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Abstract—Copy detection patterns (CDP) present an efficient
technique for product protection against counterfeiting. However,
the complexity of studying CDP production variability often
results in time-consuming and costly procedures, limiting CDP
scalability. Recent advancements in computer modelling, notably
the concept of a “digital twin” for printing-imaging channels,
allow for enhanced scalability and the optimization of authenti-
cation systems. Yet, the development of an accurate digital twin
is far from trivial.

This paper extends previous research which modelled a
printing-imaging channel using a machine learning-based digital
twin for CDP. This model, built upon an information-theoretic
framework known as “Turbo”, demonstrated superior perfor-
mance over traditional generative models such as CycleGAN
and pix2pix. However, the emerging field of Denoising Diffusion
Probabilistic Models (DDPM) presents a potential advancement
in generative models due to its ability to stochastically model
the inherent randomness of the printing-imaging process, and its
impressive performance in image-to-image translation tasks.

This study aims at comparing the capabilities of the Turbo
framework and DDPM on the same CDP datasets, with the
goal of establishing the real-world benefits of DDPM models
for digital twin applications in CDP security. Furthermore, the
paper seeks to evaluate the generative potential of the studied
models in the context of mobile phone data acquisition. Despite
the increased complexity of DDPM methods when compared to
traditional approaches, our study highlights their advantages and
explores their potential for future applications.

Index Terms—Copy detection patterns, machine learning, digi-
tal twin, denoising diffusion model, TURBO, CycleGAN, pix2pix.

I. INTRODUCTION

The recent upsurge in the utilization of Copy Detection
Patterns (CDP), as described in [1]–[4], has emerged as a
viable method for safeguarding products against counterfeiting
practices. However, the exploration of variability inherent
in CDP production represents a process that is both time-
intensive and financially demanding. This process necessitates
the acquisition of vast volumes of data, a requirement that
places a significant constraint on the scalability of the approach
to incorporate new products, manufacturing technologies, and
imaging devices. Consequently, the expansive adoption and
continued research into CDP are impeded.

To overcome these limitations and promote the ongoing
advancement of CDP, an approach involving computational
modeling of the entire production pipeline, incorporating
the printing and imaging channels, has been proposed. This
method is referred to as a digital twin [5]. Through this
approach, a comprehensive and accurate simulation of the
production process is generated, allowing for an efficient
examination and optimization of CDP without the traditional
restrictions associated with physical data acquisition. This
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x̃K

Digital template

Fig. 1. Schematic block-diagram of investigated DDPM generative model gφ.
The DDPM generative model can generate K synthetic CDP {x̃k

i }Kk=1 from
digital template z and vice versa generate K synthetic templates {z̃ki }Kk=1
for a given x. We show only the first case. The stochasticity of the generative
process is ensured by different noise realizations ϵ.

approach offers considerable potential for increasing the effi-
ciency and effectiveness of anti-counterfeiting measures based
on CDP.

The design of digital twin for printing-imaging channels is
not a trivial task but it is crucial for both the defender and
attacker. If successful, it will enable the overall optimization
of the whole authentication system and, in particular, the
optimization of the estimation of digital templates from the
physical samples and synthesis of CDP images from the
corresponding digital templates. Moreover, it simplifies the
modeling of the intra-class variabilities and the investigation
of adversarial examples. The number of training pairs needed
for digital twin is small (in the order of hundreds), while the
trained model can be applied to millions of unseen digital
templates.

The current work is a continuation of our previous work [5]
that was dedicated to modeling a printing-imaging channel
using a machine learning-based digital twin for CDP. The
model studied in [5] is based on an information-theoretic
framework called Turbo. In our current work, we aim at
comparing Turbo to the Denoising Diffusion Probabilistic
Models (DDPM) [6], which present a popular family of
modern generative models (Fig. 1). DDPM model the prior
data distribution via a diffusion process. Recently the DDPM
methods demonstrated remarkable performance in the image-
to-image translation tasks and outperformed many state-of-the-
art models based on GAN-like architectures [7]. In contrast
to the GAN-based generators that are mostly deterministic
in nature, DDPM allows stochastic outputs, i.e., the different
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Fig. 2. The stochasticity in the DDPM Model. The first column displays the original digital template z at the top and its counterpart physical sample x at the
bottom. The subsequent columns show the stochastic estimations of the CDP images {x̃k}5k=1 and the digital templates {z̃k}5k=1, generated by the DDPM
based on the Palette framework. To enhance visual comprehension, only an enlarged 11× 11 central crop is displayed.

outputs for the same input. Taking into account the natural
randomness of the printing-imaging process, the stochasticity
of the synthesised twins is a key factor for high-precision
simulation of real CDP. Besides this valuable advantage, the
DDPM methods have high complexity compared to the tradi-
tional approaches. That is why the study of real advantages of
DDPM based CDP digital twins represents a great practical
interest.

In our previous work [5] we demonstrated the superiority
of the Turbo framework over the state-of-the-art generative
models. The main goal of this study is to compare Turbo with
DDPM on the same CDP datasets and to establish the real
advantages of DDPM models. Moreover, we aim at evaluating
the generative capabilities of the models in the context of
mobile phone data acquisition.

II. RELATED WORK

A. Turbo family

The Turbo framework was derived based on the solid
information theoretic foundations [5]. That framework consists
of two paths, i.e., direct and reverse ones. In the general
case, both paths are trained simultaneously and share common
training blocks. However, in particular cases, the framework
might be trained in one path only. At the inference stage,
both paths or just one of them might be used depending on
the targeted application. As it was investigated in [5], Turbo
can be trained on paired or unpaired data, providing flexibility
in its application. Turbo generalizes pix2pix (paired) [8] and
CycleGAN (unpaired) [9] image-to-image translation systems.

Turbo consists of several building blocks and losses that
make the training procedure complex enough. Once trained,
Turbo is quite efficient and very fast at the inference stage.
The main drawback of Turbo is the deterministic nature of
generated CDP, i.e., for the given input it provides only one
output.

In [5] we extensively investigated the impact of various
factors such as the backbone architectures, the discriminator
types, losses, etc., on the overall system’s performance and

found the optimal ones. In the current work, we use two found
optimal configurations:

• TURBOpaired (w D)
CNN-RESNET-CNN

Lpaired (w D)
CNN-RESNET-CNN(ϕ, θ) = Lz̃(z, z̃) +Dz̃(z, z̃)

+ λDLx̂(x, x̂) + λDDx̂(x, x̂)

+ λTLx̃(x, x̃) + λTDx̃(x, x̃)

+ λTλRLẑ(z, ẑ) + λTλRDẑ(z, ẑ),

• TURBOpaired (w/o D)
UNET

Lpaired (w/o D)
UNET (ϕ, θ) = Lz̃(z, z̃) + λDLx̂(x, x̂)

+ λTLx̃(x, x̃) + λTλRLẑ(z, ẑ),

where x denotes the image of CDP, z denotes the digital
template, x̂ and ẑ denote the reconstructions and x̃ and z̃ are
the generated images. The terms Lz̃(z, z̃), Lx̂(x, x̂), Lx̃(x, x̃)
and Lẑ(z, ẑ) are the conditional cross-entropy terms that are
implemented as ℓ1-norm pair-wise losses between the corre-
sponding entities. Dz̃(z, z̃), Dx̂(x, x̂), Dx̃(x, x̃) and Dẑ(z, ẑ)
impose Kullback-Leibler (KL)-divergence constraints, i.e., the
distribution matching losses, a.k.a. adversarial losses, between
the corresponding distributions and the parameters λT , λD

and λR trade-off the losses. The detailed development of
Turbo’s losses and the schematic representation of the direct
and reverse paths are given in [5] and the corresponding code.

B. DDPM

The DDPM [6] are based on the minimization of Fisher di-
vergence, which is also closely linked with the KL-divergence,
between the data distribution and the energy-based model
approximating the data distribution. The core concept of
DDPM is to use a score function representing the gradient of
the logarithm of the energy-based model with respect to the
data sample to suppress the dependence on the normalization
constant, which is infeasible to compute in practice [10].
Similar to Turbo, DDPM consists of forward and reverse
paths. However, in contrast to Turbo, the DDPM forward
path is not trainable and is based on the addition of noise to
network input. The addition of noise with variable variance
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Fig. 3. An example of 2D variability for a randomly selected CDP. We used pixel-wise standard deviation σ to estimate the variability among the generated
images. For better visual comprehension, we display a central crop that is equal to half the dimensions of the full image.

aims at “interpolation” of data distribution represented by
sparse training data samples. The variable variance of noise
should address the different regions of data distribution in a
function of the estimated probability density function [10].

From the point of view of the CDP nature, the trained Turbo
model can produce the printing simulations and the digital
template estimations simultaneously, while DDPM requires
training of two separate models. With respect to the number of
optimised losses, the DDPM training is simpler and includes
only one loss. We use the Palette model [11] to implement
conditional DDPM. For the z → x̃ case, the model’s loss is:

LDDPM (φ) = Et,z,x,ϵ

[∥∥ϵ− gφ
(√

ᾱtx+
√
1− ᾱtϵ, z, t

)∥∥2] ,
where x denotes the target image, z denotes the digital
template used as a conditioning, ϵ ∼ N (0, I) denotes the
noise added at step t, gφ stands for the parametrized denoiser
model, ᾱt denotes the noise scale parameter [6]. For the
x → z̃ channel modeling, a similar loss is used, but the
digital template z is used as the target image, and the model is
conditioned by x. In contrast to Turbo, the DDPM loss does
not allow the training on unpaired data.

Training and inference stages are iterative and require adapt-
ing to many noise levels. Contrary to Turbo, which generates
data in a single step, DDPM might need hundreds of steps

to produce the final result. Despite this, a notable distinction
between DDPM and Turbo lies in the stochastic nature of
DDPM, enabling it to generate multiple outputs from a single
input, thereby accommodating the intrinsic randomness asso-
ciated with the printing process. The schematic block diagram
of DDPM is shown in Fig. 1.

III. DATASET AND TRAINING DETAILS

A. Dataset

For empirical evaluation of the models under investigation
we used the data acquired by two modern mobile phones and
by a high-resolution scanner.

The experiments on the scanner data are an extension of
our previous work [5]. In this respect, the same Indigo 1× 1
symbol dataset [12]1 was used. This dataset consists of 720
digital templates of size 228 × 228 with 1 × 1 pixel symbol
size. The digital templates have been printed at HP Indigo
7600 industrial printer at a resolution of 812.8 dpi and enrolled
by Epson Perfection V850 Pro scanner at a resolution of 2400
ppi. Considering the ratio between the printing and acquisition
resolutions, the obtained CDP are of size 684×684, i,e., 1×1
pixel in the digital template corresponds to a 3×3 block in the
acquired CDP. The final codes are 16-bit grayscale images.

1http://sip.unige.ch/projects/snf-it-dis/datasets/indigo-base

http://sip.unige.ch/projects/snf-it-dis/datasets/indigo-base
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The experiments on the mobile phone data were performed
on the recently created Indigo 1x1 variability dataset [13]2

that consists of 1440 digital templates of size 228× 228 with
1×1 pixel symbol size. The templates have been printed at HP
Indigo 5500 industrial printer at a resolution of 812.8 dpi and
enrolled by iPhone 12 Pro and Samsung Galaxy Note 20 Ultra
cell phones. The obtained CDP images are of size 228× 228
and encoded as 8-bit RGB images. However, for the sake of
simplicity, we convert them into grayscale images.

Both mentioned datasets contain original and fake CDP. For
our experiments, we used only the original codes. However,
it should be noted that in both cases the fakes were produced
on the same printing and acquisition equipment as the original
codes. In this respect, the model trained on the original codes
can be effectively applied to generate fake codes.

B. Training details

The Turbo framework architectures’ details and training
conditions are the same as in [5].

As a DDPM-based framework, we used the Palette model
[11] with the UNET architecture inspired by [7]. We modify
UNET in the following way: it takes two channels as input,
where the first channel is a noise and the second one is used for
conditioning; the model incorporates attention with resolutions
of 16 and includes two residual blocks per downsampling step.
We initialized the model using Kaiming initialization. Addi-
tionally, we set the dropout rate to 0.2 to prevent overfitting
due to the high similarity between the CDP. We train our
models on a single A100 GPU with 80GB of memory with
a mini-batch of size 36 for 15000 training epochs. We use
a standard Adam optimizer with the 5e−5 learning rate and
without a learning rate warmup schedule. Similarly to [11],
we use 0.9999 EMA but, during the inference, we do not
perform the hyper-parameter tuning over noise schedules and
refinement steps. During training, we employ the same linear

2http://sip.unige.ch/projects/snf-it-dis/datasets/indigo-variability

0 100 200 300 400 500

Pattern ω

0.0

0.2

0.4

0.6

0.8

1.0

P
b
(ω

)

real x synthetic x̃

Fig. 5. The x-axis represents the 512 different possible patterns ω ordered by
their flattened binary representations. The y-axis represents the probability of
bit-flipping for the central pixel of each pattern computed from iPhone data.

noise schedule of (1e−6, 0.01) with 2000 time-steps and 1000
refinement steps with a linear schedule of (1e−4, 0.09) during
inference as in [11] 3.

IV. RESULTS AND DISCUSSION

A. Palette model stochasticity

Fig. 2 demonstrates several examples of the diverse outputs
of the Palette model produced for the same randomly selected
input from the iPhone subset. The top row corresponds to the
modeling of printing channel z → x̃ and the bottom one shows
the digital template estimation channel x → z̃.

To illustrate the variability in the generated data, we picked
the same template and stacked the produced outputs as a 3D
tensor, then we calculated the standard deviation in the image
dimension, i.e., for each pixel of generated images. The ob-
tained results are visualized in Fig. 3. The left part of the figure
shows the results for the x → z̃ for the iPhone, Samsung, and
scanner, respectively. It is straightforward to observe numerous
regions characterized by diminutive standard deviation, as
indicated by the dark blue hue. These regions symbolize
the model’s degree of confidence in the generated outcomes,
which correlates to the conglomerations of white and black
pixels. Conversely, the yellow hue denotes areas of heightened
standard deviation, reflective of the model’s uncertainty. These
areas typically align with the transitional regions, manifesting
the boundary conditions between different pixel clusters. It
is important to note that these features are best seen in the
case of the scanner due to the higher acquisition resolution.
The right part shows the results for the z → x̃ channel. In
contrast to the x → z̃ channel, the general dynamic range for
the obtained standard deviation is about 3–5 times smaller.
This can be explained by the fact that the printed images
are more continuous, i.e., have a more uniformly distributed
histogram, which makes the image synthesis more reliable. For
Samsung, the dynamic range of the obtained deviation is about

3The code and configuration files are publicly available at https://gitlab.
unige.ch/sip-group/stochastic-digital-twin

http://sip.unige.ch/projects/snf-it-dis/datasets/indigo-variability
https://gitlab.unige.ch/sip-group/stochastic-digital-twin
https://gitlab.unige.ch/sip-group/stochastic-digital-twin
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Fig. 6. Impact of the number of realizations on different metrics for the iPhone dataset.

TABLE I
MODELS PERFORMANCE ON THE IPHONE DATA

Model
FID Hamm. FID

MSE SSIM
x→z̃ dist. z→x̃

W/O processing 289.68 0.300 289.68 0.254 0.249
pix2pix 11.82 0.232 11.64 0.005 0.910
CycleGAN 20.69 0.268 12.59 0.014 0.782
TURBOpaired (w D)

CNN-RESNET-CNN 6.56 0.239 10.20 0.005 0.915
TURBOpaired (w/o D)

UNET 35.35 0.210 12.22 0.004 0.925
Palettemean 4.64 0.211 9.00 0.004 0.915

1.5 times smaller than for iPhone. For the scanner results one
also observes a smaller amount of unreliable regions with the
edge-transition regions being very well pronounced.

It was shown in [14] that the printed pixel’s variability
depends on the surrounding neighborhood that we refer to as
pattern ω, where ω denotes a 3 × 3 configuration of each
pattern. To investigate if the same effect is present in the
synthetically generated codes we define 2(3×3) = 512 possible
patterns and calculate the standard deviation of the central
pixel for each of them through all generated codes. The results
obtained for the iPhone dataset are shown in Fig. 4. For
Samsung, we observed quite a similar picture. In Fig. 4 we
can see the same tendency as in Fig. 3, namely, the general
dynamic range of the standard deviation for the x → z̃ channel
is higher than for the z → x̃, i.e., 0–0.45 versus 0.06–0.09.
Also, we observe the pattern dependence for both channels but
this dependence differs between the channels that is natural.
In particular, in the x → z̃ channel there are more patterns
with the less variable central pixel, i.e., σ(ω) close to 0.

To study the similarity between the real CDP x and the
synthetic counterparts x̃, we compute the probability of bit-
flipping for the central pixel for each pattern after Otsu
binarization, as suggested in [14]. The results obtained for the
iPhone are shown in Fig. 54. We can see that some patterns
almost certainly flip with Pb(ω) close to 1, whereas others

4For Samsung we observed the same tendency.

TABLE II
MODELS PERFORMANCE ON THE SAMSUNG DATA

Model
FID Hamm. FID

MSE SSIM
x→z̃ dist. z→x̃

W/O processing 381.44 0.314 381.44 0.278 0.193
pix2pix 8.53 0.241 20.18 0.004 0.908
CycleGAN 8.85 0.283 22.85 0.015 0.694
TURBOpaired (w D)

CNN-RESNET-CNN 7.01 0.247 17.34 0.004 0.914
TURBOpaired (w/o D)

UNET 54.80 0.211 28.88 0.004 0.922
Palettemean 4.46 0.215 10.72 0.004 0.908

produce reliable results with Pb(ω) close to 0. But the most
important thing is that the bit-flipping probability for the real
x perfectly correlates with one for the synthetic x̃.

B. Aggregation techniques

For the Palette model, we study the impact of the number of
realizations and different aggregation techniques. The iPhone
results are shown in Fig. 65, where Palettemean denotes that
the final output is obtained as a mean of predictions, while
in Palettemedian we take a median of predictions, and then the
score is calculated for the aggregated prediction. In the case
Palettemean of scores the reference metric is calculated for each
prediction and then the mean value of obtained scores is taken.

One can observe that Palettemean of scores error is almost
constant, while the errors for Palettemean and Palettemedian are
close to each other and decrease as the number of realizations
increases. This can be explained by the fact that from one
side the global error is the same at each realization but the
local errors appear in different positions. The aggregation
allows us to reduce them but, at the same time, it leads to
the loss of stochasticity. In the same plot, one can see the
results for pix2pix and TURBOpaired (w/o D)

UNET models, but these
models are deterministic, and their results are not impacted by
the number of realizations. Palette easily outperforms pix2pix
on all metrics after 5-7 realizations. In terms of Hamming
distance and SSIM Palette is not capable of outperforming

5The results for the Samsung data are similar to iPhone.



TABLE III
MODELS PERFORMANCE ON THE SCANNER DATA

Model
FID Hamm. FID

MSE SSIM
x→z̃ dist. z→x̃

W/O processing 304.13 0.238 304.01 0.181 0.480
pix2pix 3.37 0.111 8.57 0.045 0.758
CycleGAN 3.87 0.155 4.45 0.049 0.732
TURBOpaired (w D)

CNN-RESNET-CNN 3.16 0.086 6.60 0.040 0.779
TURBOpaired (w/o D)

UNET 6.21 0.100 28.110 0.036 0.778
Palettemean 2.90 0.081 4.36 0.038 0.769

TURBOpaired (w/o D)
UNET . For MSE, Palette needs at least 10–20

realizations to surpass Turbo.

C. Models general performance
For further performance evaluation, we use Palettemean. The

inference time for a single realization of the Palette model
applied to 280 test images is approximately 30 minutes. In
contrast, the Turbo model achieves an inference time of just
15 seconds on the same GPU for the same dataset. Considering
the inference time complexity, we found that using 21 real-
izations strikes a good balance between reasonable inference
execution time, stochasticity preservation, and the accuracy of
the final result. We compare the performance of the Palette in
this configuration with the state-of-the-art pip2pix [8], Cycle-
GAN [9], TURBOpaired (w D)

CNN-RESNET-CNN, and TURBOpaired (w/o D)
UNET on

the same set of metrics as in [5]. W/O processing setup is used
to estimate the baseline performance where we assume z̃ = x
and x̃ = z, i.e., an ideal printing-imaging channel without any
distortions. The results obtained for the data enrolled by the
iPhone and Samsung mobile phones are given in Tables I and
II respectively.

It should be noted that the results obtained for the FID
metric for the x → z̃ and z → x̃ channels are quite unstable
and differ a lot between the models. This can be explained
by the fact that FID was developed for natural images while,
in our case, all CDP significantly differ from them. The other
metrics demonstrate more coherent results.

For both mobile phones, the MSE results are almost iden-
tical for Palette and both Turbo configurations. In terms
of SSIM, the results are also very close with a slight
TURBOpaired (w/o D)

UNET superiority. TURBOpaired (w/o D)
UNET also out-

performs the other models in terms of Hamming distance. The
results for the remaining models exhibit marginal inferiority.

The result obtained for the data enrolled by the scanner
are given in Table III and the general tendency is the same,
namely, FID behavior is very unstable; CycleGAN demon-
strates the worst results; the results for the Palette and Turbo
are quite close but Palette is slightly superior to Turbo on the
Hamming distance, albeit at the cost of significantly higher
complexity of inference.

V. CONCLUSION

The current work is a continuation of our previous study
[5] related to modeling of complex physical printing-imaging

processes using a machine learning based models known as
a digital twin for anti-counterfeiting applications based on
CDP. The current work is dedicated to investigation of the
applicability of DDPM for such modeling.

Our main interest was to explore the stochasticity of DDPM.
The obtained results show that synthetic digital and CDP
images are close enough to the real ones in terms of considered
metrics. Moreover, the synthetic CDP images produced by
DDPM fully reflect the natural randomness of the printing pro-
cess. This makes the DDPM-based model a suitable candidate
for the role of a synthetic generator. The general performance
of the studied Palette model is comparable to that of the
Turbo framework. The main drawback of the DDPM is the
computation complexity of the inference stage.

The investigation of more advanced sampling techniques
at the training and inference stages for the improvement of
DDPM complexity is the main direction for our future work.
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