
Goal Node Search for Semantic Web Source Selection

Abir Qasem
Lehigh University

19 Memorial Drive West
Bethlehem, PA 18015, USA

abir.qasem@gmail.com

Dimitre A. Dimitrov
Tech-X Corporation

5621 Arapahoe Avenue, Suite A
Boulder, CO 80303, USA

dad@txcorp.com

Jeff Heflin
Lehigh University

19 Memorial Drive West
Bethlehem, PA 18015, USA

heflin@cse.lehigh.edu

Abstract

We present an efficient search approach for selecting all
potentially relevant data sources for a conjunctive Semantic
Web query. We use map ontologies to align heterogeneous
domain ontologies. This allows us to select data sources
that may be relevant to the query but generally do not de-
scribe their data directly in terms of the ontology of the
query. The “Goal Node Search” algorithm is a significant
improvement on our original source selection algorithm.
The new algorithm allows a more expressive knowledge rep-
resentation language to describe domain ontologies and it
is about three times more efficient than the original source
selection algorithm when performing similar tasks.

1. Introduction

The promise of the Semantic Web is that someday we
will be able to use the Web as a global knowledge base.
Although, significant progress has been made toward real-
izing this vision, there are major engineering challenges that
need to be overcome for the Semantic Web to reach its true
potential. In this paper, we explore the scalability and the
heterogeneity challenges and present an approach that ad-
dresses them in a unified way.

To address the scalability issue we consider a “source se-
lection” approach for identifying the minimal set of poten-
tially relevant Semantic Web data sources for a given query.
In our framework a data source provider can use “REL”
statements to summarize the contents of a data source in
terms of classes whose instances the data source has infor-
mation about and the properties used to relate them. REL
statements allow us to develop algorithms to choose data
sources that may be relevant to a query and ignore sources
that are definitely irrelevant without actually querying them.
Given a Semantic Web Space (ontologies and data sources),
a query and a set of REL statements, the source selection
problem is to identify all potentially relevant sources. We

use the term potentially relevant as opposed to relevant be-
cause we can not determine if a source is relevant until it is
actually queried.

When many ontologies and data sources are created in-
dependently of one another, it is likely that many of them
will refer to the same or similar concepts, although they
may use different terminology. When identifying sources
it is essential that we do not miss relevant sources that com-
mit to ontologies different from the one used in the query.
In order to align heterogeneous ontologies, we use the no-
tion of map ontologies. The map ontologies are written in
the Web Ontology Language (OWL) [7], just like any other
OWL ontology in the Semantic Web. However, they consist
solely of axioms that relate concepts from one ontology to
concepts of another ontology. In our discussion we use the
term domain ontology to refer to all non map ontologies.

The map ontologies and the REL statements can be used
in conjunction with a Description Logic (DL) reasoner to
provide an efficient query answering solution for the Se-
mantic Web. Using the map ontologies, a query expressed
in terms of a particular domain ontology can be translated
to queries in terms of other domain ontologies. The trans-
lated queries and the original query can be used with REL
statements to select data sources that could potentially con-
tribute to the answer of the query. These selected sources
can then be loaded into a DL reasoner to get the answer(s)
for the query. Since, the selected sources are loaded in their
entirety into a reasoner, any inferences due to a combination
of these selected sources will also be computed by the rea-
soner. Source selection helps reduce the size of the knowl-
edge base during the expensive DL reasoning phase (as we
load only the relevant data sources for a query and ignore
the rest). Since, DL reasoning time is a function of the size
of the knowledge base, source selection provides a more
efficient solution. In this paper, we present a “Goal Node
Search” (GNS) algorithm that implements an instance of
the this approach.

We make two technical contributions in this paper. First,
we present a new algorithm that is complete for more ex-



pressive domain ontologies than the original source selec-
tion algorithm. Second, we show that GNS is up to three
times faster at source selection than our original algorithm.

Our algorithm is complete for a subset of OWL which is
compatible with Global-As-View (GAV) [2] and Local-As-
View (LAV) [6] information integration formalisms. We
refer to this subset as OWL for Information Integration
(OWLII). An OWLII ontology consists of a restricted set
of OWL axioms. In OWLII, named classes, u, ∃ and sin-
gle valued nominals (owl:hasValue) are allowed on both left
hand side (LHS) and right hand side (RHS) of an ≡ axiom;
in addition t is allowed on the LHS and ∀ is allowed on the
RHS of a v axiom; in the case of a property axiom only
named properties and inverse is allowed. The REL state-
ments can be translated into LAV rules and therefore can
be expressed in OWLII. We note that since our maps are
defined in OWL as opposed to a specialized mapping lan-
guage, anyone can use existing tools and infrastructure to
create alignments and publish them in OWL for others to
use.

We have implemented GNS in OBII, a Semantic Web
query answering system that incorporates the source selec-
tion framework. Figure 1 shows the architecture of OBII
with arrows showing the flow of information when process-
ing a query. OWLIIRuleProcessor translates the ontolo-
gies and REL meta statements into LAV/GAV rules. The
SourceSelector implements the GNS algorithm and An-
weringEngine loads the selected sources into KAON2 (a
DL reasoner) and obtains the answer to a query after the
reasoning. The query in OBII uses SPARQL 1 syntax.

R1 Rn

REL

meta-data

M1 Mn

map

ontologies

O1 On

domain

ontologies

S1 Sn

data

sources

OWLIIRuleProcessor

Source Selector

Answering Engine
KAON2

rele
van

t map
ont

olo
gie

s

releva
nt domain ontol

ogies

relevant sources

MapKB LAV/GAV
rulesmaps

S
P
A
R
Q

L

so
ur

ce
U

R
L
s

User SPARQL

results

OBII

Figure 1. OBII Architecture

Due to limited space we can not describe the source se-
lection framework and the details of OWLII in this presen-
tation. We refer the readers to Qasem et al. [8] for a for-
mal description of the source selection problem and Qasem
et al. [9] 2 for an extended exposition of GNS algorithm.
The rest of the paper is organized as follows: Section 2 de-

1http://www.w3.org/TR/rdf-sparql-query/
2http://www3.lehigh.edu/engineering/cse//research/technicalreports.asp

scribes the GNS algorithm. Section 3 describes experiments
that we have conducted to evaluate the algorithm. Section 4
compares some other research with our work and Section 5
concludes and discusses future work.

2 Goal Node Search Algorithm

Given a conjunctive query and a set of LAV/GAV rules,
the GNS algorithm identifies all possible additional sub-
goals that can be found by applying the LAV/GAV rules to
each query subgoal or its expansions. Identifying these sub-
goals can be viewed as a search problem where each node of
the search tree is either an original or an expanded subgoal;
and the search task is to identify all possible paths that can
be derived by applying the LAV/GAV rules to the nodes. As
the search space for the algorithm is the set of all possible
expanded goal nodes, we refer to the algorithm as the GNS
algorithm.

We use a standard technique for pruning redundant trees:
we maintain an open list of nodes to be expanded and a
closed list of nodes that have been expanded. We continue
to expand the open list until it is empty while adding the
node that has been expanded to the closed list and adding
the expanded new nodes to the open list. The open list is
initialized with goal nodes created from the subgoals of the
query to give us the starting point of the search.

The EXPAND routine presented as Algorithm 1 performs
LAV or GAV expansions given a goal node. In order to
guarantee termination i.e. to avoid cyclic expansion, we
never expand a node twice. This is implemented by check-
ing to make sure that a member of the open list that is about
to be expanded is not already in the closed list. The GNS
algorithm is different from backward-chaining in two ways.
First, it has LAV rules, and thus is more expressive than
Horn; and second given that we are not attempting to return
bindings for the variables, we can prune many redundant
subtrees from the search space.

An important feature of our algorithm is that in addition
to pruning nodes that exactly match a node in the closed
list, we can prune nodes that are superseded by a node in
the closed list. We say node n supersedes another node m
if the result from a query using n’s predicate is necessarily
a superset of the result from a query using m’s predicate.
Using a supersede relationship between nodes as opposed
to a strict match to decide if a node has been expanded al-
lows us to keep only the most general node in the list. This
reduces the size of the list that we are maintaining. We use
a set of 〈p, R〉 to hold the nodes, where p is a predicate of
an atom and R is a list of argument patterns sorted by the
partial order introduced by the supersede. This provides for
a fast and efficient data structure as we can quickly decide
if a node is superseded or not and therefore the list updates
become very efficient. Once the open list is empty i.e. we



have found all possible expansions, we use the REL state-
ments (stored in MapKB as SourceView objects, see Figure
1) to complete the source selection process. If a node in
the closed list matches with a Source View, we extract the
source URL and add it to the list of selected data sources
that will be loaded in the reasoner.

Algorithm 1 OBII node expansion.
EXPAND(n:Node, MV:set of MapView)

1: expandedNodes←�
2: omaps← {m | (n.ont,m) ∈ MV}
3: for each v ∈ omaps do
4: if GAV(v) and UNIFY(n, HEAD(v)) then
5: expandedNodes ∪ GAVEXPAND(n, v)
6: else if LAV(v) and UNIFY(n, b) for some b ∈

BODY(v) then
7: expandedNodes ∪ LAVEXPAND(n, v)
8: return expandedNodes

The GNS algorithm terminates when the open list is
empty. After initialization the only way for a node to en-
ter the open list is as a result of an expansion using a GAV
or a LAV rule. As GAV and LAV rules are function free (by
definition) the open list will be finite if we avoid all cyclic
expansions. As mentioned before we never expand a node
twice by checking to make sure that a member of open list
that is about to be expanded is not already in the closed list.
Therefore, the GNS algorithm will terminate.

In our algorithm, the domain ontologies were not trans-
lated into LAV/GAV rules. This approach restricted the ex-
pressive boundary of the domain ontologies and hence the
previous algorithm was only sound and complete for do-
main ontologies that are simple taxonomies.

3 Evaluation

We have evaluated the system using synthetic ontologies
and data sources. In choosing the configurations for the ex-
periments we decided to vary two parameters: the number
of data sources that commit to an ontology and the maxi-
mum number of maps required to translate from any source
ontology to any target ontology. This number is referred to
as the diameter by Halevy et al. [5]. We adopt this term in
our discussion. We conducted two sets of experiments to
evaluate the systems. In the first experiment we have var-
ied the diameter. In the second experiment we have varied
the number of data sources that commit to a given ontol-
ogy. In both experiments we kept the number of ontologies
to 50. We denote an experiment configuration as follows:
(nO-nD-nS) where nO is number of ontologies, nD is the
diameter and nS is total number of sources that commit to
a particular ontology. The first observation is that OBII-
GNS is empirically complete in all configurations for data

sets with domain and map ontologies expressed in OWLII.
OBII-original on the other hand is not complete for domain
ontologies expressed in OWLII and its completeness in any
configuration is always below 50 % (Figure 2).

Figure 2. Completeness of OBII-GNS vs.
OBII-Original on OWLII ontologies, with 50
ontologies, and 1000 sources when varying
diameter.

The second observation is that OBII-GNS shows signif-
icant improvement in source selection time as we increase
the diameter (see Figure 3). Furthermore, OBII-GNS per-
forms increasingly better in the higher diameter configura-
tions. This is because in the higher diameters OBII-original
has to work with very large AND-OR graphs.

Figure 3. Source selection of OBII-GNS and
OBII-Original on simple ontologies, with 50
ontologies, and 1000 sources when varying
diameter.

The third observation is that this source selection per-
formance gain does not translate into a significant over-
all response time gain for OBII-GNS (Figure 4). This is
because when considering overall response time, the load
time significantly dominates the source selection and query
time. Source selection and query accounts for less than 10%



of overall response time. However, in large diameters this
dominance is reduced.

Figure 4. Overall performance of all consid-
ered systems on simple ontologies, with 50
ontologies and a diameter of 8, when varying
number of sources.

We note, however, both algorithms are about 10 times
faster than the baseline system in which we loaded all the
files into KAON2. Furthermore, we have noticed that in-
creasing the diameter does not have a significant effect on
the overall response time of any of the systems. Increas-
ing the number of sources, however, results in a slow linear
growth. In the case of OBII-GNS, it is from 1.3 seconds
when there are 250 sources to 5.3 seconds when there are
2000 sources.

4 Related Work

The Piazza system [4] uses the PDMS to integrate XML
documents but does not address OWL documents. Haase
and Motik [3] have described a mapping system for OWL
and proposed a query answering algorithm. They identify a
mapping language that is similar to ours. However, as their
language adds rules to OWL, it is undecidable and as such
they introduced restrictions to achieve decidability. Our lan-
guage, on the other hand, is a sub language of a decidable
language. Peer-to-peer systems like Bibster [1] have shown
promise in providing query answering solutions for the Se-
mantic Web. However, a peer-to-peer system needs special
software installed at every server.

5 Conclusion and Future Work

We have presented a GNS algorithm that provides an ef-
ficient solution to the source selection problem in the Se-
mantic Web. The algorithm is conceptually simpler than the
original source selection algorithm, it is complete for more
expressive domain ontologies and up to three times faster at
source selection when given equivalent workloads.

We note that although we have significant speedup in
source selection time, the measurements show a small gain
in overall performance. We believe this is a significant re-
sult! We have demonstrated that contrary to conventional
wisdom, the bottleneck of distributed Semantic Web queries
may not be reasoning, but instead is the latency involved in
fetching and parsing documents. We plan to consider the
possibility of source loading parallelization and further con-
straining the potentially relevant sources.

6 Acknowledgment

Supported by U.S. Department of Energy (DE-FG02-
05ER84171 SBIR) grant.

References

[1] J. Broekstra, M. Ehrig, P. Haase, F. Harmelen, M. Menken,
P. Mika, B. Schnizler, and R. Siebes. Bibster: A semantics-
based bibliographic peer-to-peer system. In Third Interna-
tional Semantic Web Conference (ISWC 2004), pages 122–
136. Springer-Verlag, 2004.

[2] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Ra-
jaraman, Y. Sagiv, J. D. Ullman, V. Vassalos, and J. Widom.
The TSIMMIS approach to mediation: Data models and lan-
guages. Journal of Intelligent Information Systems, 8(2):117–
132, 1997.

[3] P. Haase and B. Motik. A mapping system for the inte-
gration of OWL-DL ontologies. In A. Hahn, S. Abels, and
L. Haak, editors, Proceedings of the first international ACM
workshop on Interoperability of Heterogeneous Information
Systems (IHIS’05), pages 9–16. ACM, 2005.

[4] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, and
I. Tatarinov. The Piazza peer-data management system.
Transactions on Knowledge and Data Engineering, Special
issue on Peer-data management, 16(7):764–777, 2004.

[5] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema me-
diation in peer data management systems. In Proc. of ICDE,
2003.

[6] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying hetero-
geneous information sources using source descriptions. In
22nd International Conference on Very Large Data Bases,
Bombay, Sept. 1996.

[7] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web
Ontology Language semantics and abstract syntax. Rec-
ommendation, February 2004. http://www.w3.org/TR/owl-
semantics/.

[8] A. Qasem, D. A. Dimitrov, and J. Heflin. Efficient selection
and integration of data sources for answering semantic web
queries. In ICSC 08: Proceedings of the Second IEEE In-
ternational Conference on Semantic Computing. IEEE Com-
puter Society Press, 2008.

[9] A. Qasem, D. A. Dimitrov, and J. Heflin. Goal node search for
semantic web source selection. Technical Report LU-CSE-
08-010, Lehigh University, 2008.


