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Abstract. Recent researches have discovered that rich interactions among
entities in nature and society bring about complex networks with com-
munity structures. Although the investigation of the community struc-
tures has promoted the development of many successful algorithms, most
of them only find separated communities, while for the vast majority of
real-world networks, communities actually overlap to some extent. More-
over, the vertices of networks can often belong to different domains as
well. Therefore, in this paper, we propose a novel algorithm BiTector
(Bi-community Detector) to efficiently mine overlapping communities
in large-scale sparse bipartite networks. It only depends on the network
topology, and does not require any priori knowledge about the num-
ber or the original partition of the network. We apply the algorithm to
real-world data from different domains, showing that BiTector can suc-
cessfully identifies the overlapping community structures of the bipartite
networks.
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1 Introduction

In recent years, people have found that both of the physical systems in na-
ture and the engineered artifacts in human society can be modeled as complex
networks[1][2], such as the internet, the World Wide Web, social networks, cita-
tion networks and etc. Although these systems come from very different domains,
they all have the community structure [3][4] in common, that is, they have ver-
tices in a group structure that vertices within the groups have higher density of
edges while vertices among groups have lower density of edges.

The existence of the community structures has important practical signifi-
cance. For example, the communities in World Wide Web correspond to topics
of interest. In social networks, individuals belong to the same community are
probable to have properties in common. Nowadays, community information is
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considered to be used for improving the search engine to provide better person-
alized results. Moreover, the information diffusion and spreading mechanism in
a network can be affected and determined by the community structures. Hence,
identifying the communities is a fundamental step not only for discovering what
makes entities come together, but also for understanding the overall structural
and functional properties of the whole network. As a result, a wide range of suc-
cessful algorithms[5] have been proposed to discover the community structures.
These methods assume that communities are separated, placing each vertex in
only one community. They do not take into account the possible overlappings[6]
among communities in the real-world scenarios, such as that each of us may
participate in many social cycles according to our various hobbies.

Moreover, the specific types of the vertices may not belong to the same do-
main as well, bringing about a bipartite network structure. For example, in the
scientific collaboration network[7], two different types of nodes represent the
authors and papers respectively; in the movie-actor network[8], each actor is
connected to the films where he or she has starred; in the collaborative recom-
mendation network[9], the edges link each customer to the corresponding rated
or tagged pages, pictures, videos and other products. In addition, many biolog-
ical networks are naturally bipartite, such as the protein interaction network
from yeast[10], where the two types of nodes are bait proteins and prey proteins,
and the human disease network of diseases and their pathogenicity genes[11].

Traditionally, the studies of the bipartite networks usually depend on the
one-mode projection of the original network into two unipartite networks. More
specifically, given a bipartite network G(U,I), where U and I are the sets of the
two different types of nodes, the one-mode projection converts G(U,I) into GU

and GI respectively. The adjacency matrices of GU and GI are built such that

Eij(GU ) =
{

1 if vertex i and j have a common neighbor ik ∈ I in G(U,I)

0 otherwise

and

Eij(GI) =
{

1 if vertex i and j have a common neighbor uk ∈ U in G(U,I)

0 otherwise

Thus, many existing community detection algorithms can be applied to GU

and GI accordingly. Although this projection approach is simple and intuitive,
it may suffer from the loss of information problem. In general, the real world
bipartite network G(U,I) is a large sparse graph. However, the generated graph
GU and GI may become very dense as a result of the projection. In Fig.1a, U0,
U1, U2, and U3 have a common neighbor I0, so they form a 4-clique (complete
graph) in Fig.1b by projection. Similarly, we can also obtain the same 4-clique
from Fig.1c. However, it is easy to see that in Fig.1c, there exists a more closer
relationship among U1, U2, and U3 for that they all have connections with both
I0 and I1. Yet, in Fig.1b, the four nodes are indistinguishably equivalent with
each other. This problem is very common in real life networks. For example,
in collaborative recommendation network, a very popular film can be rated by



Fig. 1. One-mode projection

hundreds of users just like the scenario shown in Fig.1a. If we project the original
graph into the network consisting of all the users, it will contain a huge clique
formed by these hundreds of users. As a result, due to the existence of many
superfluous edges generated by the one-mode projection, the truly meaningful
information may be overwhelmed by the high link density.

Consequently, the main contributions of this paper concentrate on mining
overlapping communities directly on the bipartite networks. We would like to
answer the questions like what groups of people are interested in what types
of products, or what cycles of scientists prefer to collaborate in what kind of
research areas. The rest of the paper is thus organized as follows: in section
2, we mainly review some related work. Section 3 describes the overlapping
community detection algorithm BiTector in details. Experimental results and
analysis are presented in section 4; and we conclude the paper in section 5.

2 Related Work

One of the classic approaches for detecting community structures in unipartite
networks is the GN algorithm[12] that introduces a network modularity metric
and optimizes it globally to find the non-overlapping communities. Guimerà[13]
et al. generalizes this modularity metric to the bipartite networks. They first
differentiate the two parts of the network as the actors and teams, and then
formulate the bipartite modularity from the groups of actors that are closely
interconnected based on joint participation in many teams. Given vertex vi and
vj , the bipartite modularity is defined as the cumulative deviation of the num-
ber of the actual teams where vi and vj have been involved from the random
expectation. Similarly, Barber[14] defines the bipartite modularity matrix B as
an extension of Newman’s recent work[15]. Some key properties of the eigen-
spectrum of B are identified and used to specialize Newman’s matrix-based
algorithms to bipartite networks.



In parallel, Lehmann[16] et al. extend the k-clique community definition from
Palla’s work[6]. They define a Ka,b biclique community as a union of all Ka,b

bicliques that can be reached from each other through a series of adjacent Ka,b

bicliques, where a and b are the vertices’ number belonging to the two different
vertex sets respectively. Just like Palla’s work, two Ka,b bicliques are to be
adjacent if their overlap is at least a Ka−1,b−1 biclique.

To sum up, the modularity-based algorithms, like GN with O(m3) time com-
plexity (m is the number of edges), are designed to find the non-overlapping com-
munities and often have the efficiency problem which makes them unsuitable to
the large-scale networks in practical scenarios. Moreover, the modularity opti-
mization strategy may introduce a resolution limit[17] as well. For Lehmann’s
algorithm, since it extends from Palla’s work, the required user input value k,
the lower and upper limit value of the community size, often put a significant
impact on the discovered communities, and are uneasy to be determined before
the algorithm can run. In addition, vertices that are not included in any Ka,b

bicliques will be ignored, so the set of all the detected communities usually can
not cover all the vertices of the original graph.

Therefore, to overcome these shortages, we propose BiTector by a local opti-
mization strategy, which does not suffer from the resolution problem, and does
not require any priori knowledge about the community’s number or other related
thresholds to assess the community structure. As of this writing, BiTector is the
first method that can handle bipartite networks consisting of millions of nodes
and edges.

3 BiClique-based Overlapping Community Detection
Algorithm

Instead of dividing a network into its most loosely connected parts, BiTector
identifies the communities based on the most densely connected parts, namely,
the bicliques. We treat each group of highly overlapping maximal bicliques as
the clustering cores. Surrounding each core, we build up the communities in an
gradually expanding way according to certain metrics until each vertex in the
network belongs to at least one community.

3.1 Notations and Definitions

In this paper, we consider simple and connected graphs only, i.e., the graphs
without self-loops or multi-edges. Given graph G(U,I), where U and I or UG and
VG are the sets of the two different types of nodes, V (G(U,I)) = UG ∪ IG and
E(G(U,I)) denote the sets of all its vertices and edges respectively.

Definition 1. Given sub-bigraph S(U,I), US ⊆ UG , IS ⊆ IG, if ∀ui ∈ US , vj ∈ IS,
∃e(ui,vj) ∈ E(S(U,I)), then S(U,I) is a biclique. If there is no any other biclique
S′(U,I), such that US ⊂ US′ and IS ⊂ IS′ , S(U,I) is called the maximal bicliques.



Definition 2. For a given vertex v, N(v) = {u|(v, u) ∈ E(G)}, we call N(v) is
the neighbor set of v. For sub-bigraph S(U,I), N(US) =

⋃
N(ui) − IS , ui ∈ US,

and N(IS) =
⋃
N(vj) − US , vj ∈ IS, N(US) ∪ N(IS) is called the neighbor set

of S(U,I).

Definition 3. M(G(U,I)) denotes the set of all maximal bicliques B(U,I) (|UB | ≥
2, |IB | ≥ 2) in G(U,I). Given vertex vi ∈ V (G(U,I)), B(vi) ⊆ M(G(U,I)) is the set
of all maximal bicliques that contain vi. The set of all B(vi) is denoted as B.
For any pair of sub-bigraph Gi and Gj, a Closeness Function isClose(Gi,Gj)
is defined and implemented in the next section to identify whether they could
be merged together by quantifying how ”close” they actually can be. Given any
two maximal bicliques Bm, Bn ∈ B(vi), |UBm | > |UBn |, Gm and Gn are the bi-
subgraphs induced on Bm and Bn respectively. If isClose(Gm,Gn) returns true,
we say Bn is contained by Bm, denoted by Bn < Bm. If Bm is not contained by
any other maximal bicliques in B(vi), Bm is called the core and the set of all
cores is denoted by C.

Definition 4. Let S0,S1,...,Sn−1 be the sub-bigraph of G(U,I) such that V (S0)∪,...,
V (Sn−1) = V (G(U,I)). For any pair of Si and Sj, if |E(Si)| > |Ebetween(Si, Sj)|,
Si is defined as the community of G(U,I).

3.2 Algorithm

BiTector first enumerates all maximal bicliques in G(U,I). Because a maximal
biclique is a complete sub-bigraph, it is thus the densest community structure
which can represent the closest relationship between the two types of vertices
in the given network. Given two sub-bigraphs Gi and Gj , the basic idea of the
closeness function isClose(Gi,Gj) depends on the link pattern between Gi and Gj

to quantify the influence that they put on each other. We use ∆ij to denote the
common vertices between UGi

and UGj
, and Γij to denote the common vertices

between IGi and IGj accordingly. The left sub-bigraph of Gi is then defined as
Li with ULi = UGi −∆ij and ILi = IGi − Γij . Similarly, the left sub-bigraph of
Gj is denoted as Lj with ULj

= UGj
−∆ij and ILj

= IGj
− Γij . We define the

sub-bigraphs induced on ULi
∪ ILj

, and ULj
∪ ILi

are G(ULi
,ILj

) and G(ULj
,ILi

)

accordingly. Here the influence that Gi puts on Gj is defined based on UGi
. It is

equivalent if we start from IGi .

infij = |E(G(ULi
,ILj

))|+ |E(G(ULj
,ILi

))| − |E(Lj)|

It is apparent that for Gi and Gj , infij actually reflects the number of edges
between them minus that of Gj ’s inner edges. If both infij ≥ 0 and infji ≥ 0,
then Gi and Gj should be merged together as a single graph; otherwise, they
will be separated apart. The implementation of isClose(Gi,Gj) is formulated in
Algorithm 1.

To make things more concrete, an illustrated example is given on the network
shown in Fig.2. There are two sub-bigraphs: G0 cycled by red dashed-line, and



G1 cycled by green dashed-line. UG0 = {U0, U1, U2}. IG0 = {I0, I1, I2}. UG1 =
{U3, U4}. IG1 = {I3, I4, I5}. inf01 = 2 + 2− 6 = −2 < 0, and inf10 = 2 + 2− 8 =
−4 < 0, so G0 and G1 should not be merged together. Starting from M(G(U,I)),

Fig. 2. Example of Core Formation

we first find B(ui) ∈ B for every vertex ui ∈ G(U,I). Because every maximal
biclique in B(ui) corresponds to one group of vertices in UG which together
with ui are closely interconnected based on the jointly connections with certain
cluster of vertices in IG , B(ui) covers all the densest communities where ui has
participated. ∀ui, uj ∈ UG , Gi and Gj represent the sub-bigraphs induced on
B(ui) and B(uj). If isClose(Gi,Gj) returns true, which means all or most of
uj ’s relationships are covered by those of ui, uj should thus stay in the same
community with ui. We rearrange the elements of B according to the descending
order of |B(ui)|. Let |B(uk)| be the element of B whose size is the largest. We
put |B(uk)| to set H and removed it from B. All the other elements contained by
|B(uk)| are also removed from B. Again, we pick the next largest element of B,
put it to H, removed it as well as those elements it contains from B. The process
is continued until B is empty, so set H stores the elements being independent of
each other.

Fig. 3. Example of Core Formation

In general, the distribution of the vertex degree in bipartite networks con-
forms to a power-law. It is common that a few vertices in UG have connections



Algorithm 1 isClose(Gi,Gj)
1: { GL ⇐ Gi or Gj with the larger set of U , GS ⇐ Gi or Gj with the smaller set of U}

2: {∆ = UGL ∩ UGS , Γ = IGL ∩ IGS}
3: if U(GS) ⊆ U(GL) or I(GS) ⊆ I(GL)) or (I(GL) ⊆ I(GS)) then
4: return true
5: else
6: CL = |E(G(∆,Γ ))| − |E(LL)|
7: CS = |E(G(∆,Γ ))| − |E(LS)|
8: if (CL ≥ 0) or (CS ≥ 0) or (infLS · infSL ≥ 0) then
9: return true

10: end if
11: end if
12: return false

with nearly all vertices in IG . As a result, these vertices can appear in lots of
maximal bicliques repeatedly. For example, in Fig.3, we can see that B(U0) =
{{U0, U1, U2, I0, I1, I2}, {U0, U3, U4, I3, I4}}, and U0 has connections with all
the vertices from I0 to I4. However, it is obvious that {U0, U1, U2, I0, I1, I2}
and {U0, U3, U4, I3, I4} are two different communities with a overlapping ver-
tex U0. Consequently, to address this problem, given ui and B(ui), we need to
further refine B(ui) into several sub-bigraphs representing different communities
that ui has taken part in simultaneously. Therefore, for each element Hk ∈ H,
every maximal biclique Bm ∈ Hk is sorted by the descending order of UBm

.
Given Bm, Bn with |UBm

| ≥ |UBn
|, if isClose(Gm,Gn) returns true, Bn is thus

contained by Bm. If Bm is not contained by any other elements in Hk, Bm is
regarded as the core, and will be put in set C. This process is continued un-
til every element in H has been refined. The whole procedure is described in
algorithm 2.

Clustering Once all the cores have been detected, we carry out a clustering
process to associate the left vertices to their ”closest” cores. For each sub-bigraph
Gi induced on Ci ∈ C, we gradually expand Gi by adding the vertices in set
N(UGi)∪N(IGi). Given vertex ∀vi ∈ V (G(U,I)) and ∀Cj ∈ C, the distance between
vi and Gj is defined as follows:

D(vi,Gj) =


|N(vi) ∩ IGj

|
|N(vi) ∪ IGj

|
, vi ∈ UG

|N(vi) ∩ UGj |
|N(vi) ∪ UGj

|
, vi ∈ IG

As a consequence, vi is assigned to the cores with the maximum distance value.
Since that any vertex might have the same maximum distance value with more
than one core, vi can thus be assigned to multiple cores simultaneously.

Since that for vertex vi, it actually does not have connections with all the
cores in C. Therefore, we adopt a coloring strategy to reduce the computation



Algorithm 2 CoreFormation(M(G(U,I)))
1: C ⇐ ∅, H ⇐ ∅, contained⇐ ∅
2: Get B from M(G(U,I)) and sort B(ui) ∈ B by the descending order of |B(ui)|
3: for ∀B(ui) ∈ B do
4: if B(ui) 6∈ contained then
5: contained⇐ B(uj), if isClose(Gi,Gj) returns true
6: add B(ui) to H
7: end if
8: end for
9: for ∀Hk ∈ H do

10: contained⇐ ∅
11: for ∀Bm ∈ Hk do
12: if Bm 6∈ contained then
13: contained⇐ Bn, Bn < Bm
14: add Bm to C
15: end if
16: end for
17: end for
18: return C

cost. First, the vertices covered by all cores in C are colored as old. We use set
UC ⊆ UG and IC ⊆ IG to store the two types of vertices covered by C. Next, every
new vertex in N(UC) and N(IC) is assigned to its closest cores, and colored as old.
As a result, every core is now expanded. Again, starting from N(UC) and N(IC),
all new vertices that have not been colored in N(N(UC)) and N(N(IC)) are going
to be assigned and colored. The clustering continues until all the vertices of the
network are colored as old. In the end, let C′ denote the set of every expanded
core. We use the same process as the Core Formation to compare the closeness
between C ′i and C ′j ∈ C′. If isClose(G′i,G′j) returns true, C ′i and C ′j is merged
together. The whole process is presented in algorithm 3.

3.3 Complexity

Like the classic maximal clique problem in unipartite network, the enumera-
tion of all maximal bicliques is a NP problem as well. However, for most real
world bipartite networks, they are often large sparse graphs(N = |V (G)|,M =
|E(G)|, N ≈ M), and there exist modern algorithms that are very efficient on
sparse graphs. Because the enumeration of maximal bicliques is equivalent to
the Closed Item Set problem, we use the LCM (Linear time Closed itemset
Miner)[18] to mine all the maximal bicliques. On sparse graphs, the compu-
tational complexity of LCM is almost proportional to O(M). The calculation
of set H costs O(N). Let SC be the maximum size of B(ui) ∈ B. It costs
O(|H| × SC) to calculate the core set C. In the end, the clustering process
costs O(N × |C|). Because on sparse bipartite networks |M(G(U,I))| ≈ N ≈ M ,
|H| � N , SC < |C| � |M(G(U,I))|, the total complexity of BiTector is therefore
O(M2).



Algorithm 3 Clustering(C)
1: for Ci ∈ C do
2: ∀vk ∈ V (GCi) is marked as old
3: end for
4: UExp ⇐ N(IC), IExp ⇐ N(UC)
5: while not all vertices in V (G(U,I)) are colored do
6: for ∀vi ∈ UExp ∪ IExp do
7: if vi is not colored then
8: assign vi to its closest core, and color vi as old
9: end if

10: end for
11: U ′Exp ⇐ ∅, I ′Exp ⇐ ∅
12: add vj to U ′Exp, if ∀vj ∈ N(IExp) and vj is not colored
13: add vk to I ′Exp, if ∀vk ∈ N(UExp) and vk is not colored
14: UExp ⇐ U ′Exp, IExp ⇐ I ′Exp
15: end while
16: sort Core according to descending order of |UGCi

|, Ci ∈ Core
17: for Ci ∈ C do
18: if Ci is not merged then
19: Cj is merged to Ci, if isClose(Gi,Gj) returns true.
20: end if
21: end for

4 Experimental Results

In this section, we will present the experimental results and analysis on several
real, large bipartite networks from different domains. All experiments are done
on a single PC (3.0GHz processor with 2Gbytes of main memory on Linux AS3
OS). The execution time of BiTector includes both of the biclique finding time
and the community detection time . The experimental results are shown in
Table 1.

Table 1. Experimental Results

Graph Vertices |V | Edges |E| Time(s)

DAVIS SOUTHERN CLUB WOMEN[19] 32 93 0.5
NATION-SPORT NETWORK OF OLYMPIC GAMES[20] 515 208 1
CUSTOMER-PRODUCT NETWORK[21] 2008 3258 2
PROTEIN INTERACTION NETWORK OF YEAST[22] 3,740 4,480 2
AUTHOR-PAPER NETWORK OF arXiv[23] 20,454 24,154 6
MOVIE-RATING NETWORK OF NETFLIX[24] 75,179 100,000 92
BOOK-RATING NETWORK[25] 263,804 433,695 4,028
IMDB NETWORK[22] 289,435 637,035 4,312



DAVIS SOUTHERN CLUB WOMEN. The Southern women data set describes the par-
ticipation of 18 women in 14 social events. The women and social events consti-
tute a bipartite network; an edge exists between a woman and a social event if
the woman was in attendance at the event. This data set have been much stud-
ied by Davis as part of an extensive study of class and race in the Deep South.
BiTector finds 4 overlapping communities shown in Fig.4. Each community is

Fig. 4. SOUTHERN CLUB WOMEN

circled by one colored dashed-line, and the overlapping vertices are colored by
Black. It is apparent that E8 and E9 are two very famous clubs attracting 9
women to join. Similarly, Barber ’s algorithm also gets 4 separated communities,
while Guimerà’s method finds two coarse ones.

CUSTOMER-PRODUCT NETWORK is derived from the purchase data of Gazelle.com,
a legwear and legcare web retailer that closed their online store on 8/18/2000.
An edge connects a customer to the products he or she has ordered.

PROTEIN INTERACTION NETWORK OF YEAST contains two types of proteins. One
represents the bait proteins and the other represents the prey proteins. An edge
links a prey protein to a bait protein if the prey protein binds to the bait one.

AUTHOR-PAPER NETWORK OF arXiv presents the relationships among authors
and papers. An edge links an author to a paper if this author has published
the paper before. Each discovered community in this network can intuitively
links certain experts to their research areas that are reflected by the published
papers on which they have once collaborated. Fig.5 describes one community



where Prof. M.E.J. Newman has been involved. Newman has proposed the clas-
sic GN algorithm[12] for community detection in unipartite networks, and the
community detected by BiTector in Fig.5 can directly finds one of the circles
where he has been often involved in the physics society.

Fig. 5. Experts with Research Areas

MOVIE-RATING NETWORK OF NETFLIX is composed of users and their rated movies.
Netflix provides an evaluation mechanism that enables users to rate movies from
score 0 to score 10 to express their preferences. There exists an edge between a
user and a movie if this user has rated the movie. In our experiment, we build
the network from Netflix ’s rating data in 2006.

BOOK-RATING NETWORK is built from the Book-Crossing community. In our ex-
periment, there exists en edge between a user and a book if this user has given
a non-zero rating score to the book.

IMDB NETWORK is composed of actors and movies. A link connects an actor or
actress to a movie he or she has once starred.

In the experiments, except for the DAVIS SOUTHERN CLUB WOMEN, both Barber ’s
and Guimerà’s algorithms are not suitable to run on the other datasets within
the acceptable time. For Lehmann’s algorithm, since the discovered communities
depend on the user input value k, and the required lower bound and upper
bound of the community size, we do not include the correspondent results here.
We further evaluate the homogeneity of BiTector’s discovered communities by
comparing them with their counterparts in the random bipartite networks. For
any discovered community C(U,I), we first randomly choose |UC | vertices from
UG into set UR. Then from the union neighbor set of the chosen vertices, we
further randomly choose |IC | vertices into set IR. As a consequence, we obtain a



Fig. 6. Communities’ Homogeneity

randomly generated community R(U,I) having the same size with C(U,I). In Fig.6,
each symbol corresponds to the average number of the inner edges for a given
community size, n<real>, divided by the same quantity found in random sets,
n<rand>. We can see that the n<real>/n<rand> ratio is significantly larger than
1, indicating that the communities discovered by BiTector tend to contain closely
interrelated entities, a homogeneity that supports the validity and effectiveness
of the discovered communities.

NATION-SPORT NETWORK OF OLYMPIC GAMES . Besides the bipartite networks we
just discussed above, BiTector is further challenged on the networks of Olympic
Games in Summer from 1896 to 2004. In each year, we build the network ac-
cording the relationships between nations and the correspondent sports. An edge
links a nation and a specific sport if the nation has won medals in that sport.
There are totally 25 networks being built from 1896 to 2004. The average number
of nodes and edges are 515 and 208 respectively.

Each discovered community directly represents certain group of sports in
which a few nations often compete with each other. For example, Fig.7 depicts
the sports in which China has won medals as well as the correspondent compet-
itive nations in the year 2004. Each community that China has been involved
are marked as different colors. It is very intuitive that in the sports such as
TableTennis, and Badminton, KOR is a strong competitor, while in Swimming
and Diving, China has to compete with USA and AUS.



Fig. 7. China in Olympic Games 2004

Fig. 8. USA in Olympic Games 2004



By contrast, Fig.8 presents the sports in which USA has won medals in the
year 2004. It is apparent that most of USA’s advantage sports concentrate on
swimming, Athletics, as well as Gymnastics with its major competitors such as
AUS in swimming, ROU in Gymnastics, and ITA in Athletics.

Fig. 9. CHN vs. USA in Olympic Games From 1984 to 2004

Given the set of communities at time t, Ct, for any community Ci
t ∈ Ct, if

there exists at least one community Cj
t+1 ∈ Ct+1, such that

|E(GCi
t
) ∩ E(GCj

t+1
)|

|E(GCi
t
) ∪ E(GCj

t+1
)|
≥ f

we say Cj
t+1 ∈ Ct+1 is the descender of Ci

t ∈ Ct, and Ci
t ∈ Ct evolves to Cj

t+1 ∈ Ct+1.
In our experiments, the empirical value of f on the olympic data is set to 0.1.
Fig.9 depicts the evolving trace of one community where CHN competes with
USA in the sports of Diving and ArtisticGymnastics from 1984 to 2004. We
see that although CHN has competed with USA in Diving:10mplatformWomen



continuously for 4 Olympic Games, USA has still been keeping its advantage in
water sports steadily.

5 Conclusion

In this paper, we have proposed a new method BiTector for efficient overlap-
ping community identification in large-scale bipartitie networks. We have demon-
strated the effectiveness and efficiency of BiTector over a number of real networks
coming from disparate domains whose structures are otherwise difficult to un-
derstand. Experimental results show that this algorithm can extract meaningful
communities that are agreed with both of the objective facts and our intuitions.
BiTector avoids loss of essential information caused by the one-mode projection
approach and the thresholding procedures, and is expected to be of great help
in many practical scenarios.

Acknowledgments. We thank Xin Yang for the collection of the Olympic
Games data greatly.
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