
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

U3 – mining unordered embedded subtrees using TMG candidate generation

Fedja Hadzic, Henry Tan, Tharam S. Dillon,
Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology, Perth,

Australia
{fedja.hadzic, henry.tan, tharam.dillon}@cbs.curtin.edu.au

Abstract

In this paper we present an algorithm for mining of
unordered embedded subtrees. This is an important
problem for association rule mining from semi-
structured documents, and it has important
applications in many biomedical, web and scientific
domains. The proposed U3 algorithm is an extension
of our general tree model guided (TMG) candidate
generation framework and it considers both
transaction based and occurrence match support.
Synthetic and real world data sets are used to
experimentally demonstrate the efficiency of our
approach to the problem, and the flexibility of our
general TMG framework.

1. Introduction

Semi-structured documents such as XML possess a
hierarchical document structure, where an element may
contain further embedded elements, and each element
can be attached with a number of attributes. It is
therefore frequently modeled using a rooted ordered
labeled tree. The task of frequent subtree mining is to
extract all subtree patterns from a tree database, that
occur at least as many times as the user specified
minimum support threshold. Frequent subtree mining
algorithms have many important applications in areas
such as Bioinformatics, Web mining, scientific data
management, and in other domains where the
knowledge can be modeled using a rooted ordered
labeled tree. For example, Web logs can be effectively
represented using XML documents [1], and a frequent
subtree mining algorithm can be used to extract
informative substructures that can be very useful for
determining common user activity and interests [2].
Other interesting application is mining of online
biological databases, and the work presented [3]
demonstrated the potential of discovering useful
patterns from a protein ontology database.

 Even though the tree structures underlying semi-
structured data sources are ordered, interesting
associations or queries are commonly based on
unordered trees since the ordering among sibling data
objects may not be of great importance to the user and
is often not available. Our work in the area of frequent
subtree mining is characterized by the Tree Model
Guided (TMG) candidate generation [4, 5, 6] which
utilizes the underlying model of the data structure for
efficient candidate subtree generation. This non-
redundant systematic enumeration technique ensures
that all the candidate subtrees generated are valid, in
the sense that they conform to the actual tree structure
of the data. While in our previous works the focus was
on ordered induced/embedded [4, 5] and unordered
induced subtrees [6], in this paper we present an
algorithm for mining of unordered embedded subtrees.
The main difference between an induced and an
embedded subtree is that, while an induced subtree
keeps the parent-child relationships from the original
tree, an embedded subtree allows a parent in the
subtree to be an ancestor in the original tree. In other
words, an embedded subtree generalizes the definition
of an induced subtree by preserving ancestor-
descendant relationships. Mining of embedded
subtrees is a much more difficult problem than mining
of induced subtrees, as it is necessary to examine
several levels within a tree to identify the embedded
subtree. It is important to be able to mine embedded
subtrees in order to discover interesting relationships
between the data objects embedded deeply in the tree
database. Previous results in the ordered case [2, 4, 5]
indicate that the complexity of mining embedded
subtrees is much higher. Therefore, this extension is
clearly a nontrivial extension which leads to a strong
generalization.

The contributions of this paper are as follows. We
present an extension to our general TMG framework to
mine unordered embedded subtrees. The space
efficiency of our general TMG framework is improved
with an adjustment of the representative structure. The

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.403

281

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.403

285

representative structure used previously in our TMG
framework, was efficient and conceptually simple for
enumerating candidate subtrees. However, as a trade-
off the structure was not very space efficient since the
information about the descendant nodes was stored for
every node of the database tree. This can be an issue
when processing a very large tree database. In this
paper we improve the space efficiency property of the
representative structure by using the dictionary of
traversal of nodes in conjunction with the list structure.
With this optimization, the information necessary for
candidate subtree enumeration is available without the
trade-off for space efficiency. A substantial saving of
the memory is achieved and this aspect will be
demonstrated in the experiments. The proposed
algorithm is evaluated by comparing it with the
SLEUTH [7] algorithm, which is to the best of our
knowledge the only existing algorithm that extracts a
complete set of unordered embedded subtrees. In
Section 2 we discuss some general tree concepts and
define the problem. The proposed U3 algorithm is
described in Section 3. Section 4 overviews some
related work to unordered subtree mining. An
experimental evaluation of our algorithm is given in
Section 5. Section 6 concludes the paper.

2. Tree Concepts and Problem Definition

A tree T is an acyclic connected graph with the
node at the top defined as the root[T]. The Parent of
node v (parent[v]) is defined as its predecessor. Two
nodes that share the same parent are referred to as
sibling nodes. The fan-out or degree of a node
corresponds to the number of children of that node. A
leaf node is a node without a child; otherwise, it is an
internal node. A path from vertex vi to vj, is defined as
the finite sequence of edges that connects vi to vj. The
length of a path p is the number of edges in p. If p is an
ancestor of q and q is a descendant of p, then there
exists a path from p to q. The rightmost path (RMP) of
T is defined as the (shortest) path connecting the
rightmost leaf with the root node. The Depth/level of a
node is the length of the path from root to that node.
The size of a tree equals to the total number of nodes in
the tree. In this paper, the term ‘k-subtree’ refers to a
subtree that consists of k number of nodes. A tree can
be denoted as T(V,L,E), where (1) V is the set of
vertices or nodes; (2) L is the set of labels of vertices,
for any vertex v�V, L(v) is the label of v; and (4) E =
{(x,y)| x,y� V}is the set of edges in the tree. In a
labeled tree, there is a labeling function mapping
vertices to a set of labels and a label can be shared
among many vertices.

Given a tree S = (VS,LS,ES) and tree T = (VT,LT,ET),
S is an unordered embedded subtree of T, iff (1) VS �
VT ;(2) LS � LT, and LS(v)=LT(v); (3) if (v1,v2) � �ES then
parent(v2) = v1 in S and v1 is ancestor of v2 in T. An
ordered subtree would preserve the left to right
ordering of sibling nodes in the original tree while in
an unordered subtree the order of the sibling nodes
(and the subtrees rooted at those nodes) can be
exchanged and the resulting subtree would be
considered the same. This causes the enumeration and
counting of unordered subtrees more difficult since
each enumerated subtree needs to be ordered into one
logical and consistent form, so that all its variants that
have different order among sibling nodes are
considered as the same subtree. The group of possible
trees obtained by permuting the sibling nodes in all
possible ways is referred to as the automorphism group
of a tree [7]. During the pre-order traversal of a tree
database, ordered subtrees are generated by default.
One tree needs to be selected to uniquely represent the
unordered tree. This selected tree is known as the
canonical form (CF) of an unordered tree. Generally
speaking, CF of an entity is a representative form (or a
function) for which many equivalent variations of an
entity can be represented (mapped) into one standard,
conventional, logical form in a consistent manner [8,
9]. Within the algorithm proposed in this paper, the
depth-first CF (DFCF) proposed in [8] is used to
uniquely map each subtree, and it can be formally
explained as follows:

Given two trees T1 and T2, with root[T1] = r1 and
root[T2] = r2, let descendants(r1):{c1,…,cm} be the set
of descendants of node r1 and
descendants(r2):{c1,…,cn} be the set of descendants of
node r2, ordered according to the pre-order traversal.
Note that these sets can also contain the special
backtrack symbol to indicate the backtracking during
the traversal of the descendant nodes. Let STx(r)
denote the subtree of tree Tx with root node r, and
|descendants(r)| denote the number of descendants of
node r. The label(ci) < label(cj) if label(ci)
lexicographically sorts smaller than label (cj), and so
T1 � T2 iff:

a) label(r1) < label(r2) or,
b) if label(r1) = label(r2) and |descendants(r1)| =

m, |descendants(r2)|=n, then either:
i. � 1�i<j�min(m,n) there exist j such that

ST1(ci) = ST2(ci) and ST1(cj) < ST2(cj)
ii. m�n, � 1�i�m and m�n, ST1(ci) = ST2(ci)

Transaction-based and occurrence match support

definitions exist to count the occurrences of a subtree.

282286

When using the transaction-based support definition,
the transactional support of a subtree t, denoted as �tr(t)
in a tree database Tdb is equal to the number of
transactions in Tdb that contain at least one occurrence
of subtree t. Let the notation t� k, denote the support
of subtree t by transaction k, then for TS, t� k = 1
whenever k contains at least one occurrence of t, and 0
otherwise. Suppose that there are N transactions k1 to
kN of tree in Tdb, the �tr(t) in Tdb is defined as

�
�

N

i
ikt

1
� . The occurrence-match support takes the

repetition of items in a transaction into account and
counts the subtree occurrences in the database as a
whole. Hence, the occurrence-match support (�) of a
subtree t, denoted as �oc(t), in a tree database Tdb is
equal to the total number of occurrences of t in all
transactions in Tdb. Let function g(t,k) denote the total
number of occurrences of subtree t in transaction k. If
there are N transactions k1 to kN of tree in Tdb, �oc(t) in
Tdb can be defined as �

�

N

i
iktg

1
),(.

Frequent subtree mining. Let Tdb be a tree
database consisting of N transactions of trees, KN. The
task of frequent subtree mining from Tdb with given
minimum support (�), is to find all candidate subtrees
that occur at least � times in Tdb. To ensure that the
downward-closure lemma holds [10] each k-1-subtree
of a frequent k-subtree has to be frequent. Hence,
during the candidate enumeration and counting phase
the k-subtrees that contain any infrequent k-1 subtrees
have to be pruned from the frequent set (Fk). This
problem is known as k-1 pruning [2, 4, 5] and for the
transactional support definition, opportunistic
approaches [2] have been employed to achieve the
desired result in less time. However, when using
occurrence-match support, full (k-1) pruning should be
performed at each iteration of generating a k-subtree
from a (k-1)-subtree so that no ‘pseudo-frequent’
subtrees [4, 5] would be generated. The rationale of
this has already been explained in [4, 5] and an
example of a pseudo-frequent subtree will be provided
later in the experimental section.

An illustration of different subtrees is given in
Figure 1. In this paper, the term ‘occurrence
coordinate(s) (oc)’ will be used to refer to the
position(s) of a particular node or a subtree in the tree
database. In the case of a node, oc corresponds to the
pre-order position of that node in the tree database (left
of circle in Figure 1), whereas for a subtree, oc is a
sequence of oc from nodes that belong to that
particular subtree. On the right hand side of Figure 1,
the oc of each subtree are presented with the
corresponding transaction that they occur in. If ordered

induced subtrees are mined, st1 occurs only once in T1
with oc:125; whereas, if unordered induced subtrees
are mined, the order of node ‘c’ and ‘e’ can be
exchanged and hence now st1 occurs in T2 as well
with oc:132 (note: the order of occurrence coordinates
is exchanged since the order of corresponding nodes is
exchanged). If embedded subtrees are mined, a parent
in st1 subtree can be an ancestor in Tdb and hence
many more occurrences of st1 are counted as can be
seen in the top right corner of Figure 1. For an
example of difference in support definitions, suppose
that unordered embedded subtrees are mined. The
�tr(st2) = 2 since st2 is supported by both T1 and T2,
while �oc(st2) = 7 since st2 occurs three times in T1
and four times in T2.

Figure 1. Example Tree Database (TDB)

consisting of two transactions (T1 & T2))

3. U3 Algorithm

The basic steps taken by the U3 algorithm are
presented in the flowchart of Figure 2, and these are
explained in detail later in this section. The tree
database is first transformed into a database of rooted
integer-labeled trees. It is then ordered into its CF to
reduce the average number of generated candidate
subtrees that need to be ordered. Recursive List (RL) is
constructed which is a global sequence of encountered
nodes in the pre-order traversal that stores necessary
node information. During this process the set of
frequent 1-subtrees (F1) is obtained by hashing the
encountered node labels. TMG candidate generation
using the RL structure takes place and the string
representations of candidate subtrees are hashed to the
Ck hash table and the right-most path (RMP)
occurrence coordinates are stored. Prior to hashing the
string representation of each candidate subtree, it is
first ordered into its CF, if necessary. The process
repeats until all frequent k-subtrees are enumerated.
We next explain the way that trees are represented at

283287

the implementation level and how the DFCF ordering
scheme can be re-formulized with respect to this
representation.

Figure 2. Steps taken by U3 algorithm

Tree Representation and Canonical Form
Ordering. A tree is represented using the pre-order
string encoding (�) as described in [2, 4]. It is a
sequential representation of the nodes of a tree as
encountered during the pre-order traversal of that tree.
The backtrack symbol (‘/’) is used whenever moving
up a node in the tree during the pre-order traversal. We
denote encoding of a subtree T as �(T) and for
example from Figure 1, �(T1):‘a b c c / e / / e / / c / d /
e e / / ’. The backtrack symbols can be omitted after
the last node. We refer to a group of subtrees with the
same encoding L as candidate subtrees CL. The
canonical form ordering occurs at the start where the
whole tree database is ordered into its canonical form
and later where candidate subtrees are ordered so that
unordered subtrees are correctly enumerated. The
DFCF ordering scheme can now be reformulated with
respect to the tree representation used.

Given two trees T1 and T2, with root[T1] = r1 and
root[T2] = r2, let C(r1) and C(r2) denote the children
sets of r1 and r2, respectively. Further, let �(Tx)k
denote the kth element of the pre-order string encoding
of tree Tx (x = 1 or 2)(this can be either a node label or
the special backtrack (‘/’) symbol which, as mentioned
earlier, is considered smaller than any other label). T1
is considered smaller than T2 iff either:

a.) L(r1) < L(r2), or
b.) L(r1) = L(r2) and either size(C(r1)) <

size(C(r2)) and �(T1)k = �(T2)k for all 1 � k �
length(�(T1)), or �(T1)k < �(T2)k for some 1
� k < length(�(T1)).

Recursive List (RL) and F1 Construction. The
tree database, Tdb, is scanned once to create the global
pre-order sequence RL in memory, which provides

shared global nodes’ related information that can be
directly accessed. RL stores each node in Tdb following
the pre-order traversal indexing. Position, label, scope,
and level information are stored for each node. The
level of a node refers here to the level in the Tdb tree,
where this node occurs. An item in the RL at position i
is referred to as D[i]. Every time a node is inserted into
the RL, we generate a candidate 1-subtree. Based on its
label, we increment its support count in the C1 hash
table. If its support count is � 	 (user-specified
minimum support count), we insert the candidate 1-
subtree to the frequent 1-subtree set, F1. An example
RL structure representing the tree T1 from Figure 1 is
displayed in Figure 3. The pre-order position of a node
in the tree database is equal to the index of the RL at
which that nodes is stored, and the label, scope and
level are shown in that order underneath the entry. All
this information is necessary to enumerate only valid
subtree candidates and is accessed in the TMG
candidate enumeration process explained next.

Figure 3. Recursive List representation of tree T1

A particular subtree, as defined by its encoding can
be found at many places in the database and these
different occurrences need to be stored so that
subsequent set of candidates can be generated. We
only store the occurrence coordinates of the nodes in
the right-most path of the subtree (referred to as RMP-
oc). Within our framework, this information is
sufficient for enumerating candidate (k+1)-subtrees
from a frequent k-subtree. Given a k-subtree T with oc
[e0,e1,…ek-1], the RMP-oc of T, denoted by
(T), is
defined by [e0,e1,…,ej] such that
(T) � oc(T); ej = ek-

1; and j � k-1 and the path from ej to e0 is the RMP of
tree T. Vertical Occurrence List (VOL) [1,3] is used to
store all
(T) of a subtree T represented by its pre-
order string encoding �(T), and to determine the
occurrence-match and transaction-based support. A
transaction identifier (tid) is stored for each
(T) so
that the occurrence match of T equals to |VOL| while
the transaction-based support equals to the number of
unique tids in VOL.

TMG Candidate Subtree Generation (Ck and Fk
construction). TMG is a specialization of the right
most path extension method which has been reported
to be complete and non-redundant [2, 4]. To enumerate
all embedded k-subtrees from a (k-1)-subtree, the
TMG enumeration approach extends one node at a
time for each node in the RMP of a (k-1)-subtree.
Hence, it is a breadth-first (BF) enumeration strategy.
Suppose that nodes in the RMP of a subtree are
defined as extension points. The TMG can be

284288

formulated as follows. Let
(Tk-1):[e0,e1,…ej] denote
the RMP-oc of a frequent (k-1)-subtree Tk-1, and � the
scope of the root node e0. TMG generates k-subtrees
by extending each extension point n�
(Tk-1) with a
node with oc t iff n < t � �. Suppose that the encoding
of Tk-1 is denoted by �(Tk-1) and l(ej,t) is a labeling
function for extending extension point n with a node at
position t. �(Tk) would be defined as �(Tk-1)+l(ej,t),
where l(ej,t) determines the number of backtrack
symbols ‘/’ to be appended before the label of the new
node is added to �(Tk). The number of backtrack
symbols is calculated as the shortest path length
between the extension point n and the right-most-node
r, (notation pl(n,r)). To generate RMP at each step of
candidate generation, we utilize the computed number
of backtrack symbols b that need to be appended
before the new node with oc t is added to the encoding.
Given that the
(Tk-1) is [e0,e1,…,ej], the RMP of the
k-subtree (
(Tk)) is generated by appending t at
position (j+1) - b of the (
(Tk-1)) and removing any
RMP-oc that occur after t, thereby making t the right
most node of Tk. This will make sure that at each
extension of (k-1)-subtree, RMP-oc of k-subtree are
appropriately stored.

To provide an illustrative example let us say that we
are extending the Tk-1 subtree from Figure 4,
where
(Tk-1):[0,4,5], �(Tk-1):’a b / b c’, and right-
most-node ‘c’ (oc:5). If we are extending Tk-1 from
extension point node ‘b’ (oc:4) with node ‘e’ (oc:8)
then l(5,8) will append one backtrack symbol (pl(4,5)
= 1) and the label ‘e’ to �(Tk-1). The new encoding
�(Tk) becomes ‘a b / b c / e’, and
(Tk):[0,4,8] (i.e.
inserting 8 at position (j+1) - b = (3+1) - 1 = 3 of
(Tk-

1)).

Figure 4. TMG enumeration: extending (k-1)-

subtree Tk-1 (�(Tk-1):‘a b / b c’ (oc:0145)) with nodes
at positions 6, 7, 8, 9, and 10

In the case of unordered subtrees, the right-most-
node may not always correspond to the last node (tail
position) in the encoding as it does for the ordered
subtree case. We refer to this case as non-tail
expansion. A notion of pivot position � is used to
denote the position in the subtree encoding that
corresponds to the right-most-node. Each RMP-OC of
a subtree will store an integer indicating the pivot

position � in the encoding for that particular
occurrence of the subtree. Hence, for a non-tail
expansion of a subtree Tk-1, if we are appending a new
node with label l and oc t, rather than appending the
backtrack symbols (if any) and l to the last node in
�(Tk-1), it will be appended to the pivot position � by
the function l(�, t), in order to obtain �(Tk). Please note
that if there are b backtrack symbols to be appended
with l and there were already some backtrack symbols
after the pivot position � in �(Tk-1), then l will be
appended after the bth backtrack symbol. Furthermore,
an additional backtrack symbol will be appended after
the position in the encoding where l has been
appended. To illustrate this please consider the subtree
st2 from T2 in Figure 1, with oc:05674,
(st2):[0,5,7]
and �(st2):’a c c / e / / e’ (note that oc of st2 is
different to the one displayed in Figure 1 because it is
ordered according to the DFCF explained earlier. As
can be seen the right-most node does not correspond to
the last node ‘e’ in the encoding with oc:4, but rather
to node ‘e’ with oc:7. Therefore, if we are extending
st2 from extension point node ‘e’ (oc:7) with node ‘c’
(oc:9) then l(7,9) will append the label ‘c’ to �(st2) at
pivot position � and add ‘/’ after ’c’. The new encoding
becomes ‘a c c / e c / / / e’.

Avoiding CF ordering. Ordering a subtree into its
CF can be quite expensive due to the expensive
traversal of the string encodings in order to determine
and compare the sibling nodes. Due to the fact that in
our approach the whole tree database is first sorted into
its CF and each previously enumerated k-1 subtree is
ordered, many subtrees may already be in their CF
when k-subtree enumerations are performed for k > 2.
Hence, within the CF ordering scheme we have
determined a few preconditions that allow us to
assume that a subtree is already in its CF and that no
ordering is required. These preconditions occur when
we are appending a new node ‘n’ to the right-most
node ‘r’ of the currently expanding subtree.

Precondition 1: parent(n) = r;
Precondition 2: Let the left sibling of n be 'ln', then

children(ln) = null and L(ln) = L(n), OR L(ln) < L(n).
If any of the above conditions are met the ordering

can be skipped which results in a run time reduction as
was experimentally demonstrated in [3].

Pruning. To make sure that all generated subtrees
do not contain infrequent subtrees, full (k-1) pruning
[7,1,2] must be performed. This implies that at most
(k-1) numbers of (k-1)-subtrees need to be generated
from the currently expanding k-subtree. When the
removal of root node of k-subtree doesn’t generate a
forest [2, 4] then an additional (k-1)-subtree is
generated by taking the root node off from the

285289

expanding k-subtree. The expanding k-subtree is
pruned when at least one (k-1)-subtree is infrequent.
This ensures that the downward-closure lemma [10] is
satisfied and in the case of occurrence match support
no pseudo-frequent subtrees will be generated. The
whole TMG candidate enumeration process repeats
until all frequent k-subtrees are generated.

4. Related Works

A number of algorithms have been developed for
the problem of unordered subtree mining. The Unot
algorithm [11] uses a reverse search technique for
incremental computation of unordered subtree
occurrences. Nijssen and Kok [12] present a bottom-up
strategy for determining the frequency of unordered
induced subtrees. Breadth-first canonical form (BFCF)
and depth-first canonical form (DFCF) for labeled
rooted unordered trees has been presented in [8]. In the
same work the authors proposed two algorithms:
RootedTreeMiner, which is the authors’ re-
implementation of Unot (a vertical mining algorithm
based upon BFCF) and FreeTreeMiner, which extends
the DFCF for discovering labeled free trees. As an
extension to the work, HybridTreeMiner [13] is an
efficient algorithm that systematically enumerates all
subtrees by traversing an enumeration tree which is
defined based upon the BFCF for unordered subtrees.
All these algorithm mine induced subtree while the
SLEUTH [7] algorithm extract all frequent unordered
embedded subtrees by using unordered scope-list joins
via the descendant and cousin tests. Another algorithm
for mining frequent embedded unordered subtrees is
TreeFinder [14] that uses an Inductive Logic
Programming approach, but which in the process can
miss many frequent subtrees. More recently, a related
problem of mining maximal embedded unordered
subtrees has been addressed in [15]. A maximal pattern
is a frequent pattern in which no proper superset is
frequent.

5. Experimental Results

Our U3 algorithm is evaluated by comparing it with
the SLEUTH [7] algorithm. Since the approach
described in [15] extracts maximal patterns rather than
the complete set of frequent patterns, it is not as
suitable for comparison. For transaction based support
our algorithm is preceded with ‘T-’ (e.g. T-U3). When
no full (k-1) pruning is performed (NP) is added at the
end (e.g. U3(NP)). TreeGenerator [2] is used to obtain
the artificial tree databases. We also use a reduced
version (54%) of CSLogs real world data set [2]

because when the full dataset is used all of the
compared algorithms fail to return any results for a
reasonable support threshold. The minimum support �
is denoted as (sxx), where xx is the minimum
frequency threshold. Experiments were run on 3Ghz
(Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux
machine.

Time Performance Test (CSlogs). As can be seen
in Figure 5, the T-U3 algorithm enjoys better time
performance when compared to SLEUTH which has
some performance issues for decreasing support value.
We refrained from running it further for lower support
thresholds (s100 and s150) since there was already
such a large jump in performance from s205 to s200.
The time taken would be too long and recording the
result would increase the scale of the y-axis from the
graph and thereby decrease the clarity of the displayed
results. However, we show that the T-U3 algorithm
still performed reasonable well for s100 and s50. By
not performing full pruning there was an additional
performance gain by T-U3(NP). The performance gain
firstly comes from avoiding the generation of all
possible k-1 subtrees, and secondly because canonical
form transformations do not need to be performed for
all the (k-1) subtrees of a potentially frequent k-
subtree.

2177.41

1

10

100

1000

10000

s300 s250 s225 s205 s200 s100 s50

S upport�C ount

T
im
e
�(
S
e
c
o
n
d
s
)

T�U3

T�U3(NP)

S L E UTH

Figure 5. Time performance test on CSLogs data

Scalability Test. We used a synthetic datasets that

consists of 10,000 items, with average depth and fan-
out of 40. The number of transactions used was 500K,
1M, 2M, and the respective support threshold was 250,
500 and 1000. All the tested algorithms are well
scalable for the different dataset sizes (Figure 6(a)).
The time performance is comparable among the
algorithms with T-U3 performing slightly better than
others. In Figure 6(b), we show the total number of
frequent subtrees returned by each algorithm. The
result indicates that SLEUTH returns the same number
of frequent subtrees as T-U3(NP) which hints that
SLEUTH does not perform full (k-1) pruning but
rather adapts an opportunistic approach as done by

286290

VTreeMiner [2] algorithm for mining ordered
embedded subtrees.

0
5
10
15
20
25
30
35
40
45
50

T100K(s25) T500K(s125) T1000K(s250)

Ti
m

e
(s

ec
on

ds
)

T-U3
T-U3(NP)
SLEUTH

 (a) Time performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T-U3 T-U3(NP) SLEUTH

Fr
eq

ue
nt

 S
ub

tre
es

T100K(s25) T500K(s125) T1000K(s250)
 (b) Number of frequent subtrees reported

Figure 6. Scalability test
Occurrence Match Support Testing. An artificial

tree data set was used with an average depth and fan-
out of 40, and 1000K transactions. U3 algorithm has a
better time performance when compared to the
SLEUTH algorithm (Figure 7(a)), which generates
extra candidate subtrees as frequent (Figure 7(b)).
Whenever the minimum support is set to 75, we can
see that both U3 variants start to degrade. By analyzing
the process we notice that both U3 variants get close to
reaching the system memory capacity at which point
they start to use the machine virtual memory.
Whenever a program uses virtual memory, it swaps
data back and forth between the main memory and the
secondary storage, which can significantly slow down
any kind of processing. The SLEUTH on the other
hand conserves the system memory better as it utilizes
the depth-first (DF) enumeration approach. A DF
enumeration will generate all different length
candidate subtrees from each transaction completely
before moving to the next transaction and the
information about that transaction can be removed
from memory. In contrast, the breadth-first (BF)
enumeration strategy will need to store the occurrence
coordinates of generated (k)-subtrees which is later
used for generating (k+1)-subtrees from the same
transaction. However, when generating a k-subtree
using the DF enumeration method, information
regarding the frequency of its (k-1)-subtrees may not
be available at that time, whereas with the BF
approach the frequency of all its (k-1)-subtrees has
been determined. Therefore, full pruning can be done

in a more complete way in the BF approach than in the
DF approach which is forced to employ an
opportunistic pruning [2] strategy that only prunes
infrequent subtrees in an opportunistic way. In many
cases as shown by other experiments, BF enumeration
employed by the U3 can be very effective and more
efficient whenever the memory space is not an issue.

0

10

20

30

40

50

60

s500 s250 s150 s75

Minimum�S upport

T
im

e
�(
s
ec

o
n
d
s
)

S L E UTH

U3

U3(NP)

(a) Time performance

0

2000

4000

6000

8000

10000

12000

14000

s500 s250 s150 s75
Minimum�S upport

F
re
q
u
e
n
t�
S
u
b
tr
e
e
s

S L E UTH U3 U3(NP)
 (b) Number of frequent subtrees reported

Figure 7. Occurrence Match Support test

0

50

100

150

200

250

U3 U3(NP) SLEUTH

Fr
eq

ue
nt

 S
ub

tre
es

C
F

Figure 8. Number of subtrees reported for the

example tree at �oc = 2
Ck and Fk generation. A simple dataset was

developed that represents the tree displayed at the top
of Figure 8 above. The aim is to show how the number
of candidate and frequent subtrees enumerated by
different approaches can vary even for such a simple
dataset. As can be seen from the chart of Figure 7,

287291

SLEUTH enumerates many more candidate subtrees
due to the employed join approach which enumerates
additional invalid subtrees. They are invalid in the
sense that they do not conform to the underlying model
of the tree structure, whereas the TMG approach
ensures valid candidate subtrees [4, 5]. Due to the
opportunistic pruning approach employed in SLEUTH,
many more subtrees are considered as frequent in
comparison to U3 (Figure 8). As mentioned in Section
2 we refer to these additional subtrees as pseudo-
frequent subtrees. An example would be the subtree
with encoding ‘a b / c d’ since it occurs twice in the
tree (oc:0134 and oc:0734), whereas its infrequent k-1
subtree with encoding ‘a c d’ occurs only once
(oc:034). Furthermore, to our surprise the number of
candidate and frequent subtrees enumerated differs
between U3(NP) and SLEUTH. When analyzing the
extracted frequent subtrees it was noticed that
SLEUTH wrongly considers some subtrees as frequent
(eg. ‘a b / b’, ‘a d / d’). This error is then further
propagated during the candidate enumeration which
explains the large number of candidate and frequent
subtrees enumerated by SLEUTH.

Figure 9. Total memory saved by using Recursive

List structure for different datasets
Memory saving through RL implementation.

The aim of this experiment is to demonstrate the total
amount of memory saved by utilizing the RL structure.
In Figure 9 we show the additional memory required
by our previous approach [6] which utilized the
Embedding List structure. This at the same time
corresponds to the total memory saved by the U3
algorithm. The 1M dataset is a synthetic data set
consisting of 1M transactions.

6. Conclusions

An extension of our general tree mining framework
for the capability of mining unordered embedded
subtrees was presented. The flexibility of our general
TMG approach is demonstrated through high
performance and scalability when experimentally
compared to the current state-of-the-art algorithm

SLEUTH. The U3 algorithm has the capability of
using the transaction support as well as the more
complex occurrence match support, which as
experimentally demonstrated can be a limitation for
SLEUTH.

7. References

[1] Punin, J., Krishnamoorthy, M., and Zaki, M., 2001.
“LOGML: Log markup language for web usage mining”, In
ACM SIGKDD Workshop on Mining Log Data Across All
Customer Touch Points, August, San Francisco, CA.
[2] Zaki, M. J. Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications. IEEE Transactions on
Knowledge & Data Engineering, 17:8, pp. 1021-1035, 2005.
[3] Hadzic, F., Dillon, T. S., Sidhu, A., Chang, E, and Tan,
H., “Mining Substructures in Protein Data”, keynote paper in
IEEE ICDM 2006 Workshop on Data Mining in
Bioinformatics, 18-22 December, Hong Kong, 2006.
[4] Tan, H., Dillon, T.S., Hadzic, F., Feng, L., Chang, E.,
“IMB3-Miner: Mining Induced/Embedded Subtrees by
Constraining the Level of Embedding”, PAKDD’06,
Singapore, 2006.
[5] Tan, H., Hadzic, F., Dillon, T.S., Feng, L., Chang, E.,
“Tree Model Guided Candidate Generation for Mining
Frequent Subtrees from XML”, To appear in ACM
Transactions on Knowledge Discovery from Data, 2007.
[6] Hadzic, F., Tan, H., and Dillon, T.S. UNI3: efficient
algorithm for mining unordered induced subtrees using TMG
candidate generation. CIDM 2007, Honolulu, Hawaii, 2007.
[7] Zaki, M. J. Efficiently Mining Frequent Embedded
Unordered Trees. Fundamenta Informaticae 65, IOS Press,
pp. 1-20, 2005.
[8] Chi, Y., Yirong, Y. and Muntz, R. R. Canonical Forms
for Labeled Trees and Their Applications in Frequent
Subtree Mining, Knowledge and Information Systems, 2004.
[9] Valentine, G. Algorithms on Trees and Graphs, Springer-
Verlag, Berlin, 2002.
[10] Agrawal, R. and Srikant, R. Fast algorithms for mining
association rules. 20th Int’l Conf. on Very Large Data Bases
(VLDB 1994), Santiago de Chile, Chile, 1994, pp. 487-499.
[11] Asai, T., Arimura, H., Uno, T. and Nakano, S.
Discovering Frequent Substructures in Large Unordered
Trees. 6th Int’l Conf. on Discovery Science, 2003.
[12] Nijssen, S. and Kok, J. N. Efficient discovery of
frequent unordered trees. Int’l Workshop on Mining Graphs,
Trees, and Sequences, Dubrovnik, Croatia, 2003.
[13] Chi, Y., Yang, Y., and Muntz, R. R. HybridTreeMiner:
An efficient algorihtm for mining frequent rooted trees and
free trees using canonical forms. In Proc. of the 16th Int’l
Conf. on Scientific and Statistical Database Management,
Santorini Island, Greece, 2004.
[14] Termier, A., Rousset, M-C. and Sebag, M. Treefinder:
A First Step Towards XML Data Mining. In Proc. of IEEE
ICDM’02, 2002.
[15] Chehreghani, M. H., Rahgozar, M., Lucas, C. and
Chehreghani, M. H. Mining Maximal Embedded Unordered
Tree Patterns. CIDM 2007, Honolulu, Hawaii, April 1-5,
2007.

288292

