34 73.34 88.21 89.52

PGGAN

JPEG 73.15 78.54 94.25 93.67
Blurring 74.46 72.54 80.17 83.70

Noise 73.39 76.40 86.14 88.28

D. Ablation Study

We carry out several experiments to investigate the impact of the
loss terms and the position of the PN layer on the effectiveness of
the proposed method. In these experiments, we focus on the element-
wise PN embedding, which is the best performing method in terms
of both image quality and watermark robustness, according to the
previous results.

1) Impact of the loss terms: Table VI reports the Acc and FID
obtained by training the model with and without the Lz and Lconst

terms and considering two generator instances corresponding to two
random watermarks WM1 and WM2. We see that removing Lz or
Lconst does not affect the watermark extraction accuracy. However,
removing Lz results in a very high FID, as without this loss term
the content of the generated images tends to be controlled solely by
the watermark, thereby reducing the diversity. Fig. 3 shows some
examples of images generated by the models marked with WM1 and
WM2, when they are trained with and without Lz . Although the
visual quality of the generated images is good in both cases, without
Lz , the generated images lack diversity.

Fig. 3. Images generated by the generators marked with WM1 and WM2

when fed with different input noises.

Regarding Lconst, Table VI shows that when training is carried out
without this loss term, both FID and Acc remain good. However, the
purpose of this loss is to ensure that model instances with different
watermarks have the same functionality, that is, that the watermarked

TABLE VI
PERFORMANCE OF Gw1 AND Gw2 WHEN TRAINING WITH/WITHOUT Lz

AND Lconst .

Approach AccWM1 / AccWM2 FIDWM1 / FIDWM2

With all losses 100.00 / 100.00 20.72 / 20.68
Without Lz 100.00 / 100.00 233.38 / 205.86

Without Lconst 100.00 / 100.00 21.18 / 20.94

Fig. 4. Images generated by generator instances with different watermarks.

models generate images that are visually the same when fed with
the same noise. Fig. 4 shows some images produced by 6 generator
instances with different watermarks when they are fed with the same
input noise z, in the case where training is performed with and
without Lconst. We can observe that without Lconst, the images
obtained for the same z from the 6 generators are visually different.
This does not happen when the training includes the Lconst loss.

TABLE VII
IMPACT OF THE POSITION OF THE PN LAYER (FT = FINETUNING).

Model Metric Input Mid Output
(default)

All

BEGAN
Acc 100.00 100.00 100.00 100.00
FID 21.24 20.89 20.72 20.24

Acc after FT 68.24 72.68 75.92 64.46

SNGAN
Acc 99.99 99.90 99.99 99.98
FID 24.15 24.76 24.70 24.01

Acc after FT 72.54 84.32 88.21 64.24

2) Impact of the position of the PN layer: The previous experi-
ments are carried out with the PN layer included as the penultimate
layer (default position). In this section, we report the results of the
experiments we run considering different positions for this layer. In
particular, we consider the following cases: i) the PN layer is added
as the second layer after the input layer (Input); ii) the PN layer
is inserted as the middle layer (Mid); iii) multiple PN layers are
included, after every convolutional block of the generator (All). In the
All case, all the ParamGen Nets have the same internal architecture
and the watermark message is fed as input to all of them. For these
experiments, we consider only BEGAN and SNGAN, since in the
PGGAN case the dynamic growth of the generator during training
complicates the implementation of the approach. In particular, we
find that including the PN layer as an intermediate layer at a late
stage during training (when the final output resolution is achieved)
makes training unstable.

The results are reported in Table VII. We observe that the position
of the PN layer has a few impacts on Acc and FID. However, an
impact is observed on watermark robustness. In particular, the All case



is the worst from the point of view of robustness, with a reduction
of 11.46% for BEGAN and 23.97% for SNGAN, compared to the
default setting. The Mid and penultimate layer position (Default) are
those maximizing the robustness against finetuning attacks, with the
default achieving the best results.

E. Discussion on collusion attacks

In this section, we pause to discuss a specific watermark removal
attack, namely the collusion attack, that is particularly relevant in
the GAN fingerprinting scenario. In this attack, different generator
instances are combined together in order to produce a new generator
that can achieve the same functionality and does not contain the
watermark information of the source instances. Let GwA and GwB

be two generator instances distributed to users A and B containing
the user-specific fingerprints wA and wB . Then, an attacker who
has access to the model parameters of GwA and GwB can generate
a new model Gattk = α1GwA + α2GwB , with α1 + α2 = 1.
Since the parameters of GwA and GwB are the same except for
the PN layers, the interpolation only affects the parameters of the
PN layer. Arguably, the watermark extracted by Dw from Gattk

would contain only part of the watermark information of wA and
wB . Fig. 5 shows the bit matching accuracy between the watermark
extracted from Gattk and, respectively, wA and wB , for different
values of α1. The FID, also reported in the figure, is approximately
constant over α1. We observe that, in the case where α1 = 0.5,
the correlation of the extracted watermark with the two watermarks
remains high, and Acc is around 75% and 83% for watermark wA and
wB respectively. Please note that watermark A and B are randomly
selected once. With the increase in the number of experiments, when
α1 = 0.5, the Acc for both watermarks will approach 50%. In

Fig. 5. Watermark accuracy and FID under collusion attack. The red curve
with squares (green curve with circles) represents the bit matching accuracy
between the watermark extracted from Gattk and wA (wB). The gray curve
with dots reports the FID of the images generated by Gattk .

this condition, the collusion attack can be mitigated and the Acc
recovered by incorporating error correction or traitor tracing codes.
Since the number of distinct model instances that can be produced is
extremely large (namely, 3.4× 1038 with the payload of dw = 128
bits considered in this paper), a fraction of bits could be utilized to
perform error correction to prevent collusion by malicious users.

V. CONCLUSIONS

We have proposed a robust retraining-free GAN fingerprinting
system that allows robust box-free watermarking of GAN generators,
making it easy for the model owner to distribute copies of the
generator with the same functionality but different watermarks (user-
specific fingerprints). According to the experiments we carry out
considering several architectures, the proposed method achieves very
good results, always overcoming the state-of-the-art in terms of
robustness against model-level and image-level attacks. Future work

will focus on the extension of the proposed method to different
generative architectures, e.g., diffusion models, also considering im-
ages belonging to different domains. Investigating the use of channel
coding and error correction codes to increase the robustness against
watermark removal and collusion attacks is also a very interesting
topic for future research.
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