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Abstract

“Human Computation” represents a new paradigm of applications that take advantage of people’s

desire to be entertained and produce useful metadata as a by-product. By creating games with a purpose,

human computation has shown promise in solving a variety of problems that computer computation

cannot currently resolve completely. Using the ESP game as an example, we propose an evaluation

metric, called system gain, for human computation systems, and also study the properties of the ESP

game using analysis. We argue that human computation systems should be played with a strategy.

An Optimal Puzzle Selection Strategy (OPSA) is then implemented based on our analysis to improve
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human computation. Using a comprehensive set of simulations, we demonstrate that the proposed OPSA

approach can effectively improve the system gain performance of the ESP game, as long as the number

of puzzles in the system is sufficiently large.

1 Introduction

“Human Computation” represents a new paradigm of applications that take advantage of people’s de-

sire to be entertained by outsourcing certain steps of the computational process to humans [5, 6, 13]. In

[14], Ahn proposed the use of human computation by creating games with a purpose that provide enter-

tainment and produce useful metadata as a by-product. By exploiting “human cycles” in computation,

human computation has shown promise in solving a variety of problems, such as image annotation and

commonsense reasoning, which computer computation has been unable to resolve completely thus far.

Several human computation systems have been proposed recently [8, 9, 15–19]. Among them, the ESP

Game [15] was the first to successfully realize the advantages of human computation systems, and it was

subsequently adopted as the Google Image Labeler [1]. The rationale behind the ESP game is to motivate

people to label images because it is fun. It has been shown that the image labels collected through the

ESP game are typically of good quality. Moreover, the game results allow more accurate image retrieval,

help users block inappropriate (e.g., pornographic) images, and improve web accessibility (e.g., the

labels can help visually impaired people surf web pages [3]).

In this work, using the ESP game as an example, we define a metric, called system gain, to evaluate

the performance of human computation systems. The proposed metric considers two factors, namely

the number of puzzles that have been played in the system and the average outcomes produced by

each puzzle. Both factors are critical for human computation systems, but unfortunately they do not

complement each other. We believe that human computation systems should be played with a strategy.

Specifically, based on our analysis, we propose an Optimal Puzzle Selection Algorithm (OPSA) that can

maximize the system gain performance by properly accommodating the two contrary factors. Using

a set of simulations, we investigate the properties of the ESP game, and evaluate the proposed OPSA
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scheme on two widely used schemes, namely the Random Puzzle Selection Algorithm (RPSA) and the

Fresh-first Puzzle Selection Algorithm (FPSA). The results demonstrate that, with the OPSA scheme,

the ESP system can yield a much better system gain performance than the two compared schemes. In

addition, the presented analysis is simple and applicable to other human computation systems.

The remainder of this paper is organized as follows. In Section 2, we review related works on human

computation systems. In Section 3, we describe the rules of the ESP game and present our analysis. In

Section 4, we compare three puzzle selection algorithms for the ESP game, namely the RPSA, FPSA,

and OPSA schemes. Section 5 contains a comprehensive set of simulation results, which we analyze and

explain in detail. In Section 6, we consider several issues arising from this work. We then summarize

our conclusions in Section 7.

2 Background

“Human Computation” was pioneered by Luis von Ahn and his colleagues, who created games with

a purpose [14] that people play voluntarily and produce useful metadata as a by-product. By taking

advantage of people’s desire to be entertained, Human Computation has shown promise in solving some

problems that computer computation cannot currently resolve completely. In recent years, a substantial

and increasing amount of research effort has been invested in the area, and several human computation

systems have been developed for a variety of purposes [8, 9, 15–19].

Among them, the online ESP Game [15] was the first human computation system, and it was sub-

sequently adopted as the Google Image Labeler [1]. In the system, two randomly selected players are

paired to create a game, and a randomly selected image is displayed to both players simultaneously.

To execute the task, the players must enter possible words to label the image until an “agreement” is

reached (i.e., the same word is entered by both players). The agreed word is typically a good label for

the image, and the system then displays another image as a new task to be solved. It has been shown

that the collected labels facilitate more accurate image retrieval, help users block inappropriate (e.g.,

pornographic) images, and improve web accessibility (e.g., the labels can help visually impaired people
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surf web pages [3]).

In addition to image annotation, the Peekaboom system [19] can help determine the location of objects

in images; and the Squigl system [2] and the LabelMe system [9] can provide the complete outlines of the

objects in an image. Phetch [16, 17] can provide image descriptions that improve web accessibility and

image searches, and the Matchin system [2] can help image search engines rank images based on which

ones look the best. The concept of the ESP Game has been applied to other problems. For instance,

the TagATune system [7], which provides annotation for sounds and music, can improve audio searches.

The Verbosity system [18] and the Common Consensus system [8] collect “common-sense” knowledge

that is valuable for commonsense reasoning and enhancing the design of interactive user interfaces. The

Context-Aware Recognition Survey (CARS) system [20] uses ubiquitous sensors to monitor activities in

the home, while the Gopher system [4] employs mobile social gaming for geospatial tagging. Moreover,

[11] applies human computation to ontology alignment and web content annotation for the Semantic

Web using a set of games, such as OntoPronto, SpotTheLinks, OntoTube, and OntoBay. Finally, Shenoy

and Tan [10] showed that it is possible to design environments in which human cannot avoid processing

some of the tasks (and produce some useful outcomes), even though they are actively trying not to.

3 The ESP Game

3.1 Game Description

The ESP Game [15] was the first human computation system to take advantage of people’s desire to

be entertained and provide useful metadata as a by-product. When a user logs into the system, he/she is

automatically matched with a random partner. The two players have no idea about each other’s identity

as they cannot communicate.

Initially, a randomly selected image is displayed to both players simultaneously. The two players then

input possible words to label the image until an “agreement” is reached (i.e., the same word is entered

by both players), and a bonus score is awarded to both players based on the ‘quality’ of the agreed word.

In practice, the ‘quality’ of a word is measured by its popularity; generally, words that are more popular
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receive lower scores. After the players agree on a word, they are shown another image, and they have

two and a half minutes to label 15 images.

The word on which the two players agree becomes the label of the image, and it can not be used the

next time that image is displayed in another game (the word is called a “taboo” word of the image). The

rationale for using taboo words is to ensure that each image is labeled with a variety of words.

To be effective, the ESP game tries to collect outcomes with the largest possible aggregated score for

each puzzle (image), and needs as many distinct puzzles as possible to be played. There is a trade-off

between these two aspects. On the one hand, the system prefers to take as many labels as possible for

each puzzle, which will result in the playing of fewer distinct puzzles; on the other hand, the system

prefers that each puzzle is played only once, which can lead to the playing of the maximum number

of puzzles. Thus, an optimal puzzle selection strategy that can accommodate the two goals is highly

desirable. To this end, we propose a metric to evaluate the system gain of the ESP game, and analyze

the puzzle selection problem. We discuss the analysis in the next subsection.

3.2 Analysis

Let N be the number of the puzzles that have been played at least once in the system, and let S be the

total score of all the agreed labels. We define the system gain, G, of the ESP game as follows:

G = ln(N) × ln(S/N). (1)

Clearly, the system gain increases as the number of the games played increases, and/or as the average

total score (per puzzle) increases. Suppose that in the system, each puzzle has the potential to yield

K labels in total, and each tag is associated with one positive score value based on its popularity. For

simplicity, we assume there are totally X distinct scores (i.e., S1, S2, S3, ..., SX) in the system, and

Si = ei. Moreover, we assume that Ki labels have the score Si, and Ki = eX−i. Therefore the total

number of potential labels per puzzle (K) can be obtained by Eq. 2, and the expected score value of

each tag (E[S]) can be obtained by Eq. 3.
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K =

X∑
i=1

Ki =
eX − 1

e − 1
(2)

E[S] =

∑
X

i=1 eieX−i

K
=

eX(e − 1)X

eX − 1
(3)

Suppose the N puzzles have been played T rounds in total (one puzzle per round), and each puzzle

has been played r times on average (r = T/N). We rewrite Eq. 1 as follows:

G = ln(T/r) × ln(E[S] × r)

= (ln(T ) − ln(r)) × (ln(E[S]) + ln(r))

= −(ln(r))2 + (ln(T ) − ln(E[S]))ln(r) + ln(T )ln(E[S])

= −

(
ln(r) −

ln(T ) − ln(E[S])

2

)2

+ C,

(4)

where C is a constant with a value equal to ln(T )ln(E[S]) +
(

ln(T )−ln(E[S])
2

)2

. Note that C also

represents the largest possible system gain, which occurs when

r = e
ln(T )−ln(E[S])

2 . (5)

4 Puzzle Selection Algorithms

In this section, we compare three puzzle selection algorithms for the ESP game, namely the Random

Puzzle Selection Algorithm (RPSA), the Fresh-first Puzzle Selection Algorithm (FPSA), and the Optimal

Puzzle Selection Algorithm (OPSA). We take the RPSA scheme’s performance as the baseline (in terms

of system gain). The heuristics-based FPSA scheme tries to maximize the first component of Eq.1 (i.e.,

ln(N)), while the proposed OPSA scheme tries to achieve the largest possible system gain based on our

analysis (as discussed in Sec. 3.2).
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Algorithm 1 The Random Puzzle Selection Algorithm (RPSA).
1: Function RPSA
2: p ⇐ Select Random(P )
3: Return p

Algorithm 2 The Fresh-first Puzzle Selection Algorithm (FPSA).
1: Function FPSA
2: p ⇐ Select Fresh(P )
3: Return p

We use P to denote the set of all puzzles in the system, and define three functions used by the puzzle

selection algorithms: 1) Select Random(P ), which randomly selects a puzzle from the input puzzle set

P ; 2) Select P layed(P ); which selects the puzzle in the input puzzle set P that has been played most

frequently; and 3) Select Fresh(P ), which selects the puzzle in the input puzzle set P that has been

played least frequently. We present the three algorithms in the following.

4.1 RPSA and FPSA

We present the Random Puzzle Selection Algorithm (RPSA) and the Fresh-first Puzzle Selection Algo-

rithm (FPSA) in Algorithms 1 and 2 respectively. RPSA selects a puzzle at random from the puzzle pool

P in each round. As mentioned earlier, it provides the baseline performance of the ESP game in this

study. FPSA, on the other hand, selects the puzzle that has been played least frequently in the system. It

is a greedy, heuristics-based approach that tries to maximize the first component of Eq. 1.

4.2 The Proposed Scheme: OPSA

In the proposed Optimal Puzzle Selection Algorithm (OPSA) for ESP games, N denotes the number

of puzzles that have been played in the system, E denotes the expected score value of each label, and T

is the total number of rounds that have been played. In addition, r denotes the optimal number of rounds

(discussed in Sec. 3.2); and for each entry p of P , p.r represents the round number in which the puzzle

p was played. Suppose the puzzle set P0 contains all the puzzles that have not been played; P1 contains

all the puzzles that have been played at least once, but less than r rounds; and the set P2 = P − P0 −P1
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Algorithm 3 The Optimal Puzzle Selection Algorithm (OPSA).
1: Function OPSA
2: T ⇐ T + 1
3: r′ ⇐ �e

ln(T )−ln(E)
2 �

4: if r′ > r then
5: for each p in P2 do
6: if p.r < r′ then
7: Move p from P2 to P1

8: end if
9: end for

10: P1 ⇐ P1

⋃
P2

11: r ⇐ r′

12: end if
13: if {P1} is NOT empty then
14: p ⇐ Select P layed(P1)
15: p.r ⇐ p.r + 1
16: if p.r = r then
17: Move p from P1 to P2

18: end if
19: Return p
20: else
21: if {P0} is NOT empty then
22: p ⇐ Select Random(P0)
23: p.r ⇐ 1
24: if p.r < r then
25: Move p from P0 to P1

26: else
27: Move p from P0 to P2

28: end if
29: Return p
30: else
31: p ⇐ Select Fresh(P2)
32: p.r ⇐ 1
33: Return p
34: end if
35: end if

contains the other puzzles. We detail the OPSA algorithm in Algorithm 3.
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Figure 1. Comparison of the system gain with various r settings in both the simulations and the
analysis. (X = 6 and T = 10, 000)

5 Evaluation

In this section, we discuss the simulations performed to investigate the properties of the ESP game

based on our analysis. We also evaluate the system gain performance of the three puzzle selection

strategies. All the results are based on the average performance of 100 simulations.

5.1 The Optimal r

In the first set of simulations, we evaluated the accuracy of our analytical model for determining the

optimal r value for the ESP game. We assumed that the number of puzzles in the system was infinite,

and all of them were unsolved at the beginning of the simulation (i.e., no labels were discovered for any

puzzles). Moreover, we set the total round number of games played (T ) to 10,000. Figure 1 shows the

evaluation results in terms of system gain for r values between 2 and 230, when the maximum score

value X was fixed at 6. In the figure, the analysis curve is derived by Eq. 4, where E[S] can be obtained

by Eq. 3. It is equal to 10.3353 when X = 6. We observe that the analysis curve matches the simulation

curve very well, and the optimal r values (i.e., those that yielded the largest system gain) of the two

curves are also comparable.

Additionally, we varied the maximum score value X in the range 2 to 10 and compared the derived
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Figure 2. Comparison of the optimal r values derived by simulations and analysis, where T =
10, 000 and X varies between 2 and 10.
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Figure 3. The relationship between the values of r and K with various X values.

optimal r values using both simulations and analysis, as shown in Figure 2. The results show that the

analysis curve only matches the simulation results well when X ≥ 5. The reason is that, in the analytical

model, the optimal r value is larger than the total number of potential tags per puzzle (K in Eq. 2) when

X < 5, as shown in Figure 3. Thus, the analytical model can not be used when X < 5 because the

optimal number of rounds per puzzle (r) is larger than the number of tags (K) that a puzzle has in the

system.

From Figure 2, we also observe that, when X > 5, the optimal r value decreases as the X value

increases. This confirms our intuition that the value of E[S] increases as X increases (cf. Eq. 3). As a
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Figure 4. Comparison of the optimal r values derived by simulations and analysis, where X = 6 and
T varies between 200 and 20,000.

result, based on Eq. 5, the optimal r value will decrease as X increases. We find that if there are many

different scores in the system, more rounds of each puzzle should be played in order to achieve a better

overall system gain.

5.2 The Relationship between T , N , and r

Next, we evaluate the relationship between the total number of game rounds T , the number of played

puzzles N , and the number of game rounds required to maximize the system gain r in the proposed

Optimal Puzzle Selection Algorithm. Figures 4 and 5 show the comparison results of r and N with

various T values in the range 200 to 20,000 (X is fixed at 6).

Figures 4 and 5 show that our analytical model matches the simulation results very well in all the

cases. In addition, we observe that both of the r and N values increase as the value of T increases.

There are two reasons for this phenomenon: a) as the total number of game rounds increases, each

puzzle tends to take more labels from the system; and b) a larger number of puzzles are played. Since

N = T/r, the results confirm that the proposed OPSA approach can effectively balance the two goals,

i.e., maximize the number of games played, while identifying as many labels per puzzle as possible.
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Figure 5. Comparison of the N values derived by the simulations and analysis, where X = 6 and T
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Figure 6. Comparison system gain achieved by the OPSA, FPSA and RPSA schemes with various
numbers of puzzles, where T is fixed at 10,000 and X is set to 6.

5.3 Comparison of RPSA, FPSA, and OPSA

Here, we present the evaluation of the three puzzle selection algorithms in the ESP game. In the

simulation, we set T = 10, 000 and X = 6; M denotes the total number of puzzles in the system. The

simulation results are shown in Figure 6.

The results in Figure 6 show that, when M is small (say, smaller than a threshold M ′), the three

algorithms are comparable in terms of the system gain performance achieved. However, when M is
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larger than M ′, the system gain of OPSA remains consistent regardless of the changes in the values of

M . In contrast, the system gain of FPSA and RPSA degrades as the value of M increases, and RPSA

slightly outperforms FPSA when M is very large. More precisely, the threshold M ′ represents the

minimal number of puzzles required to achieve the maximum system gain (i.e., M ′ = N = T/r). Since

T = 10000 and X = 6, we know that E[S] = 10.3353 and r = 31. Therefore, M ′ = 10000/31 ≈ 321

in this case. The results indicate that, while using the OPSA scheme, the ESP game must maintain at

least a certain number of puzzles to achieve the maximum system gain1; otherwise, it will favor the

RPSA and FPSA schemes because their performance is comparable to that of OPSA and the ease of

implementation.

6 Discussion

We have presented an analytical model that describes the system gain performance of the ESP game.

In addition, we propose an Optimal Puzzle Selection Algorithm (OPSA) that can strategically select

which puzzles should be played to achieve the largest possible system gain. However, there are some is-

sues that have yet to be addressed. Here, we briefly discuss those issues together with possible solutions.

First, the proposed analytical model only considers the number of the games played and the quan-

tity/quality of the game outcomes when measuring the system gain. However, the speed of generating

metadata varies a great deal among different puzzles, and even different rounds of the same puzzle; thus,

the proposed model may not be sufficiently representative to measure the “productivity” of the ESP

game (i.e., the average quantity and/or quality of the outcomes in each time unit). A possible solution

to this issue is to consider an additional factor, i.e., the time consumption of the played games in Eq. 1.

We defer a detailed evaluation of this issue to a future work.

Second, in this study, we assume that each round of play produces an outcome with a positive score.

However, this may not be always true, since it is possible to have a round without any positive outcomes

(e.g., both players agree to pass a puzzle, or they fail to agree about the labels within the time limit).

1Fortunately this is not a problem in general, since the number of the puzzles can be increased easily by adding new
puzzles from the Internet.
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Even worse, the outcomes may be negative (e.g., incorrect labels are assigned either intentionally or

accidentally). Thus, we need a validation mechanism to examine the outcomes of the games [12].

Moreover, it is necessary to extend the proposed analytical model to consider scenarios of zero and

negative outcomes for more general cases. Again, we defer a detailed discussion of this issue to a future

work.

7 Conclusion

In this paper, we have studied the ESP game, an emerging human computation system, and proposed

an evaluation metric, called system gain, to evaluate the game’s performance. Moreover, we argue that

human computation games need to be played with a strategy in order to collect human intelligence in a

more efficient manner. Based on our analysis, we propose and implement an Optimal Puzzle Selection

Algorithm (OPSA) to provide guidelines for the ESP game. Using a comprehensive set of simulations,

we have investigated the properties of the ESP game, and demonstrated that the proposed OPSA scheme

substantially outperforms other schemes in all test cases. Moreover, the proposed analysis is simple and

applicable to other ESP-like games, and the proposed puzzle selection strategy shows promise for the

design and implementation of future human computation systems.
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