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Abstract—While there are many machine learning methods
to classify and cluster sequences, they fail to explain what are
the differences in groups of sequences that make them distin-
guishable. Although in some cases having a black box model is
sufficient, there is a need for increased explainability in research
areas focused on human behaviors. For example, psychologists
are less interested in having a model that predicts human
behavior with high accuracy and more concerned with identifying
differences between actions that lead to divergent human behav-
ior. This paper presents techniques for understanding differences
between classes of discrete sequences. Approaches introduced
in this paper can be utilized to interpret black box machine
learning models on sequences. The first approach compares k-
gram representations of sequences using the silhouette score.
The second method characterizes differences by analyzing the
distance matrix of subsequences. As a case study, we trained
black box supervised learning methods to classify sequences of
GitHub teams and then utilized our sequence analysis techniques
to measure and characterize differences between event sequences
of teams with bots and teams without bots. In our second case
study, we classified Minecraft event sequences to infer their high-
level actions and analyzed differences between low-level event
sequences of actions.

Index Terms—supervised learning, discrete sequence mining,
explainable AI

I. INTRODUCTION

Discrete event sequences are abundant in the online world:
from user clicks in an online store to actions of users on
social media platforms. Researchers across different fields are
interested in studying these digital traces, from social scientists
who wish to improve their understanding of human cognition
to computer scientists who are eager to develop methods
that improve people’s lives. While there are machine learning
approaches available for classifying and clustering sequences,
there is a lack of approaches that determine “what” are the
differences between groups of sequences. This paper intro-
duces a new analytic approach to characterizing differences
between groups of event sequences. We aim to answer the
following questions: (1) How distinct are the sequences of
different groups? (2) What are the differences between these
sets of sequences?

This paper demonstrates the usage of our analytic tech-
niques on two different platforms: GitHub (the social coding
site) and Minecraft (a massively multiplayer online game).
First, we review several approaches that can be used for

classifying discrete sequences. We apply these methods to
event sequences to classify whether a software engineering
team uses GitHub automated services (bots) and to identify
high-level Minecraft player behaviors. Second, we propose
analytic approaches to understand the differences between
groups of discrete sequences. These approaches were used
to compare team sequences in GitHub (bot vs. non-bot), as
well as different actions in the Minecraft game. We modified
the matrix profile algorithm [1] to make it compatible with
sequences. In matrix profiles, subsequences of the time series
are compared against themselves by computing the distance
between each pair of subsequences. The output of the matrix
profile is then used to detect whether characteristics of groups
of sequences such as complexity and novelty are different
across groups.

This paper presents a case study comparing GitHub team
event sequences of teams with and without automated services.
GitHub is a social coding platform that facilitates distributed,
asynchronous collaborations in open source software (OSS)
development. GitHub provides developers with automated ser-
vices (aka bots) through GitHub Marketplace, the platform’s
store for development tools. It offers a comprehensive set
of tools to support software development by virtual teams
which makes it an ideal laboratory for studying teamwork.
Code development, issue reporting, and social interactions are
tracked by the 10+ event types. Our assumption is that each
software repository is maintained by a team and that the events
associated with the repository form a partial history of the team
activities and social interactions.

Our second case study analyzes Minecraft action sequences.
Minecraft is a massively multiplayer online game, where
players can explore a 3D world, mine materials, and craft
tools and structures. Game events form sequences that provide
valuable information about the play style and high level goals
of the players. The observable events are low-level: move,
place block, consume item, etc. High-level actions in the game
world, such as exploring, mining, fighting, or building, are
accomplished by performing chains of low-level actions. Since
events are logged every few seconds, the sequence of low-
level game events may be long and filled with superfluous
detail. Prior research attempted to classify these low-level
event sequences to high-level actions [2].
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II. RELATED WORK

1) Explainability: Many of the most accurate machine
learning models are constructed as black boxes, meaning
that their internal logic is hidden from their users [3]. In
the scientific community, there is an increasing interest in
explaining decisions made by black box models. For example,
Guidotti et al. [4] presented an approach for explaining black
box decisions of an image classification model. Despite the
abundance of discrete sequences, explaining machine learning
models built for sequences has not been well-studied.

2) Discriminative Sequences: One of the conventional
approaches for finding key sequences is sequential pattern
mining [5], and researchers have proposed many specific
techniques for discovering discriminative patterns that occur
at significantly different frequencies across two groups of
sequences [6]–[8]. A related technique, motif mining, has
been successfully applied to finding recurring sub-structures
in call graphs [9]. A major drawback of sequential pattern
mining approaches is the overabundance of sequences they
generate as output. This makes large-scale sequence mining
challenging for sequences for which we do not have prior
knowledge. Moreover, interpreting discovered patterns in se-
quential pattern mining requires subject-matter expertise. Our
approach summarizes sequences and their differences into a
few numbers, reducing the need for domain knowledge to
interpret the data.

3) Matrix Profile: Discrete sequences are the categorical
analog of time series data. Many time series analysis algo-
rithms can be adopted to study discrete sequences. In this
paper, we utilize an algorithm to construct matrix profiles,
introduced by Yeh et al. [10], as a tool for conducting a large-
scale analysis of sequences. The matrix profile is a vector
calculated between two time series (similarity join) or one time
series and itself (similarity self-join); for each subsequence
of the first time series, the distance is stored to its closest
subsequence in the second time series. The distance between
two subsequences is their Euclidean distance. Matrix profiles
have many applications in time series analysis including motif
discovery, discord/anomaly detection, and semantic segmenta-
tion [1], [10]–[12]. In this study, we created the matrix profile
for discrete sequences and use it to summarize differences
between groups of sequences.

Yeh et al. [10] applied the matrix profile to DNA sequences
but they convert the sequences to time series first using a
method proposed by Rakthanmanon et al. [13]. This method
converts sequences to time series by assigning an ordinal
number to each symbol in the sequence. Then, Euclidean
distance is used for measuring the distance between time
series. With this ordinal encoding, an ordinal relationship
is considered between symbols while in reality there may
not be any relationship between symbols. We developed an
approach that extracts the matrix profile directly from discrete
sequences. Instead of Euclidean distance, Hamming distance
is employed; this distance measure is designed for sequences
and does not require encoding of the input.

4) GitHub: The most commonly employed methodology
for studying collaborative work in GitHub is an examination of
the activity profiles of developers and/or their responses to sur-
veys and semi-structured interviews to better understand im-
portant processes and outcomes of interest [14], [15]. Previous
GitHub research has used features such as code comments [16]
and issue closure [17] to analyze team dynamics. The aim of
our research is to leverage event sequences generated by the
team members to understand teamwork differences.

There is very little research on the effect of these GitHub
bots on software engineering teams “in the wild.” This paper
introduces a set of analytic tools for quantifying teamwork
differences between human-bot and human-only teams over a
larger population than can be recruited for most lab studies.

5) Minecraft: Although Minecraft was not explicitly devel-
oped for research purposes, it has been used in many studies on
learning and collaboration [18], [19]. Muller et al. [2] studied
players’ actions using the frequencies of low-level events,
in contrast to our work that leverages sequence information.
Saadat et al. [20] analyzed Minecraft event sequences and
discovered contrast motifs of Minecraft actions and players.

III. METHOD

This section describes our techniques for analyzing event
sequences. First, the process of distinction measurement using
silhouette score is described. Second, our approach for charac-
terizing differences across groups of sequences is explained.
Finally, we discuss the sequence classification methods we
applied to our case study. The code for our analytic pipeline
is publicly available at [21].

A. Sequence Distinction Measurement Using Silhouette Score

Given two groups of sequences, our goal in this section
is to measure and characterize the distinctions. We model
the problem of comparing groups of sequences as a clus-
tering evaluation problem as they have similar purposes. In
a clustering evaluation problem, the goal is to measure the
similarity of instances within and across clusters. In a well-
performed clustering, instances in a cluster are closely related
(cluster cohesion) and instances of one cluster are distinct
from other clusters (cluster separation). Our goal is also to
understand and measure cohesion and separation of groups
of sequences. Hence we used a clustering evaluation method,
called silhouette score, to measure the distinction of two
groups of sequences. To calculate silhouette score, we need to
have sequences in an equal length vector format. This section
describes the sequence to vector conversion process and the
silhouette score computation procedures.

1) Sequence to Vector: The first step in making sequences
comparable is converting them to equal length vectors. For
vectorization, we extract a k-gram representation of sequences
by moving an overlapping window with fixed size of w and
step size of 1 along the sequence to generate n = l − w + 1
subsequences where l is the length of the sequence. This
transformation converts each sequence to a set of ordered
subsequences of length w. To be able to compare a k-gram



representation of sequences with each other, we convert them
to vectors with equal lengths using the Term Frequency-Inverse
Sequence Frequency (TF-ISF) model. TF-ISF is analogous
to the TF-IDF procedure that is used for vectorizing textual
documents (i.e. an ordered list of words) [22]. Term frequency
(TF) measures the frequency of every subsequence in a
sequence. Higher frequency subsequences tend to contribute
noise to the similarity computation [23]. One way to avoid
this noise is by lowering the weighting subsequences with
higher frequency using inverse sequence frequency (ISF).
If there is a subsequence that is shared between most of
the sequences, this subsequence may be less important in
understanding differences between groups of sequences. The
inverse sequence frequency ISFi of the i-th subsequence is
calculated using Equation 1.

ISFi = log(N/Ni) (1)

where N is the total number of sequences and Ni is the
number of sequences that contain the i-th subsequence. Note
that ISFi is a decreasing function of the number of sequences
in which it occurs.

To summarize, in order to create the vector of sequences
using TF-ISF model, we first measure the frequency of each
subsequence i (TFi) and then multiply them by ISFi. A
subsequence has a high TF-ISF for a sequence if it appears
many times in that sequence and does not appear in many
other sequences [24].

In addition to the TF-ISF model for vectorization, we have a
simple binary vectorization method. In this model, each vector
has zero and one values where one indicates the existence
of a subsequence in the sequence and zero otherwise (i.e.
frequencies of subsequences are ignored). Comparing this
model with the TF-ISF model is helpful in understanding
whether the difference between two groups of sequences is
solely due to difference in the frequencies or whether the
subsequences also differ.

2) Sequence Comparison: To compare two groups of se-
quences, we need a distance measure and also a metric that
tells us the amount of similarity (or dissimilarity) between two
groups. We use cosine similarity and silhouette score for these
purposes, respectively.

Silhouette score is mainly used to measure how well a set
of samples is clustered and to compare the results of differ-
ent clustering methods or configurations [25]. In this paper,
silhouette score is used to measure the relative distinctiveness
of two groups of sequence vectors. The silhouette score is
calculated using the mean intra-group distance and the mean
nearest-group distance for each sequence.

The best value of silhouette score is 1 and the worst value
is −1. A score of 1 indicates that two groups are completely
separate. Values near zero show that groups are overlapping.
Negative values generally indicate that sequences of one group
will be incorrectly assigned to the other group. If the silhouette
score between the vectors of the two groups is higher, they are
more distinct from each other. We calculate silhouette score
to measure the separation between groups of event sequences.

Investigating variations in vectorization of sequences can
inform us about the underlying differences in sequences. In
TF-ISF, frequencies of k-grams are considered and in the
binary version, only the existence of k-grams is investigated.
For example, if silhouette score detects no distinction based
on binary vectors but denotes distinction based on the TF-ISF,
it means that top k-grams are similar across different groups
but they have different frequencies.

B. Sequence Difference Detection Using Matrix Profile
The vectorization method explained in Section III-A1 is

good for large-scale comparison of sequences and reveals
the differences in short and exact subsequeneces. However,
this vectorization method is computationally expensive for
comparing large subsequences. This section illustrates how
we use matrix profiles to summarize differences between two
groups of sequences based on large subsequences.

The first step in the creation of the matrix profile is
constructing the distance matrix D which is a n × n matrix
where D[i, j] represents the distance between i-th and j-th
subsequences.

In this paper, we used Hamming distance because of its
computational efficiency. However, other distance calculation
methods designed for sequences, such as Longest Common
Subsequence (LCS), can be used. Hamming distance is a
simple distance function that calculates the number of mis-
matching positions between two sequences of equal length.
The Hamming distance calculation is fast with a time com-
plexity of O(w) where w is the length of its input sequence.
The distance matrix calculation time complexity is O(n2w) if
Hamming distance is used.

For efficiency reasons, Yeh et al. [10] skip calculating the
2-dimensional distance matrix. However in this study, our
main purpose is providing tools that facilitate pattern discovery
within and across sequences, hence it is helpful to store and vi-
sualize the 2-dimensional distance matrix. Algorithm 1 shows
the distance matrix calculation procedure; distance(i, j) is the
distance between subsequence i and subsequence j which can
be calculated using Hamming or LCS-based distance.

Input: s: input sequence and w: window size
Output: D: pairwise distance between subsequences

1: l = length(s)
2: n = l − w + 1
3: D = n× n matrix with default values of w
4: r = w/2
5: for i = 0 to n do
6: for j = i+ r to n do
7: d = distance(i, j)
8: D[i, j] = d
9: D[j, i] = d

10: end for
11: end for

Algorithm 1: Distance matrix calculation

The algorithm takes one sequence s and a window size
w as input and generates a distance matrix D. The matrix



Fig. 1. Matrix profile calculation example. From the event sequence, first the
distance matrix is calculated. This is a 2-dimensional matrix representing the
distance between each pair of subsequences of length 3 (= window length).
The matrix profile is calculated by selecting the minimum value of each row
in the matrix which represents the distance to the closest subsequence.

D is initialized with window size w because this is the
maximum distance possible between two subsequences. Every
subsequence has a long overlap with its neighbor subsequences
that leads to trivial matches. To avoid trivial matches for each
subsequence si, [10] suggests excluding a region of length
w centered on the starting position of si. Since the distance
between subsequence i and j (D[i, j]) is the same as the
distance between subsequence j and i (D[j, i]), our distance
matrix is symmetric. For time efficiency, we only calculate
D[i, j] and assign it to D[j, i].

After the calculation of distance matrix D, the matrix profile
is generated by considering the lowest value of each row as
the matrix profile value of that row (Equation 2).

P [i] = min
∀j∈n

D[i, j] (2)

Figure 1 shows an example of the matrix profile calculation
for a toy sequence.

Characteristics of matrix profiles such as minimum, max-
imum, and variance reveal interesting properties of the se-
quences including motif positions, discord positions, and se-
quence complexity and novelty [10]. To understand what are
the differences between groups of sequences, characteristics
of matrix profiles of sequences within each group can be
aggregated and compared to aggregated characteristics of other
groups. For example, if matrix profile average in one group is
significantly higher than other groups, it shows that sequences
in that group are less repetitive than sequences in other groups.

C. Sequence Classification

In this section, we discuss how we converted varied-length
sequences to appropriate inputs for existing classification
algorithms including SVM and LSTM.

To use classic machine learning algorithms, we need equal
length real-valued vectors. One way to convert sequences
to vectors is using the vectorization methods discussed in
Section III-A1. We use a k-gram representation for vectorizing
the sequences in the dataset before employing a support vector
machine (SVM) model to construct a predictive model.

Our second approach for sequence classification is using
deep neural network models. Deep learning models, unlike
classic algorithms such as SVM, do not always require direct
vectorization. These models can have an embedding layer
that converts the sequences to real-valued vectors. We use
a Long Short Term Memory (LSTM) model to learn and
classify representations for sequences. LSTMs have achieved
notable success in natural language processing tasks such as
machine translation [26]. Additionally, we test 1-Dimensional
Convolutional Neural Networks (1D CNNs) which excel at
learning the spatial structure in input data. CNNs are also used
in many sequence models such as sentence classification and
language translation [27].

We also built a baseline model, which is a simple logistic
regression model to be able to compare results of black box
models with this glass box baseline. This model considers
the length of the input sequence as the only feature for the
classification task.

IV. GITHUB SEQUENCE COMPARISON

This section describes the results of our analysis procedure
for studying the differences between GitHub event sequences.

A. GitHub Dataset

We apply our techniques to the GitHub public events
dataset. Our aim is to understand the characteristics of event
sequences of human teams versus human-bot teams on GitHub
and to discover if there are differences between these two
groups of sequences. We selected 20,119 software develop-
ment repositories created in January 2016 that had at least
100 events and more than two human team members.

We considered a GitHub user a member of a team if they
have completed at least one of the following: one push event;
five accepted pull requests; ten issue comments; or ten pull
request review comments. We have made our dataset available
at [21].

1) Bot Identification: In our dataset, an account is consid-
ered a bot if its type is set to Bot, its name ends with ’-bot’,
and/or it has a high number of identical comments. In our
sample, we identified 304 (1.5%) teams that had at least one
bot. We denote teams that use automation as human-bot teams
and teams without bots human teams.

2) Control for Developers Expertise: To balance our
dataset, we control for developer expertise to make sure the
obtained event sequence differences are not due to team
expertise. To do this, we extracted an expertise vector for



every team member comprised of 1) number of followers 2)
number of following 3) number of public repositories owned
by the developer 4) GH-impact score (a measure of influence
on GitHub). A developer has a GH-impact score of n if they
have n repositories with n stars. This metric is similar to h-
index which is used to evaluate impact of scholars. For each
human-bot team, we found the most similar human only team
with respect to their expertise vector and downsampled human
teams to 304 teams corresponding to the 304 human-bot teams.

3) Event Sequence Extraction: The GitHub activity dataset
consists of 14 event types: push, pull request, issue comment,
pull request review comment, issue, commit comment, create,
delete, gollum, member, public, release, fork, and watch. The
input vocabulary consists of 14 symbols each corresponding to
one event type. We created the team event sequences using all
events, sorted by time, performed within a year of repository
creation.

B. Classifying GitHub Team Type

We trained and tested three different machine learning
models for the team type prediction task.

1) SVM: We used the k-gram representation of sequences
and vectorized them using TF-ISF model. Then, we trained a
SVM model using the implementation available in scikit-learn
machine learning library.

2) LSTM: We used the LSTM recurrent neural network
models implemented in Keras deep learning library. Each
event was mapped onto a 32 length real-valued vector. Only
the first 1000 events of each team were considered; long
sequences were truncated and short sequences were zero
padded. As discussed in Section IV-A, the majority of the
teams generate less than 1000 events. The first layer of our
neural network is an embedded layer that uses length 32
vectors to represent each event. The next layer is an LSTM
layer with 100 neurons. Finally, we added a dense output layer
with a single neuron and a sigmoid activation function to make
0 or 1 predictions for the two classes: human team or human-
bot team. Because it is a binary classification problem, we used
log loss as the loss function. The efficient Adam algorithm is
used for optimization.

3) CNN+LSTM: Our CNN+LSTM model used the same
architecture as our LSTM model, but with a 1-dimensional
CNN layer and a max pooling layer before the LSTM layer.

For the neural network models we hold out 20% of data for
testing and trained the models on rest of the data. 10% of the
training data was used as validation set for tuning parameters.
For the SVM and Logistic Regression models we used 5-fold
cross-validation. Figure 2 shows the performance of the differ-
ent classification models. Our neural network models achieved
the highest F1 scores of 0.79 (precision=0.77, recall=0.82)
and 0.77 (precision=0.75, recall=0.80) for CNN+LSTM and
LSTM, respectively; while the SVM model achieved F1 score
of 0.74 (precision=0.66, recall=0.82). Both models have signif-
icantly higher F1 score than our baseline model with F1 score
of 0.54 (precision=0.77, recall=0.42), showing that predicting
the type of teams is a non-trivial task and that the sequence of

Fig. 2. Classification performance of the different models (logistic regression,
SVM, LSTM, CNN+LSTM) at recognizing human-bot versus human only
team sequences

events is helpful in distinguishing team types. Moreover, these
results show that the neural network based black box models
perform better than the explainable logistic regression model.

C. GitHub Silhouette Score Analysis

A k-gram representation of GitHub team event sequences
was created using different window sizes w ∈ {2, 3, 4, 5}.
Then TF-ISF vectors were extracted for these sequences.

To compare the sequences of human teams with the se-
quences of human-bot teams, we calculated the silhouette
score between human-bot team vectors and the downsampled
set of vectors of human teams. Figure 3 illustrates the amount
of distinction between human teams versus human-bot team
sequences for different window sizes. Positive values of the
silhouette score show that these two groups of sequences are
relatively distinct, although they are not completely separate.

Fig. 3. Human vs. human-bot teams silhouette score considering different
vector lengths (line style) and different vectorization models (line color). The
best method for detecting differences at all window sizes is TF-ISF with a
vector length of 10. However even the binary vectorization model detects
differences between the two groups of sequences.

The distinction between human and human-bot teams de-
creases as w increases, where w is the length of the window
for constructing subsequences of each sequence. This occurs
because when subsequences become longer, the number of
shared subsequences between the sequences decreases.

In our TF-ISF model, which creates real-valued vectors
from an ordered list of subsequences, the size of the vectors



is the number of unique subsequences in all sequences. Since
there are many subsequences that are rare, there is an option
to limit the size of the vector to only consider most frequent
subsequences. We measured the silhouette score between
human and human-bot teams considering vector length to be
10, 100, and 1000. Vector length x denotes that a vocabulary
of subsequences is constructed that only considers the top x
subsequences ordered by term frequency across the sequences.
Figure 3 illustrates the impact of vector length on measuring
the distinction. The distinction between two groups increases
when a shorter vector length is used. This means that the main
difference between human only and human-bot sequences is
in the most frequent subsequences.

We also calculated silhouette scores for the binary vectoriza-
tion model. This model ignores the frequency of subsequences
in order to understand if the distinction between human versus
human-bot team sequences occurs because of the difference
in frequencies or whether the subsequences themselves also
differ. Green lines in Figure 3 correspond to the binary
model. The results show that although using the binary model
makes the groups less separated, this model still reveals the
distinction between human only and human-bot teams. This
indicates that it is not only the frequency of the subsequences
that differs between human only versus human-bot teams but
also that different subsequences exist in the these two groups.

D. GitHub Sequences Matrix Profile Analysis

To understand what is different about human only team
event sequences as compared to human-bot teams, we con-
structed distance matrices and matrix profiles for all sequences.
For the distance calculation between two subsequences, we
used Hamming distance due to its time efficiency.

We conducted our experiments for window size of length 20
based on our empirical analysis. Table I shows the summary
of statistics of matrix profiles of human versus human-bot
teams. The matrix profile consists of distances to the closest
subsequence for every subsequence. The higher average for
average of matrix profile values for human-bot teams shows
that human-bot teams subsequences are less similar to each
other compared to human teams. That indicates that human
teams have more repetitive groups of actions. A Mann-
Whitney U test shows that the average matrix profile value
is significantly different in human teams compared to human-
bot teams (p = 0.02). The Mann-Whitney U test was chosen
to test the null hypothesis because the data does not follow
a normal distribution and a non-parametric statistical test is
needed. Human-bot teams may have less repetitive sequences
of human actions if the bots perform repetitive tasks, leaving
fewer repetitive series of actions for humans to perform.

Yeh et al. [10] considered the variance of matrix profile
to be representative of the complexity of its underlying time
series. Although human-bot teams have a higher matrix profile
variance, the t-test shows that this difference is not significant.
Therefore, we cannot conclude that human-bot teams have
more complex sequences.

Metric Human-bot Human p-value
Variance 4.8 4.6 0.1
Average 6.9 6.1 0.02
Minimum 2.0 2.2 0.1
Maximum 11.8 11.0 0.1

TABLE I
HUMAN VERSUS HUMAN-BOT TEAMS MATRIX PROFILE SUMMARY.

Fig. 4. Aggregate matrix profile for human-bot teams vs. human only teams.
The human-bot teams have higher values compared to human teams, indicating
the higher novelty of sequences in human-bot teams.

The minimum and maximum values in the matrix profile
are related to motif and discord of the sequence [10]. There
is no significant difference between minimum and maximum
values of matrix profiles in human teams versus human-bot
teams (p-value= 0.1).

Figure 4 shows the profiles of human and human-bot team
sequences. We created matrix profiles for full length team
sequences but for better visualization, we plotted only 1000
first positions of matrix profiles in Figure 4. Since 97% of
teams have sequences shorter than 1000, this visualization
contains the full length matrix profile of the majority of the
teams. The matrix profile of human-bot teams clearly have
higher values compared to human teams, indicating the higher
novelty of sequences in human-bot teams.

Figure 4 shows that although human teams have lower
matrix profile values at the beginning due to simpler, repetitive
groups of actions, as the human team projects progress, the
value and fluctuation of their matrix profiles increases which
indicates that they are becoming more complex. However,
human-bot teams seem to be complex from the beginning,
and they maintain the complexity of their sequences as the
projects progress.

V. MINECRAFT ACTION SEQUENCES

A. Minecraft Dataset

We used a dataset collected by the Heapcraft project across
multiple servers [2]. The dataset contains two months of data
from 45 players, forming 14 person-days worth of active
game-play. The benefit of this dataset is that it provides
ground truth Minecraft actions for collections of raw events.
At random intervals, players were asked to specify the high-
level actions they are performing: explore, mine, build, and
fight.



Several of the events were excluded by [2] from the event
log due to low frequency, correlation to other events, and
redundancy. Moreover, move, sprint and sneak events were
transformed to their corresponding distance or duration. We
followed the event cleaning procedure presented by [2] except
move, sprint and sneak events were also removed as distance
and duration cannot be easily converted to symbols in se-
quences.

The original study considered the duration of each action
to be two minutes centered around the time of response
received. These two-minutes intervals (labeled with high level
actions) were used to construct our action sequence dataset.
The sequence dataset of players was created by considering
all the events performed by players during the data collection
period. We created the event sequences by assigning a symbol
to each Minecraft event and creating an ordered list of symbols
for each data point. Since our method relies solely on the order
of events rather than their frequencies, consecutive repetitive
events are replaced by one event. For example, aaabbcccd
is transformed to abcd. Finally, we removed sequences that
their length is shorter than five and reached 34, 102, 171, and
260 sequences for the fight, explore, mine, and build actions
respectively which creates a dataset of size 567.

B. Minecraft Action Classification

Similar to GitHub sequence classification, we classified
Minecraft actions using three different classifiers (i.e. SVM,
LSTM, CNN+LSTM) and a baseline (i.e. Logistic Regres-
sion based on sequence length). Figure 5 demonstrates the
performance of the classifiers. On this dataset, SVM per-
formed better than other classifiers with an F1 score of
0.61 (precision=0.64, recall=0.60). The SVM performance is
slightly higher than CNN+LSTM with an F1 score of 0.60
(precision=0.71, recall=0.52). Note that this is multi-class
classification problem with four possible outputs. Therefore, a
classifier that randomly assigns label to sequences will achieve
an accuracy of 0.25.

Fig. 5. Classification performance of the different models at recognizing
Minecraft action sequences.

C. Minecraft Actions Silhouette Score Analysis

We vectorized Minecraft action sequences using TF-ISF
approach as it is superior to the binary vectorization in
detecting differences. Silhouette scores for Minecraft action
vectors were calculated using various vector sizes and window

Fig. 6. Aggregate matrix profile for Minecraft actions

Metric Build Explore Fight Mine
Variance 0.5 0.6 0.6 0.5
Mean 2.6 0.9 0.9 2.1
Minimum 1.9 0.3 0.3 1.5
Maximum 3.5 2.6 2.7 3.2

TABLE II
MATRIX PROFILE STATISTICS OF MINECRAFT ACTIONS

lengths. A window length of 2 and vector size of 50 delivered
the highest silhouette score of 0.052. This silhouette score is
less than silhouette score of GitHub sequences (0.13). This
indicates that the classification of Minecraft actions is more
challenging than identifying GitHub repositories with bots,
hence the lower performance is unsurprising.

D. Minecraft Actions Matrix Profile Analysis

We created matrix profiles for all sequences, using a window
size of 5. Figure 6 illustrates aggregate matrix profiles for each
type of action. Since the matrix profiles of the build and mine
actions have larger values at the beginning, we can infer that
these two actions start with a subsequence that does not repeat
later.

We calculated minimum, maximum, variance, and mean
for matrix profiles of Minecraft action sequences. Table II
shows the average of these statistics for different actions.
The variance of matrix profiles is similar across Minecraft
actions. This means that sequences of different actions have
similar levels of complexity. Minimum, maximum, and mean
are different in build compared to other three actions, and
this difference is statistically significant (p-value < 0.05). The
same holds true for mine action. The higher matrix profile
mean in build and mine indicates that these two actions have
less repetitive subsequences. According to Table II, explore
and fight have the lowest average minimum, suggesting that
these two actions have extremely strong motifs. The highest
average maximum in build action indicates that discords in
build sequences are exceedingly distinct from the rest of the
sequence.

VI. CONCLUSION

This paper proposes an approach to classify groups of
discrete sequences and quantify the differences between them.
We present case studies of how our approach can be used



to understand GitHub teams and Minecraft actions. We used
our approach to study two different GitHub repository groups:
those who use automated accounts (bots) and those who
don’t. Our analytic approach reveals subtle differences in
teamwork patterns that are difficult to distinguish from event
distributions. We believe that sequences of GitHub events can
be mapped to team cognitive processes such as knowledge-
building, information sharing, and problem-solving; normally
in psychology experiments this mapping is accomplished by
human observers but we aim to do it with machine learning.

Our experiments reveal that human team event sequences
are relatively distinct from human-bot teams in terms of the
existence and frequency of short subsequences. This shows
that the cadence of activity in human-bot teams is different
than human only ones. The matrix profile analysis shows
that human-bot teams exhibit differences in both average and
absolute maximum values. By analyzing the matrix profile
of teams, we see that human-bot teams are less likely to
repeat event subsequences than human only teams. Although
it is unsurprising that human developers avoid repetition, it
is interesting that the usage of bots can be detected from
the event sequences alone, without using features from the
comments, repository profiles, or code.

Moreover, we utilized our approach to study Minecraft
action sequences. Our analysis shows that build and mine
actions have less repetitive subsequences compared to fight
and explore. Sequences of different actions have similar levels
of complexity. Our experiment reveals that improving the
performance of Minecraft action classification is challenging
because these groups of actions are extremely similar in terms
of the existence and frequency of subsequences.
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