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Abstract 
 

This paper proposes a behavior prediction method 

for navigation application in dynamically changing 

environments, which predicts obstacle behaviors based 

on learned Obstacle Motion Patterns (OMP) from 

observed obstacle motion trajectories. A multi-level 

prediction model is then proposed that predicts long-

term or short-term obstacle behaviors. Simulation 

results show that it works well in a complex 

environment and the prediction is consistent with 

actual behaviors.  

 

 

1. Introduction 
 

Mobile vehicles/robots that are able to navigate and 

perform autonomous tasks will become an integral 

accessory of our lives in the future. At present, most 

practical mobile vehicles are able to avoid collision in 

some unknown static environments based on motion 

planning [1]. In the real world, obstacles (humans or 

other vehicles) can move freely in space at varying 

speed and direction, which makes navigation methods 

designed for static environments unsuitable for dealing 

with the tougher collision avoidance requirement [2].  

When Dynamically Changing Environment (DCE) 

is concerned, a potential approach is to actively predict 

obstacles’ motions and use the overall prediction result 

to derive the agent’s next action decision. Both current 

and historical motion data can be used in techniques 

such as neural network [2], Markov models [3], and 

Kalman filter [4] for this purpose. However, these 

methods only offer prediction of a single time-step (a 

short-term prediction), which is restrictive because they 

treat the collision avoidance problem locally and in a 

suboptimal manner [5]. 

Recently, some researchers have attempted long-

term behavior prediction for global collision avoidance 

[6, 7]. It predicts over a number of future time-steps 

giving the agent a better chance of making the right 

action decision. In [6], it treats the final destination 

point of the obstacle’s movement as a long-term 

prediction goal, though this does not guarantee 

collision-free motion because there are many possible 

routes and motion patterns between each origin-

destination pair. In [7], long-term prediction is made 

based on a set of trajectories between a number of 

resting places where people stop and stay. It requires 

the locations of these resting places be known a priori 

for the formation of Obstacle’s Motion Patterns 

(OMP). In more realistic DCE, prior knowledge of 

OMP is usually not available.  

In this paper, we propose a new prediction method 

that predicts obstacle behaviors based on learned OMP 

from observed obstacle motion trajectories. The 

observed trajectories are clustered using the CGC 

algorithm [8] to form OMP. For each clustered OMP, it 

is evaluated for completeness against a criterion. Based 

on these OMP, a multi-level prediction model is 

proposed. It consists of three levels of prediction in 

which the high and middle levels are both long-term 

predictions that predict future trajectories over a 

number of time-steps. The low level uses an AR model 

[9] to predict future trajectories over the next time step. 

The results of a number of simulation experiments 

show that it works well in a multiple pedestrian 

environment and the prediction is consistent with actual 

behavior. 

The rest of this paper is organized as follows. In 

Section 2, we present an overview of the proposed 

method. Section 3 depicts the experimental results and 

finally, the paper is concluded in Section 4. 
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2. Proposed Method 
 

Our proposed method consists of the following 

functions: (1) OMP Clustering; (2) OMP 

Classification; and (3) Obstacle Behavior prediction; as 

depicted in Figure 1.  
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Figure 1. Proposed method 

 

2.1 OMP Clustering 
 

To cluster OMP from trajectories of one of the three 

feature dimensions (e.g. spatial location), we employ 

the constrained gravitational clustering (CGC) method 

as described in [8]. Analogy to gravitational force, 

trajectories separated by a short distance are more 

likely to form a cluster compared with those separated 

by a long distance. The ‘gravitational force’, 

nmTTF between trajectories Tm and Tn is given as: 
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where C is the gravitational constant which is set 1 

here, gm and gn are the mass represented by numbers of 

trajectories in the m
th

 and n
th

 clusters respectively, and 

sm and sn are the mean location vectors in the feature 

space. Similar clustering effect can be found in the 

velocity and heading angle trajectories. The OMP 

clustering step is repeated at each time step. 

 

2.2 OMP Classification 
 

OMP are then classified as complete OMP (OMP-

C), which represents pattern that does not change much 

over time, or as incomplete OMP (OMP-I), which may 

be updated after subsequent prediction. To classify 

OMP, we propose a criterion based on the triangle 

algorithm [10]. Let Ni denotes the number of 

observable trajectories in the i
th

 OMP cluster. The 

criterion is presented by setting a threshold Rx for Ni. 

For the i
th

 OMP, if Ni>Rx, then the OMP is classified as 

an OMP-C, otherwise it is classified as an OMP-I. 

Initially, all OMP are ordered in a descending order in 

terms of Ni.  
 

2.3 Obstacle Behavior Prediction 
 

The purpose of the proposed method is to predict 

obstacle motion behavior in the most appropriate 

manner based on the OMP-C, OMP-I and current 

trajectories, through a multiple prediction hierarchy. 

Let Tk denote the observable trajectory of the k
th 

obstacle, and Pj
i
 and Pl

c
 represent the j

th
 OMP-I and the 

l
th

 OMP-C respectively. For representing spatial 

location, velocity and heading angle features, Tk is 

given by {Tk
s
, Tk

v
, Tk

φ
} and Pj

i
 and Pl

c
  are given by 

{Pj
s,i

, Pj
v,i

, Pj
φ,i

} and{Pl
s,c

, Pl
v,c

, Pl
φ,c

}, respectively. Let 

T*k denotes the predicted behavior of k
th 

obstacle in any 

future motion. T*k is also given by {T*k
s
, T*k

v
, T*k

φ
}. 

If Tk is defined up to t, then T*k is defined from t+1 

onward. For illustration convenience, we can simply 

choose the spatial location feature as an example for 

presenting the multi-level prediction process. Thus Tk, 
Pj

i
, Pl

c
 and T*k in this case are all simplified into {Tk

s
, 

Ø, Ø }, {Pj
s,i

, Ø, Ø }, {Pl
s,c

, Ø, Ø } and {T*k
s
, Ø, Ø }, 

respectively. Suppose there are a total of N observable 

trajectories and M OMP with m1 OMP-I and m2 OMP-

C (m1+m2=M). The algorithmic steps are given below: 

Step 1:  If Pl
c ∉ Ø, proceeds to Step 2. Otherwise mark 

all Tk as first-unpredicted and go to Step 3. 

Step 2:  For each Tk, where 1≤k≤N, match it with each 

Pl
c
, where 1≤n≤m2. If match is successful, then 

output corresponding prediction result T*k. 

Otherwise, mark Tk as first-unpredicted. 

Step 3:  For each first-unpredicted Tk, where 1≤k≤n1 

and n1≤N, match it with each Pj
i
, where 

1≤m≤m1. If match is successful, then output 

corresponding prediction result T*k. Otherwise, 

mark Tk as second-unpredicted. 
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Step 4:  For each second-unpredicted Tk, where 1≤k≤n2 

and n2≤n1, predict a single time step based on 

an AR model, and output the corresponding 

prediction result T*k. 

 

3. Experiment 
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Figure 2. Experiment scenario 

 

In this section, we present a navigation experiment 

in a DCE to demonstrate our proposed method. The 

simulation concerns people walking in a shopping mall 

which is shown in Figure 2. We also use spatial 

location feature as the example in this experiment. At 

some time step, all observable obstacle trajectories in 

the scenario and their corresponding clustered OMP 

are shown in Figure 3. Since there are bi-directional 

trajectories in the scenario, two OMP are accordingly 

clustered between each pair of entrances and we use 

real-curve and dot-curve to differentiate them.   

 
Figure 3. Observable obstacle trajectories and 

clustered OMP 

 

Figure 4 depicts 10 new-born trajectories (black-

curve) at some time step and all clustered OMP (red-

curve). The multi-level prediction results are together 

depicted in Figure 5. 8 observable obstacle trajectories 

locate in high-level or middle-level prediction. For 

predicted behaviors (blue-curve) of the trajectories 

shown in Figure 5, it can be seen that (1) the matching 

allows slight variations in spatial locations; (2) the 

prediction is long-term; and (3) the essence of the OMP 

is reasonably captured in the predicted behaviors, not 

the actual spatial locations. For the other 2 observable 

obstacle trajectories that could not find a match in 

either high or middle levels, it can be seen that both 

trajectories are quite different from all existing OMP. 

In this case, a long-term behavior prediction would be 

inappropriate, and the proposed method makes a next 

step action prediction shown by a blue cross. 

 
Figure 4. New-born trajectories for prediction 

 

Figure 5. Multi-level prediction results 
 

In order to evaluate the performance of the 

proposed method, we have conducted 5 separate 

simulation experiments and compare the predicted 

behavior with the actual behavior. For the predicted 

behavior Bk of each obstacle Ok, a prediction error εk is 

computed as the ratio between the distance deviation 

during the whole prediction process, and the actual 

total traversed distance. The calculation of εk is 

performed as: 
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where dn
e
 is the accumulated deviated distance between 

the predicted location and the actual location at the last 

time step, and di is the actual traversed distance at each 

time step. Here, n is the total number of time steps in 

the prediction. 

 

Table 1. Prediction errors  

No. Number 

of 

obstacles 

Minimal 

error εmin 

Maximal 

error εmax 

Average 

error εavg 

1 8 5.693% 10.127% 8.296% 

2 12 5.372% 10.009% 8.192% 

3 9 5.921% 10.426% 8.397% 

4 7 4.925% 9.481% 7.975% 

5 13 5.097% 9.659% 8.022% 

 

The prediction errors of all 5 experiments are then 

calculated and given in Table 1. In each experiment, 

we list εmin , εmax and εavg for error analysis. εmin and εmax 

mean the minimal and the maximal εk respectively 

among all obstacles in the experiment, and εavg means 

the average prediction error for all obstacles in the 

experiment. It is found that the average prediction error 

is around 8% and the prediction can be considered as 

reasonable. 

 

4. Conclusion 
 

In this paper, we presented a multi-level prediction 

model based on OMP clustering and classification for 

long-term obstacle behavior prediction in DCE. From 

the simulation result, it can be concluded that the 

proposed method is effective and appropriate in 

deploying high-level, middle-level and low-level 

predictions for different trajectory behaviors. The main 

contribution of the proposed method is to offer a 

potential approach to predict long-term behavior rather 

than a next step action, which is more common in 

existing methods. Long-term behavior would be 

beneficial for analyzing and identifying behavior 

patterns that indicate some particular events or help 

avoid some particular scenarios. Thus, we believe 

behavior prediction would have substantial impact to 

navigation in DCE for intelligent vehicles on the road 

as well as mobile robots in general. Furthermore, for 

other related application areas, such as crowd control, 

behavior prediction could also make important 

contribution. Based on the general innovative idea and 

the proposed framework, our future work will mainly 

focus on three aspects: (1) to conduct simulation study 

based on velocity and heading angle; (2) to investigate 

other features to characterize obstacle behavior; (3) to 

research online management of OMP and to improve 

the accuracy of obstacle behavior prediction based on 

online updated OMP. 
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