
Who is it? Context sensitive named entity and instance
recognition by means of Wikipedia

Ulli Waltinger and Alexander Mehler
Text Technology - Bielefeld University

Universitätsstrasse 15, 33602 Bielefeld, Germany
{Ulli Marc.Waltinger, Alexander.Mehler}@uni-bielefeld.de

Abstract

This paper presents an approach for predicting context
sensitive entities exemplified in the domain of person names.
Our approach is based on building a weighted context but
also a weighted people graph and predicting the context en-
tity by extracting the best fitting sub graph using a spreading
activation technique. The results of the experiments show a
quite promising F-Measure of 0.99.

1. Introduction

Information extraction, especially the sub task in iden-
tifying entities in text is becoming more and more impor-
tant. Tagging a token as a named entity and classifying
them into predefined categories like organization or person
and so on has been done quite successfully [5] [9]. See [1]
for a current overview of named entity recognition tasks.
Predicting the proper instance of a name within its con-
text assumes to us therefore the next step to take. As a
preassumption we are not focusing on the preprocessing
of texts. In the preprocessing architecture [12] we have
implemented a trigram HMM-Tagger following [4] with a
F-measure of 0.975 trained and evaluated on the German
Negra-Corpus [11]. The lemmatization module consists of
a rule-based noun lemmatizer and a word form lexicon of
around 4.9 million word-lemma pairs with a F-measure of
0.920. Named entity recognition is done by a simple rule-
based module adopted from [6]. Therefore we are focusing
in this paper on the next step in predicting the right instance
of an entity classified as a person.

2. Who is it?

The topic of this paper is to tackle the task of disam-
biguation of named entities. In special we want to iden-
tify the proper instance of an ambiguous name. The idea

of our approach is motivated by the game ”Who is it?”
where blindfolded participants trying to predict the name
of a person by asking randomly questions and getting only
a boolean as an answer. For example, if someone talks
about: boxing, ukraine, world champion, younger brother
one might be able to link this information to the name of
Wladimir Klitschko. If we replace now the term younger
brother with the name Klitschko there is a 0.5 chance in
predicting the right instance, because we have two boxing
brothers Vitali and Wladimir Klitschko. Since Klitschko is
not a widespread name, our chances are quite good in pick-
ing the right instance. Considering just knowing the name
Müller our chances of picking the right name instance out
of a people database (see Section 3.1) goes down to 0.0029.
This clearly shows that a semantic disambiguation of named
entities is not a trivial task.

3. Algorithm of Prediction

An important precondition of our experiments is that any
instance of a person’s name appears within a textual envi-
ronment or context (e.g. a section or paragraph of a text).
The information that someone talks about Helmut Kohl
(politics) and not about Helmut Kohl (referee) is only con-
veyed if the speaker gives her audience some background
information as, for example, by using the terms chancel-
lor or party. Adopting this idea to the domain of text we
assume that the context of an instance is the lexical neigh-
borhood of its name in the corresponding text. This context
is delimited by units of the logical document structure of a
text including paragraph, sentence etc. [10]. Therefore, if
we look at an entity we have to incorporate its context by in-
troducing a context window within the document structure.
Once having set this context window, all included tokens
than can be seen as a context instance of the examined en-
tity by pointing to it.



3.1. Building a People Graph

Since we do not want to generate new entities [7, 8] but
detecting the instance of a name, we can only be as success-
ful as we already know at least one instance of this name.
In our approach we utilize the Wikipedia as such a resource.
By crawling the Wikipedia-Category:People we generated
a database of 183, 554 different articles about people. In
a second step, we extracted all hyperlinks which occur in
one of these articles and defined them as a context link to
the title of the article, the other content is dropped. Third,
we have to convert the remaining tokens into a graph repre-
sentation. We define a directed graph Gpeople = (V,E, ω),
called people graph, with the set V of vertices and E ⊆ V 2

of edges. In our case, V = P1 ∪P2 consists of two subsets:
the set P1 of article names and the set P2 of anchor names
of those hyperlinks which start from articles in P1. Further,
(v, w) ∈ E iff there exists an article named w ∈ P1 such
that v ∈ P2 is the anchor name of a hyperlink in this article.
Finally, ω : E → R+

0 is the edge weighting function. Note,
that Gpeople is a bipartite digraph without multiple edges.
Having done this, we have to care about the edge weighting
function ω. In this regard we distinguish three different con-
tent structures of articles of persons in Wikipedia. The most
significant information of a person as, e.g., her full name,
birthday, death, profession or residence is most likely given
in the first paragraph of the person’s article. Thus, anchor
names used as vertices of V are specially treated by ω. This
also holds for the full or nickname if occurring in the first
paragraph. More specifically, we define three classes of ver-
tices in P2:

• Class C1 is the set of all vertices in P2 for which there
is at least one article in which they occur in the first
paragraph as a substring of the title.

• Class C2 is the set of all vertices in P2 for which there
is at least one article in which they occur in the first
paragraph, but not as a substring of the title.

• Class C3 is simply the set all remaining vertices, that
is, C3 = P2 \ (C1 ∪ C2).

The next step of our algorithm is to weight each edge e ∈
E by a function of the partition of P2 into C1, C2, C3. This
is done by calculating the conditional probability P (v|w)
that v ∈ P1 is the (person) name of an article in which
w ∈ P2 is occurring as the anchor of a link. In order to
compute P (v|w) we need to have frequency information
about the occurrences of w ∈ A2. Let, f(w) be the total
frequency of tokens of type w in all articles of our corpus.
Then we estimate:

P (v|w) =
f(w, v)
f(w)

(1)

where f(w, v) is the frequency of w in the article named
v. Finally, we define the weighting function ω for any edge
(w, v) ∈ E as follows:

ω((w, v)) =

 1 · idf(w) · P (v|w) : w ∈ C3

2 · idf(w) · P (v|w) : w ∈ C2

3 · idf(w) · P (v|w) : w ∈ C1

∈ [0, 3]

(2)

3.2. Building Context Clouds

In order to generate token related candidates, a lexi-
cal resources has to be build. The concept, in building a
context cloud around an input token, is based on the ex-
ploiting of the document structure. In special we are us-
ing a pre-defined sentence window around the unknown
token, therefore the technique of sentence-based statistical
co-occurrence is adopted. The repeated occurrence of two
words within a defined unit of information is called a sta-
tistical co-occurrence. As an adequate co-occurrence mea-
sure, we use the significance measure similar to the log-
likelihood [2]. The significant co-occurrences reflect in this
case a relation between two words and can be used for gen-
erating related terms for a given input token. The calcu-
lations in building the co-occurrence network are computed
by TinyCC [3] on the basis of a lemmatized reference corpus
(of 688,728 lemmata) extracted from the German newspa-
per Die Zeit. The significance measurement (see Figure 4)
can be computed by the following algorithm. We define k as
the number of sentences containing word a and b together.
ab (see Figure 3) is (number of sentences with a)*(number
of sentences with b) and n is total number of sentences in
corpus.

x =
ab

n
(3)

σ(a, b) = x− k ∗ log x+ log k (4)

By means of this function we get a co-occurrence graph
Gσ = (V ′, E′, σ) where V ′ is the set of all lemmata of
our reference corpus and E′ ⊆ V ′2 the corresponding set
of edges. Note, that a global threshold τ is introduced after
sorting E′ by means of σ in descending order and keeping
only those edges (v, w) in E′ for which σ(v, w) > τ . This
is done in order to reduce the number of edges. Suppose
now we have a given text x in which we observe an am-
biguous name, say v ∈ A1. Based on the textual context of
v in x we build a so called context cloud which is a graph
(V ′′, E′′, σ′) such that V ′′ ⊆ V ′ is the set of all lemmata
of the co-occurrence graph Gσ occurring in x and E′′ and
σ′ are the restrictions of E′ and σ′ to V ′′, respectively. In
other words the context graph of a name is a subgraph of
the co-occurrence graph. Having this, we are able to send a
request for an input word w1 and getting as an response a
set of nodes ranked by ω representing the context instances
w1i of w1.



3.3. Predicting names

In predicting the right instance defined as Linstance we
conduct a spreading activation technique. The algorithm
works as follows (see Algorithm 1). We assign for each la-
bel v ∈ A1 - these are those vi who are not pointing to an
other vertex in E (our entity instances) - of Gpeople to its
own activity class Ci. The value of all activity classes Wi
are set to zero. For each input token t, within the context
window, we build the context cloud w as described in the
previous section. For each generated context term wi we
than add the edge value ω to those v ∈ A1 classes, where
an edge between V and V ′ exists. Note z defines the num-
ber of context terms used for prediction. The new activation
value Wi of a class Ci is calculated by building the sum of
the edge weight ωpeople of the people graph and the edge
weight σ′ of the co-occurrence graph. See Table 1 for an
example of the activity ranking in our experiments. By that,
for every new entered term, the responding v ∈ A1 classes
will grow in their activation value. This will automatically
build a ranking of v ∈ A1 sorted by their activation value.
After the entire context window z is computed, we pick this
entity instance Linstance, whose v ∈ A1 value was maxi-
mized during the process (Figure 6). This simple algorithm
is yet very effective and low in complexity (cost of lookup:
log(w)). Classes will stabilize during the process, because
the activation values will be multiple assigned to different
classes. Therefore, non relevant v ∈ A1 will grow only, if
an input token is relevant to them. Thus, in the sum they
will still have a smaller value than the selected one.

Ci = Wi(Ei

⋂
E′

i ) (5)

Wi = Wi-1 + ωpeople + σ′ (6)

Linstance = arg max
0<w<z+1

{Ci} (7)

4. Experiment

The conducted experiment was split into four parts by
varying the foreknown knowledge. In the first run, we as-
sumed to have both the first and the surname given. This
is in practice the most common case to handle. In a second
run, we set only the surname as a prerequisite. Third, we set
only the forename as our foreknown knowledge. In the last
scenario, we entered the algorithm without any cognition
but its context. The evaluation corpus was build by two vol-
unteers, collecting newspaper articles of randomly chosen
persons. They were prompted to copy a snippet - the para-
graph a name was mentioned - of a random article about
the person and removing all occurrences of the name in the

Algorithm 1 Predicting names.

1: set all activation values of all v ∈ A1 to 0
2: for each token t of the input text do
3: build context cloud w of t
4: for each item in w do
5: if w is element of A2 then
6: for augment for all v ∈ A1 for which

(w, v) ∈ E do
7: v = v + activation value.
8: end for
9: end if

10: end for
11: end for
12: Select that v ∈ A1 which has the highest activation

value.

paragraph. Therefore, there was no chance to have a de-
tailed link to the predicting name. Since we wanted to have
a real life scenario, we told the volunteers not to analyze the
paragraph on appropriate descriptive terms, but more or less
blind folded copying the paragraph into the corpus file. As
a result, we had a corpus size of 195 unique person names,
represented respectively with one paragraph. After that, we
interlinked each paragraph with the actually meant name in-
stance of our people database by analyzing the entire article
and the different possible instances of the name.

5. Evaluation

For the evaluation we applied the standard information
retrieval metric (F1-Measure) to assess our results. The
results of the entire experiment, implemented in our pre-
processing architecture, are presented in Table 2. We con-
ducted a parameter study by diversifying the activity value
Wi as defined in Section 3.3. In the first place we set
ωpeo w + ωsig w = 1 (see Table 1 (e1)). Second, we used
ωpeo w and ωsig w without their idf (see Table 1 (e2)) and
third with their idf value (see Table 1 (idf)). The outcome
of our evaluation on the first experiment shows, that if a full
name is given we are able to predict with an F-Measure of
0.99 the right instance. Nevertheless, the more interesting
part is the conducted second experiment - only the surname
is given. In this case, we were still retrieving an F-Measure
of 0.84 though we have an increase in selected possibilities.

The third experiment reaches a measure of 0.71, know-
ing only the first name leave a lot of prospect in predicting
the right instance. Confronting our application with no de-
fault knowledge, just a plain paragraph with no name to in-
terlink to, let us still retrieve an F-Measure of 0.04, which
is not sufficient but also not surprising. In summary, we
achieved a very satisfying basis for the disambiguation for



Searched Name Instances Activity
Ranking

H. S. (athlete) H. S. (athlete) 2.4
H. S.(skier) 0.09

M. K. (writer) M. K. (writer) 0.024
M. K.(politics) 0.0005
M. K.(soccer) 0.00004

Table 1. Activity Ranking of Hubert Schwarz
(H. S.) and Michael Krüger (M. K.)

Knowledge F-Measure
Fullname (idf) 0.99
Surname (idf) 0.84
Forename (idf) 0.71
- 0.04
Fullname (e2) 0.98
Surname (e2) 0.82
Forename (e2) 0.62
Fullname (e1) 0.96
Surname (e1) 0.81
Forename (e1) 0.72

Table 2. Evaluation Results

predicting the right name instance when having at least one
constituent of a name set. Since we assigned the context
window to one paragraph only, the results of the fourth ex-
periment (no foreknown knowledge) are not surprising.

Using this technique for an other domain like product
names [Canon: is it an EOS or an Snapshot] or city name
[Berlin: in Germany or in the USA], is easy to adopt. In our
future work, we will focus on exactly those problems.

6. Conclusion

This paper presents an approach for predicting context
sensitive named entities exemplified on the domain of peo-
ple names. Doing this we assume that an instance of a name
appears always with in its context in a document structure.
Therefore the method exploits the context-surrounding of a
token, by analyzing the border-sentences of an entity. The
information of the incorporated context was then used for
building an expanded context graph around the unknown
entity. This was done by querying a co-occurrence network,
keeping the most significant edges to the context-instance.
Our evaluation scenario was split into four different tasks,
by consequently reducing the foreknown knowledge about
the entity. The F-measures of 0.99 rsp. 0.98 are quite
promising.

Acknowledgement

Financial support of the German Research Foundation
(DFG) through the Excellence Cluster 277 Cognitive Inter-
action Technology (KnowCIT), the SFB 673 Alignment in
Communication (X1), the Research Group 437 Text Tech-
nological Information Modeling (A4) and Scientific Library
Services and Information Systems (LIS) at Bielefeld Univer-
sity is gratefully acknowledged.

References

[1] Nist 2007 automatic content extraction evaluation official re-
sults, 2007.

[2] C. Biemann, S. Bordag, G. Heyer, U. Quasthoff, and
C. Wolff. Language-independent methods for compiling
monolingual lexical data. In CICLing, pages 217–228, 2004.

[3] C. Biemann, U. Quasthoff, G. Heyer, and F. Holz. ASV
Toolbox – A Modular Collection of Language Exploration
Tools. In Proceedings of the 6th Language Resources and
Evaluation Conference (LREC) 2008, 2008.

[4] T. Brants. Tnt - a statistical part-of-speech tagger. In Pro-
ceedings of theSixth Applied Natural Language Processing
Conference ANLP-2000, Seattle, WA., 2000.

[5] S. Cucerzan. Large-scale named entity disambiguation
based on Wikipedia data. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 708–716, 2007.

[6] H. Cunningham, K. Bontcheva, V. Tablan, and D. Maynard.
Gate - a general architecture for text engineering, 2007.

[7] G. Friedrich and K. Shchekotykhin. Nameit: Extraction
of product names. In Data Mining Workshops, 2006.
ICDM Workshops 2006. Sixth IEEE International Confer-
ence, 2006. IEEE, 2006.

[8] M. Jimnez. Generation of named entities. In MT Summit
VIII. Santiago de Compostela, Spain, 2001. European Asso-
ciation for Machine Translation, 2001.

[9] J. Kazama and K. Torisawa. Exploiting Wikipedia as exter-
nal knowledge for named entity recognition. In Proceedings
of the 2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 698–707, 2007.

[10] R. Power, D. Scott, and N. Bouayad-Agha. Document Struc-
ture. Computational Linguistics, 29(2):211–260, 2003.

[11] H. Uszkoreit, T. Brants, S. Brants, and C. Foeldesi. Negra
corpus, 2006.

[12] U. Waltinger and A. Mehler. Web as preprocessed corpus:
Building large annotated corpora from heterogeneous web
document data. In preparation, 2008.


