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Abstract 
 

In this paper we present an algorithm for mining of 
unordered embedded subtrees. This is an important 
problem for association rule mining from semi-
structured documents, and it has important 
applications in many biomedical, web and scientific 
domains. The proposed U3 algorithm is an extension 
of our general tree model guided (TMG) candidate 
generation framework and it considers both 
transaction based and occurrence match support. 
Synthetic and real world data sets are used to 
experimentally demonstrate the efficiency of our 
approach to the problem, and the flexibility of our 
general TMG framework.   
 
1. Introduction 
 

Semi-structured documents such as XML possess a 
hierarchical document structure, where an element may 
contain further embedded elements, and each element 
can be attached with a number of attributes. It is 
therefore frequently modeled using a rooted ordered 
labeled tree. The task of frequent subtree mining is to 
extract all subtree patterns from a tree database, that 
occur at least as many times as the user specified 
minimum support threshold. Frequent subtree mining 
algorithms have many important applications in areas 
such as Bioinformatics, Web mining, scientific data 
management, and in other domains where the 
knowledge can be modeled using a rooted ordered 
labeled tree. For example, Web logs can be effectively 
represented using XML documents [1], and a frequent 
subtree mining algorithm can be used to extract 
informative substructures that can be very useful for 
determining common user activity and interests [2]. 
Other interesting application is mining of online 
biological databases, and the work presented [3] 
demonstrated the potential of discovering useful 
patterns from a protein ontology database. 

 Even though the tree structures underlying semi-
structured data sources are ordered, interesting 
associations or queries are commonly based on 
unordered trees since the ordering among sibling data 
objects may not be of great importance to the user and 
is often not available.  Our work in the area of frequent 
subtree mining is characterized by the Tree Model 
Guided (TMG) candidate generation [4, 5, 6] which 
utilizes the underlying model of the data structure for 
efficient candidate subtree generation. This non-
redundant systematic enumeration technique ensures 
that all the candidate subtrees generated are valid, in 
the sense that they conform to the actual tree structure 
of the data. While in our previous works the focus was 
on ordered induced/embedded [4, 5] and unordered 
induced subtrees [6], in this paper we present an 
algorithm for mining of unordered embedded subtrees. 
The main difference between an induced and an 
embedded subtree is that, while an induced subtree 
keeps the parent-child relationships from the original 
tree, an embedded subtree allows a parent in the 
subtree to be an ancestor in the original tree. In other 
words, an embedded subtree generalizes the definition 
of an induced subtree by preserving ancestor-
descendant relationships.  Mining of embedded 
subtrees is a much more difficult problem than mining 
of induced subtrees, as it is necessary to examine 
several levels within a tree to identify the embedded 
subtree. It is important to be able to mine embedded 
subtrees in order to discover interesting relationships 
between the data objects embedded deeply in the tree 
database.  Previous results in the ordered case [2, 4, 5] 
indicate that the complexity of mining embedded 
subtrees is much higher. Therefore, this extension is 
clearly a nontrivial extension which leads to a strong 
generalization. 

The contributions of this paper are as follows. We 
present an extension to our general TMG framework to 
mine unordered embedded subtrees. The space 
efficiency of our general TMG framework is improved 
with an adjustment of the representative structure. The 
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representative structure used previously in our TMG 
framework, was efficient and conceptually simple for 
enumerating candidate subtrees. However, as a trade-
off the structure was not very space efficient since the 
information about the descendant nodes was stored for 
every node of the database tree. This can be an issue 
when processing a very large tree database. In this 
paper we improve the space efficiency property of the 
representative structure by using the dictionary of 
traversal of nodes in conjunction with the list structure. 
With this optimization, the information necessary for 
candidate subtree enumeration is available without the 
trade-off for space efficiency. A substantial saving of 
the memory is achieved and this aspect will be 
demonstrated in the experiments. The proposed 
algorithm is evaluated by comparing it with the 
SLEUTH [7] algorithm, which is to the best of our 
knowledge the only existing algorithm that extracts a 
complete set of unordered embedded subtrees. In 
Section 2 we discuss some general tree concepts and 
define the problem. The proposed U3 algorithm is 
described in Section 3. Section 4 overviews some 
related work to unordered subtree mining. An 
experimental evaluation of our algorithm is given in 
Section 5. Section 6 concludes the paper.  

 
2. Tree Concepts and Problem Definition 
 

A tree T is an acyclic connected graph with the 
node at the top defined as the root[T]. The Parent of 
node v (parent[v]) is defined as its predecessor. Two 
nodes that share the same parent are referred to as 
sibling nodes. The fan-out or degree of a node 
corresponds to the number of children of that node. A 
leaf node is a node without a child; otherwise, it is an 
internal node. A path from vertex vi to vj, is defined as 
the finite sequence of edges that connects vi to vj. The 
length of a path p is the number of edges in p. If p is an 
ancestor of q and q is a descendant of p, then there 
exists a path from p to q. The rightmost path (RMP) of 
T is defined as the (shortest) path connecting the 
rightmost leaf with the root node. The Depth/level of a 
node is the length of the path from root to that node. 
The size of a tree equals to the total number of nodes in 
the tree. In this paper, the term ‘k-subtree’ refers to a 
subtree that consists of k number of nodes. A tree can 
be denoted as T(V,L,E), where (1) V is the set of 
vertices or nodes; (2) L is the set of labels of vertices, 
for any vertex v�V, L(v) is the label of v; and (4) E = 
{(x,y)| x,y� V}is  the set of edges in the tree. In a 
labeled tree, there is a labeling function mapping 
vertices to a set of labels and a label can be shared 
among many vertices.  

Given a tree S  = (VS,LS,ES) and tree T = (VT,LT,ET), 
S is an unordered embedded subtree of T, iff (1) VS � 
VT ;(2) LS � LT, and LS(v)=LT(v); (3) if (v1,v2) � �ES then 
parent(v2) = v1 in S and v1 is ancestor of v2 in T. An 
ordered subtree would preserve the left to right 
ordering of sibling nodes in the original tree while in 
an unordered subtree the order of the sibling nodes 
(and the subtrees rooted at those nodes) can be 
exchanged and the resulting subtree would be 
considered the same. This causes the enumeration and 
counting of unordered subtrees more difficult since 
each enumerated subtree needs to be ordered into one 
logical and consistent form, so that all its variants that 
have different order among sibling nodes are 
considered as the same subtree. The group of possible 
trees obtained by permuting the sibling nodes in all 
possible ways is referred to as the automorphism group 
of a tree [7]. During the pre-order traversal of a tree 
database, ordered subtrees are generated by default.  
One tree needs to be selected to uniquely represent the 
unordered tree. This selected tree is known as the 
canonical form (CF) of an unordered tree. Generally 
speaking, CF of an entity is a representative form (or a 
function) for which many equivalent variations of an 
entity can be represented (mapped) into one standard, 
conventional, logical form in a consistent manner [8, 
9]. Within the algorithm proposed in this paper, the 
depth-first CF (DFCF) proposed in [8] is used to 
uniquely map each subtree, and it can be formally 
explained as follows: 

Given two trees T1 and T2, with root[T1] = r1 and 
root[T2] = r2, let descendants(r1):{c1,…,cm} be the set 
of descendants of node r1 and 
descendants(r2):{c1,…,cn} be the set of descendants of 
node r2, ordered according to the pre-order traversal. 
Note that these sets can also contain the special 
backtrack symbol to indicate the backtracking during 
the traversal of the descendant nodes. Let STx(r) 
denote the subtree of tree Tx with root node r, and 
|descendants(r)| denote the number of descendants of 
node r. The label(ci) < label(cj) if label(ci) 
lexicographically sorts smaller than label (cj), and so 
T1 � T2 iff: 

 
a) label(r1) < label(r2) or, 
b) if label(r1) = label(r2) and |descendants(r1)| = 

m, |descendants(r2)|=n, then either: 
i. � 1�i<j�min(m,n) there exist j such that 

ST1(ci) = ST2(ci) and ST1(cj) < ST2(cj) 
ii. m�n, � 1�i�m and m�n, ST1(ci) = ST2(ci) 

 
Transaction-based and occurrence match support 

definitions exist to count the occurrences of a subtree. 
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When using the transaction-based support definition, 
the transactional support of a subtree t, denoted as �tr(t) 
in a tree database Tdb is equal to the number of 
transactions in Tdb that contain at least one occurrence 
of subtree t. Let the notation  t� k, denote the support 
of  subtree t by transaction k, then for TS, t� k = 1 
whenever k contains at least one occurrence of t, and 0 
otherwise. Suppose that there are N transactions k1 to 
kN of tree in Tdb, the �tr(t) in Tdb is defined as 

�
�

N

i
ikt

1
� . The occurrence-match support takes the 

repetition of items in a transaction into account and 
counts the subtree occurrences in the database as a 
whole. Hence, the occurrence-match support (�) of a 
subtree t, denoted as �oc(t), in a tree database Tdb is 
equal to the total number of occurrences of t in all 
transactions in Tdb. Let function g(t,k) denote the total 
number of occurrences of subtree t in transaction k. If 
there are N transactions k1 to kN of tree in Tdb, �oc(t) in 
Tdb can be defined as �

�

N

i
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1
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Frequent subtree mining. Let Tdb be a tree 
database consisting of N transactions of trees, KN. The 
task of frequent subtree mining from Tdb with given 
minimum support (�), is to find all candidate subtrees 
that occur at least � times in Tdb. To ensure that the 
downward-closure lemma holds [10] each k-1-subtree 
of a frequent k-subtree has to be frequent. Hence, 
during the candidate enumeration and counting phase 
the k-subtrees that contain any infrequent k-1 subtrees 
have to be pruned from the frequent set (Fk). This 
problem is known as k-1 pruning [2, 4, 5] and for the 
transactional support definition, opportunistic 
approaches [2] have been employed to achieve the 
desired result in less time. However, when using 
occurrence-match support, full (k-1) pruning should be 
performed at each iteration of generating a k-subtree 
from a (k-1)-subtree so that no ‘pseudo-frequent’ 
subtrees [4, 5] would be generated. The rationale of 
this has already been explained in [4, 5] and an 
example of a pseudo-frequent subtree will be provided 
later in the experimental section. 

An illustration of different subtrees is given in 
Figure 1. In this paper, the term ‘occurrence 
coordinate(s) (oc)’ will be used to refer to the 
position(s) of a particular node or a subtree in the tree 
database. In the case of a node, oc corresponds to the 
pre-order position of that node in the tree database (left 
of circle in Figure 1), whereas for a subtree, oc is a 
sequence of oc from nodes that belong to that 
particular subtree. On the right hand side of Figure 1, 
the oc of each subtree are presented with the 
corresponding transaction that they occur in. If ordered 

induced subtrees are mined, st1 occurs only once in T1 
with oc:125; whereas, if unordered induced subtrees 
are mined, the order of node ‘c’ and ‘e’ can be 
exchanged and hence now st1 occurs in T2 as well 
with oc:132 (note: the order of occurrence coordinates 
is exchanged since the order of corresponding nodes is 
exchanged). If embedded subtrees are mined, a parent 
in st1 subtree can be an ancestor in Tdb and hence 
many more occurrences of st1 are counted as can be 
seen in the top right corner of Figure 1. For an 
example of difference in support definitions, suppose 
that unordered embedded subtrees are mined. The 
�tr(st2) = 2 since st2 is supported by both T1 and T2, 
while �oc(st2) = 7 since st2 occurs three times in T1 
and four times in T2.  

 
Figure 1. Example Tree Database (TDB) 

consisting of two transactions (T1 & T2)) 
 
3. U3 Algorithm 
 

The basic steps taken by the U3 algorithm are 
presented in the flowchart of Figure 2, and these are 
explained in detail later in this section. The tree 
database is first transformed into a database of rooted 
integer-labeled trees. It is then ordered into its CF to 
reduce the average number of generated candidate 
subtrees that need to be ordered. Recursive List (RL) is 
constructed which is a global sequence of encountered 
nodes in the pre-order traversal that stores necessary 
node information. During this process the set of 
frequent 1-subtrees (F1) is obtained by hashing the 
encountered node labels. TMG candidate generation 
using the RL structure takes place and the string 
representations of candidate subtrees are hashed to the 
Ck hash table and the right-most path (RMP) 
occurrence coordinates are stored. Prior to hashing the 
string representation of each candidate subtree, it is 
first ordered into its CF, if necessary. The process 
repeats until all frequent k-subtrees are enumerated. 
We next explain the way that trees are represented at 
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the implementation level and how the DFCF ordering 
scheme can be re-formulized with respect to this 
representation.  

 
Figure 2. Steps taken by U3 algorithm 

Tree Representation and Canonical Form 
Ordering. A tree is represented using the pre-order 
string encoding (�) as described in [2, 4]. It is a 
sequential representation of the nodes of a tree as 
encountered during the pre-order traversal of that tree. 
The backtrack symbol (‘/’) is used whenever moving 
up a node in the tree during the pre-order traversal. We 
denote encoding of a subtree T as �(T) and for 
example from Figure 1, �(T1):‘a b c c / e / / e / / c / d / 
e e / / ’. The backtrack symbols can be omitted after 
the last node. We refer to a group of subtrees with the 
same encoding L as candidate subtrees CL. The 
canonical form ordering occurs at the start where the 
whole tree database is ordered into its canonical form 
and later where candidate subtrees are ordered so that 
unordered subtrees are correctly enumerated. The 
DFCF ordering scheme can now be reformulated with 
respect to the tree representation used.  

Given two trees T1 and T2, with root[T1] = r1 and 
root[T2] = r2, let C(r1) and C(r2) denote the children 
sets of r1 and r2, respectively. Further, let �(Tx)k 
denote the kth element of the pre-order string encoding 
of tree Tx (x = 1 or 2)(this can be either a node label or 
the special backtrack (‘/’) symbol which, as mentioned 
earlier, is considered smaller than any other label). T1 
is considered smaller than T2 iff either: 

a.) L(r1) < L(r2), or 
b.) L(r1) = L(r2) and either size(C(r1)) < 

size(C(r2)) and �(T1)k = �(T2)k for all 1 � k � 
length(�(T1)), or   �(T1)k < �(T2)k for some 1 
� k < length(�(T1)). 

Recursive List (RL) and F1 Construction. The 
tree database, Tdb, is scanned once to create the global 
pre-order sequence RL in memory, which provides 

shared global nodes’ related information that can be 
directly accessed. RL stores each node in Tdb following 
the pre-order traversal indexing. Position, label, scope, 
and level information are stored for each node. The 
level of a node refers here to the level in the Tdb tree, 
where this node occurs. An item in the RL at position i 
is referred to as D[i]. Every time a node is inserted into 
the RL, we generate a candidate 1-subtree. Based on its 
label, we increment its support count in the C1 hash 
table. If its support count is � 	 (user-specified 
minimum support count), we insert the candidate 1-
subtree to the frequent 1-subtree set, F1. An example 
RL structure representing the tree T1 from Figure 1 is 
displayed in Figure 3. The pre-order position of a node 
in the tree database is equal to the index of the RL at 
which that nodes is stored, and the label, scope and 
level are shown in that order underneath the entry. All 
this information is necessary to enumerate only valid 
subtree candidates and is accessed in the TMG 
candidate enumeration process explained next. 

 
Figure 3. Recursive List representation of tree T1 

A particular subtree, as defined by its encoding can 
be found at many places in the database and these 
different occurrences need to be stored so that 
subsequent set of candidates can be generated. We 
only store the occurrence coordinates of the nodes in 
the right-most path of the subtree (referred to as RMP-
oc). Within our framework, this information is 
sufficient for enumerating candidate (k+1)-subtrees 
from a frequent k-subtree. Given a k-subtree T with oc 
[e0,e1,…ek-1], the RMP-oc of T, denoted by 
(T), is 
defined by [e0,e1,…,ej] such that 
(T) � oc(T); ej = ek-

1; and j � k-1 and the path from ej to e0 is the RMP of 
tree T.  Vertical Occurrence List (VOL) [1,3] is used to 
store all 
(T) of a subtree T represented by its pre-
order string encoding �(T), and to determine the 
occurrence-match and transaction-based support. A 
transaction identifier (tid) is stored for each 
(T) so 
that the occurrence match of T equals to |VOL| while 
the transaction-based support equals to the number of 
unique tids in VOL. 

TMG Candidate Subtree Generation (Ck and Fk 
construction). TMG is a specialization of the right 
most path extension method which has been reported 
to be complete and non-redundant [2, 4]. To enumerate 
all embedded k-subtrees from a (k-1)-subtree, the 
TMG enumeration approach extends one node at a 
time for each node in the RMP of a (k-1)-subtree. 
Hence, it is a breadth-first (BF) enumeration strategy. 
Suppose that nodes in the RMP of a subtree are 
defined as extension points. The TMG can be 
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formulated as follows. Let 
(Tk-1):[e0,e1,…ej] denote 
the RMP-oc of a frequent (k-1)-subtree Tk-1, and �  the 
scope of the root node e0. TMG generates k-subtrees 
by extending each extension point n�
(Tk-1) with a 
node with oc t iff n < t � �. Suppose that the encoding 
of Tk-1 is denoted by �(Tk-1) and l(ej,t) is a labeling 
function for extending extension point n with a node at 
position t. �(Tk) would be defined as �(Tk-1)+l(ej,t), 
where l(ej,t) determines the number of backtrack 
symbols ‘/’ to be appended before the label of the new 
node is added to  �(Tk). The number of backtrack 
symbols is calculated as the shortest path length 
between the extension point n and the right-most-node 
r, (notation pl(n,r)). To generate RMP at each step of 
candidate generation, we utilize the computed number 
of backtrack symbols b that need to be appended 
before the new node with oc t is added to the encoding. 
Given that the 
(Tk-1) is [e0,e1,…,ej], the RMP of the 
k-subtree (
(Tk)) is generated by appending t at 
position (j+1) - b of the (
(Tk-1)) and removing any 
RMP-oc that occur after t, thereby making t the right 
most node of Tk. This will make sure that at each 
extension of (k-1)-subtree, RMP-oc of k-subtree are 
appropriately stored. 

To provide an illustrative example let us say that we 
are extending the Tk-1 subtree from Figure 4, 
where
(Tk-1):[0,4,5],  �(Tk-1):’a b / b c’, and right-
most-node ‘c’ (oc:5).   If we are extending Tk-1 from 
extension point node ‘b’ (oc:4) with node ‘e’ (oc:8) 
then l(5,8) will append one backtrack symbol (pl(4,5) 
= 1) and the label ‘e’ to �(Tk-1). The new encoding 
�(Tk) becomes ‘a b / b c / e’, and 
(Tk):[0,4,8] (i.e. 
inserting 8 at position (j+1) - b = (3+1) - 1 = 3 of 
(Tk-

1)).  
 

 
Figure 4. TMG enumeration: extending (k-1)-

subtree Tk-1 (�(Tk-1):‘a b / b c’ (oc:0145)) with nodes 
at positions 6, 7, 8, 9, and 10  

In the case of unordered subtrees, the right-most-
node may not always correspond to the last node (tail 
position) in the encoding as it does for the ordered 
subtree case. We refer to this case as non-tail 
expansion. A notion of pivot position � is used to 
denote the position in the subtree encoding that 
corresponds to the right-most-node. Each RMP-OC of 
a subtree will store an integer indicating the pivot 

position � in the encoding for that particular 
occurrence of the subtree. Hence, for a non-tail 
expansion of a subtree Tk-1, if we are appending a new 
node with label l and oc t, rather than appending the 
backtrack symbols (if any) and l to the last node in 
�(Tk-1), it will be appended to the pivot position � by 
the function l(�, t), in order to obtain �(Tk). Please note 
that if there are b backtrack symbols to be appended 
with l and there were already some backtrack symbols 
after the pivot position � in �(Tk-1), then l will be 
appended after the bth backtrack symbol. Furthermore, 
an additional backtrack symbol will be appended after 
the position in the encoding where l has been 
appended. To illustrate this please consider the subtree 
st2 from T2 in Figure 1, with oc:05674,
(st2):[0,5,7] 
and �(st2):’a c c / e / / e’ (note that oc of st2 is 
different to the one displayed in Figure 1 because it is 
ordered according to the DFCF explained earlier. As 
can be seen the right-most node does not correspond to 
the last node ‘e’ in the encoding with oc:4, but rather 
to node ‘e’ with oc:7. Therefore, if we are extending 
st2 from extension point node ‘e’ (oc:7) with node ‘c’ 
(oc:9) then l(7,9) will append the label ‘c’ to �(st2) at 
pivot position � and add ‘/’ after ’c’. The new encoding 
becomes ‘a c c / e c / / / e’. 

Avoiding CF ordering. Ordering a subtree into its 
CF can be quite expensive due to the expensive 
traversal of the string encodings in order to determine 
and compare the sibling nodes. Due to the fact that in 
our approach the whole tree database is first sorted into 
its CF and each previously enumerated k-1 subtree is 
ordered, many subtrees may already be in their CF 
when k-subtree enumerations are performed for k > 2. 
Hence, within the CF ordering scheme we have 
determined a few preconditions that allow us to 
assume that a subtree is already in its CF and that no 
ordering is required. These preconditions occur when 
we are appending a new node ‘n’ to the right-most 
node ‘r’ of the currently expanding subtree. 

Precondition 1: parent(n) = r; 
Precondition 2: Let the left sibling of n be 'ln', then 

children(ln) = null and L(ln) = L(n), OR L(ln) < L(n).   
If any of the above conditions are met the ordering 

can be skipped which results in a run time reduction as 
was experimentally demonstrated in [3]. 

Pruning. To make sure that all generated subtrees 
do not contain infrequent subtrees, full (k-1) pruning 
[7,1,2] must be performed. This implies that at most 
(k-1) numbers of (k-1)-subtrees need to be generated 
from the currently expanding k-subtree. When the 
removal of root node of k-subtree doesn’t generate a 
forest [2, 4] then an additional (k-1)-subtree is 
generated by taking the root node off from the 
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expanding k-subtree. The expanding k-subtree is 
pruned when at least one (k-1)-subtree is infrequent. 
This ensures that the downward-closure lemma [10] is 
satisfied and in the case of occurrence match support 
no pseudo-frequent subtrees will be generated. The 
whole TMG candidate enumeration process repeats 
until all frequent k-subtrees are generated. 

 
4. Related Works 
 

A number of algorithms have been developed for 
the problem of unordered subtree mining. The Unot 
algorithm [11] uses a reverse search technique for 
incremental computation of unordered subtree 
occurrences. Nijssen and Kok [12] present a bottom-up 
strategy for determining the frequency of unordered 
induced subtrees. Breadth-first canonical form (BFCF) 
and depth-first canonical form (DFCF) for labeled 
rooted unordered trees has been presented in [8]. In the 
same work the authors proposed two algorithms: 
RootedTreeMiner, which is the authors’ re-
implementation of Unot (a vertical mining algorithm 
based upon BFCF) and FreeTreeMiner, which extends 
the DFCF for discovering labeled free trees. As an 
extension to the work, HybridTreeMiner [13] is an 
efficient algorithm that systematically enumerates all 
subtrees by traversing an enumeration tree which is 
defined based upon the BFCF for unordered subtrees. 
All these algorithm mine induced subtree while the 
SLEUTH [7] algorithm extract all frequent unordered 
embedded subtrees by using unordered scope-list joins 
via the descendant and cousin tests. Another algorithm 
for mining frequent embedded unordered subtrees is 
TreeFinder [14] that uses an Inductive Logic 
Programming approach, but which in the process can 
miss many frequent subtrees. More recently, a related 
problem of mining maximal embedded unordered 
subtrees has been addressed in [15]. A maximal pattern 
is a frequent pattern in which no proper superset is 
frequent.     
 
5. Experimental Results 
 

Our U3 algorithm is evaluated by comparing it with 
the SLEUTH [7] algorithm. Since the approach 
described in [15] extracts maximal patterns rather than 
the complete set of frequent patterns, it is not as 
suitable for comparison. For transaction based support 
our algorithm is preceded with ‘T-’ (e.g. T-U3). When 
no full (k-1) pruning is performed (NP) is added at the 
end (e.g. U3(NP)). TreeGenerator [2] is used to obtain 
the artificial tree databases. We also use a reduced 
version (54%) of CSLogs real world data set [2] 

because when the full dataset is used all of the 
compared algorithms fail to return any results for a 
reasonable support threshold. The minimum support � 
is denoted as (sxx), where xx is the minimum 
frequency threshold. Experiments were run on 3Ghz 
(Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux 
machine.  

Time Performance Test (CSlogs). As can be seen 
in Figure 5, the T-U3 algorithm enjoys better time 
performance when compared to SLEUTH which has 
some performance issues for decreasing support value. 
We refrained from running it further for lower support 
thresholds (s100 and s150) since there was already 
such a large jump in performance from s205 to s200. 
The time taken would be too long and recording the 
result would increase the scale of the y-axis from the 
graph and thereby decrease the clarity of the displayed 
results. However, we show that the T-U3 algorithm 
still performed reasonable well for s100 and s50. By 
not performing full pruning there was an additional 
performance gain by T-U3(NP). The performance gain 
firstly comes from avoiding the generation of all 
possible k-1 subtrees, and secondly because canonical 
form transformations do not need to be performed for 
all the (k-1) subtrees of a potentially frequent k-
subtree.  
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Figure 5. Time performance test on CSLogs data 

 
Scalability Test. We used a synthetic datasets that 

consists of 10,000 items, with average depth and fan-
out of 40. The number of transactions used was 500K, 
1M, 2M, and the respective support threshold was 250, 
500 and 1000. All the tested algorithms are well 
scalable for the different dataset sizes (Figure 6(a)). 
The time performance is comparable among the 
algorithms with T-U3 performing slightly better than 
others. In Figure 6(b), we show the total number of 
frequent subtrees returned by each algorithm. The 
result indicates that SLEUTH returns the same number 
of frequent subtrees as T-U3(NP) which hints that 
SLEUTH does not perform full (k-1) pruning but 
rather adapts an opportunistic approach as done by 
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VTreeMiner [2] algorithm for mining ordered 
embedded subtrees. 
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Figure 6. Scalability test 
Occurrence Match Support Testing. An artificial 

tree data set was used with an average depth and fan-
out of 40, and 1000K transactions. U3 algorithm has a 
better time performance when compared to the 
SLEUTH algorithm (Figure 7(a)), which generates 
extra candidate subtrees as frequent (Figure 7(b)). 
Whenever the minimum support is set to 75, we can 
see that both U3 variants start to degrade. By analyzing 
the process we notice that both U3 variants get close to 
reaching the system memory capacity at which point 
they start to use the machine virtual memory. 
Whenever a program uses virtual memory, it swaps 
data back and forth between the main memory and the 
secondary storage, which can significantly slow down 
any kind of processing. The SLEUTH on the other 
hand conserves the system memory better as it utilizes 
the depth-first (DF) enumeration approach. A DF 
enumeration will generate all different length 
candidate subtrees from each transaction completely 
before moving to the next transaction and the 
information about that transaction can be removed 
from memory. In contrast, the breadth-first (BF) 
enumeration strategy will need to store the occurrence 
coordinates of generated (k)-subtrees which is later 
used for generating (k+1)-subtrees from the same 
transaction. However, when generating a k-subtree 
using the DF enumeration method, information 
regarding the frequency of its (k-1)-subtrees may not 
be available at that time, whereas with the BF 
approach the frequency of all its (k-1)-subtrees has 
been determined. Therefore, full pruning can be done 

in a more complete way in the BF approach than in the 
DF approach which is forced to employ an 
opportunistic pruning [2] strategy that only prunes 
infrequent subtrees in an opportunistic way. In many 
cases as shown by other experiments, BF enumeration 
employed by the U3 can be very effective and more 
efficient whenever the memory space is not an issue. 
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Figure 7. Occurrence Match Support test 
 

  

0

50

100

150

200

250

U3 U3(NP) SLEUTH

Fr
eq

ue
nt

 S
ub

tre
es

C
F

 
Figure 8. Number of subtrees reported for the 

example tree at �oc = 2 
Ck and Fk generation. A simple dataset was 

developed that represents the tree displayed at the top 
of Figure 8 above. The aim is to show how the number 
of candidate and frequent subtrees enumerated by 
different approaches can vary even for such a simple 
dataset. As can be seen from the chart of Figure 7, 
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SLEUTH enumerates many more candidate subtrees 
due to the employed join approach which enumerates 
additional invalid subtrees. They are invalid in the 
sense that they do not conform to the underlying model 
of the tree structure, whereas the TMG approach 
ensures valid candidate subtrees [4, 5]. Due to the 
opportunistic pruning approach employed in SLEUTH, 
many more subtrees are considered as frequent in 
comparison to U3 (Figure 8). As mentioned in Section 
2 we refer to these additional subtrees as pseudo-
frequent subtrees. An example would be the subtree 
with encoding ‘a b / c d’ since it occurs twice in the 
tree (oc:0134 and oc:0734), whereas its infrequent k-1 
subtree with encoding ‘a c d’ occurs only once 
(oc:034). Furthermore, to our surprise the number of 
candidate and frequent subtrees enumerated differs 
between U3(NP) and SLEUTH. When analyzing the 
extracted frequent subtrees it was noticed that 
SLEUTH wrongly considers some subtrees as frequent 
(eg. ‘a b / b’, ‘a d / d’). This error is then further 
propagated during the candidate enumeration which 
explains the large number of candidate and frequent 
subtrees enumerated by SLEUTH.  

 
Figure 9. Total memory saved by using Recursive 

List structure for different datasets 
Memory saving through RL implementation. 

The aim of this experiment is to demonstrate the total 
amount of memory saved by utilizing the RL structure. 
In Figure 9 we show the additional memory required 
by our previous approach [6] which utilized the 
Embedding List structure. This at the same time 
corresponds to the total memory saved by the U3 
algorithm. The 1M dataset is a synthetic data set 
consisting of 1M transactions. 
 
6. Conclusions 
 

An extension of our general tree mining framework 
for the capability of mining unordered embedded 
subtrees was presented. The flexibility of our general 
TMG approach is demonstrated through high 
performance and scalability when experimentally 
compared to the current state-of-the-art algorithm 

SLEUTH. The U3 algorithm has the capability of 
using the transaction support as well as the more 
complex occurrence match support, which as 
experimentally demonstrated can be a limitation for 
SLEUTH.      
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