
Multi-source Transfer Learning with Ensemble for
Financial Time Series Forecasting

1st Qi-Qiao He
Department of Computer and Information Science

University of Macau
Macau, China

yc07422@umac.mo

2nd Patrick Cheong-Iao Pang
Victoria University Business School

Victoria University
Melbourne, Australia
mail@patrickpang.net

3rd Yain-Whar Si
Department of Computer and Information Science

University of Macau
Macau, China

fstasp@umac.mo

Abstract—Although transfer learning is proven to be effective
in computer vision and natural language processing applications,
it is rarely investigated in forecasting financial time series.
Majority of existing works on transfer learning are based on
single-source transfer learning due to the availability of open-
access large-scale datasets. However, in financial domain, the
lengths of individual time series are relatively short and single-
source transfer learning models are less effective. Therefore, in
this paper, we investigate multi-source deep transfer learning
for financial time series. We propose two multi-source transfer
learning methods namely Weighted Average Ensemble for Trans-
fer Learning (WAETL) and Tree-structured Parzen Estimator
Ensemble Selection (TPEES). The effectiveness of our approach
is evaluated on financial time series extracted from stock markets.
Experiment results reveal that TPEES outperforms other baseline
methods on majority of multi-source transfer tasks.

Index Terms—Multi-source transfer learning, Financial time
series forecasting, Artificial neural networks

I. INTRODUCTION

Time series forecasting is one of the challenging research
problems in financial domain. However, majority of transfer
learning researches for time series focus on single-source
transfer learning, meaning that only a single source dataset
is used for training the models. However, when compared
to image and text datasets used in training deep learning
models for Computer Version (CV) and Natural Language
Processing (NLP) applications, a single time series data (e.g.
historical price data of a listed company from stock markets)
is relatively small (short). In these situations, training process
could result in overfitting models. In order to alleviate this
problem, we investigate multi-source transfer learning models
for forecasting financial time series in this paper. One of
the key factors in adopting multiple data sources for transfer
learning is motivated by the fact that the future price of a stock
could be influenced by the historical prices of stocks within
the same industry/sector. For example, the future price trend of
Hongkong and Shanghai Banking Corporation (HSBC) could
be correlated to the prices of other banks in Hong Kong

and Asia Pacific region. In this paper, we aim to exploit
this correlation property for generating better deep learning
models. In addition, in the context of time series forecasting,
the features of time series and the calculation of similarity
between two time series are inherently different from CV and
Natural Language Processing applications. Besides, in transfer
learning for time series forecasting, existing algorithms rarely
exploit the similarity between two time series.

Against this background, in this paper, we propose two
ensemble methods for multi-source transfer learning. They
are both parameter-based transfer learning methods [1]. The
proposed ensemble methods combine multiple models, each
of which is pre-trained by a different source dataset and fine-
tuned by the same target dataset. In the first ensemble method
called Weighted Average Ensemble for Transfer Learning
(WAETL), weights are calculated based on the similarity be-
tween source and target time series datasets. In WAETL, mod-
els with poor performance are assigned with smaller weights
than good performance models. Extensive experiments are
also conducted to investigate the effect of distance functions
on the transferred models. The second method called Tree-
structured Parzen Estimator Ensemble Selection (TPEES) is
based on Tree-structured Parzen Estimator (TPE) optimization.
In this approach, we treat the process of selecting models
from transfer learning model pool as an optimization problem.
WAETL use all models in model pool, but some models in
model pool may not be selected by TPEES. The contributions
of this paper can be summarized as follows:

• Two novel ensemble based multi-source transfer learning
methods called WAETL and TPEES are proposed for fi-
nancial time series forecasting. The proposed approaches
aim to alleviate the problem of insufficient training data
when forecasting stock prices in financial markets.

• Extensive analysis are also performed to investigate the
effect of different distance functions to calculate the
similarity of time series. Experiment results shows that
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WD and Coral achieve best results when they are applied
with WAETL method.

The rest of the paper is structured as follows. In section 2,
we review existing work on multi-source transfer learning for
financial time series forecasting. In section 3, we describe our
proposed methods. In section 4, we present our experiment
results. Finally, we conclude the paper with future work in
section 5.

II. BACKGROUND AND RELATED WORK

In [2], Ding et al. combined the neural tensor network
and deep CNN to predict the short–term and long–term in-
fluences of events on stock price movements. A deep learning
framework based on long-short term memory (LSTM) was
also proposed by Bao et al. [3] for time series forecasting.
However, when the available data is insufficient for training,
the performance of deep learning model can be poorer than
traditional statistical methods [4]. Besides, training a deep
learning model can be time-consuming and expensive. In order
to alleviate the above-mentioned problems, transfer learning
has been combined with deep learning in [5].

Recently, transfer learning was adopted for analyzing time
series data. Fawaz et al. [6] investigate how to transfer deep
CNNs for Time Series Classification (TSC) tasks. Laptev et al.
[7] also propose a new loss function and an architecture for
time series transfer learning. Ye et al. [8] propose a novel
transfer learning framework for time series forecasting. In
these approaches, one source dataset is used for pre-training
and one target dataset is used for fine-tuning, called single-
source transfer learning. In this paper, we use single-source
transfer learning as a baseline method.

Multi-task learning (MTL) is a parameter based multi-
source transfer learning method, which is successfully used in
CV and NLP. The goal of MTL is to improve the performance
of each individual task by leveraging useful information be-
tween multiple related learning tasks [9]. In [10], MTL is used
to forecast short-term wind speed. In this paper, we adopt a
model similar to MTL approach in which both all source and
target datasets are used for training and target dataset is used
to fine-tune the MTL model in the final step. Therefore, the
MTL model shares all the hidden layers except the output
layer.

Christodoulidis et al. [11] transfers knowledge from multi-
ple source datasets to a target model with ensemble method
called forward ensemble selection (FES) to classify lung
pattern. In their approach, CNN is used for classification. First,
Christodoulidis et al. utilize improving ensemble selection
procedure to select fine-tuned CNN models from model pool.
Next, a simple average combination method is used to build
an ensemble model. In this paper, we proposed two new
ensemble methods for multi-source transfer learning to build
a strong ensembled model. In addition, we adopt FES as a
baseline method for comparison. However, in order to forecast
time series, we replace CNN with LSTM and Multilayer
Perceptrons (MLP).

III. METHODS

Multi-source transfer learning with ensemble relaxed the
assumption of MTL. When some of the models pre-trained by
the source datasets and fine-tuned by the target dataset have a
negative effect on the target model, multi-source transfer learn-
ing with ensemble can mitigate the impact of these models on
the target model. Meanwhile, Multi-source transfer learning
with ensemble focus on improving the performance of target
task with multi-source datasets. Therefore, in this paper, we
propose two ensemble methods for multi-source transfer learn-
ing namely Weighted Average Ensemble for Transfer Learning
(WAETL) and Tree-structured Parzen Estimator Ensemble
Selection (TPEES). Model pool contains fine-tuned models
which have been pre-trained by source datasets and fine-tuned
by the target dataset. We use above ensemble methods to
combine the output of each model from the model pool. To
evaluate their effectiveness, these two methods are compared
with Average Ensemble (AE) and Forward Ensemble Selection
(FES) methods in the experiments.

A. Weighted Average Ensemble for Transfer Learning
(WAETL)

Averaging ensemble (AE) is one of the most common en-
semble methods [12]. The aggregated output of target model is
averaged by the output of each model from model pool. Simple
averaging avoids overfitting and creates smoother ensemble
model. Therefore, AE is used as baseline method in this paper.
However, not all models from model pool have same influence
on the target model. Hence, Weighted Averaging Ensemble
(WAE) based on Average Ensemble (AE) is proposed in [13].
In this paper, we further extend WAE for multi-source transfer
learning.

Unlike AE, where each fine-tuned model has the same
weight, the proposed WAETL can increase the importance
of one or more fine-tuned models. Rosenstein et al. [14]
empirically showed that if the source and target datasets are
dissimilar, then brute-force transfer may negatively effect the
performance of the target dataset. Such effect is also labeled as
negative transfer by [14]. Mignone et al. [15] compute a weight
for each instance according to their similarity with clusters
in source and target datasets, which is quite recognized.
This method is instance-based transfer learning approach and
focus on single source transfer learning. However, WAETL
is parameter-based transfer learning approach and compute a
weight for each source dataset according to their similarity
with the target dataset. In WAETL, we use different distance
functions including CORrelation ALignment (CORAL) loss
[16], Wasserstein Distance (WD) [17], Dynamic Time Warping
(DTW) [18], Pearson Correlation Coefficient (PCC) [19] to
calculate the similarity between each source and target domain.
The similarity value D(si, t) calculated by above distance
functions can be used as weight wi in WAETL through a func-
tion f(D(si, t)). The larger the weight wi, the more influence
the corresponding ith model has on the target model. The
output (out) of target model can be formulated as Equation 1
and 2.



wi = f(D(si, t)), (1)

out =

n∑
i=1

wi ∗ outi, where
n∑

i=1

wi = 1 (2)

where outi is output of the ith model in the model pool and
n is the size of model pool. si is the ith source dataset and t
is the target dataset.

B. Tree-structured Parzen Estimator Ensemble Selection
(TPEES)

In [11], forward ensemble selection (FES) was used to
select fine-tuned Convolution Neural Network (CNN) models
from model pool. However, FES is primarily designed to
select models from thousands of models in [20]. Moreover,
models with poor performance may not be selected by FES
from the model pool. In such cases, it is likely to cause
overfitting. To alleviate this problem, in this paper, we apply
Tree-structured Parzen Estimator (TPE) to ensemble selection
for multi-source transfer learning. The process of proposed
Tree-structured Parzen Estimator Ensemble Selection (TPEES)
is shown in Figure 1. TPE is widely used in hyper-parameter
optimization [21].
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Fig. 1: Tree-structured Parzen Estimator Ensemble Selection

In Figure 1, we use each source dataset to pre-train deep
learning models. Next, the pre-trained models are fine-tuned
by the target dataset. These fine-tuned models are then stored
in the model pool. Afterwards, we adopt TPE algorithm
in ensemble selection. We define a configuration space by
setting a parameter (λ(i)) for each model in model pool. In
each selection iteration, TPE returns the candidate parameters
λ =

{
λ(i)

}n

i=1
with the highest Expected Improvement (EI).

The EIy∗(λ) is formulated as Equation 3 and 4.

p(λ|y) =
{
`(λ) if y < y∗

g(λ) if y ≥ y∗ , (3)

where `(λ) is the density formed by using the parameters λ(i)

so that the corresponding loss yi is less than y∗, and g(λ) is
the density formed by using the remaining parameters. y∗ is

selected to be r-quantile of the observed y. By construction,
γ = p (y < y∗). Therefore,

EIy∗(λ) =
γy∗`(λ)− `(λ)

∫ y∗

−∞ p(y)dy

γ`(λ) + (1− γ)g(λ)

∝
(
γ +

g(λ)

`(λ)
(1− γ)

)−1

,

(4)

Finally, the average of ensembled model is calculated based
on the output of selected models from the model pool. When
λ(i) is equal to zero, the ith model is not selected. outi is
output of the ith model in the model pool. The output (out)
of ensembled model can be formulated as Equation 5.

out = (λ(1)out1 + · · ·+ λ(n)outn)/(λ
(1) + · · ·+ λ(n)). (5)

IV. EXPERIMENTS

During the experiments, the proposed architecture was
implemented using open source deep learning library Keras
[22] with the Tensorflow [23] back-end. The experiments were
executed on Icosa Core Intel(R) Xeon (R) E5-2670 CPU @
2.50 GHz. In order to focus on the transfer learning aspect and
minimize the model’s architecture and parameters involved,
the same LSTM architecture used in [24] was adopted for
the experiments. The LSTM architecture is composed of a
sequential input layer followed by two LSTM layers. The
LSTM layers have 128 and 64 units with Tanh activation. A
dense layer contains 16 units with ReLU activation and then
finally a output layer with linear activation function. Besides,
a Multi Layer Perceptron (MLP) model was designed based
on the architecture of LSTM. The architectures of MLP and
LSTM are shown in Figure 2(a) and 2(b). Both LSTM and
MLP are used in all experiments in this paper. We trained
LSTM and MLP model using 22 days (trading days in majority
of the stock markets are from Monday to Friday) for the look-
back and 1 day for the forecast horizon. Although we only
predict one time point in our experiments, our methods can
be extended to predict multiple time points [25] [26]. Deep
learning models in the proposed approach can be trained using
x days for the look-back and y days for the forecast horizon.

Dense (128 units)

Dense (64 units)

Dense (16 units)

Xt

Yt

(a) MLP

LSTM (128 units)

LSTM (64 units)

Dense (16 units)

Xt

Yt

(b) LSTM

Fig. 2: MLP and LSTM architectures

In this paper, existing forecasting methods are compared
against the proposed methods. These methods can be divided



into 4 categories. Except the first category WTL, all categories
are based on transfer learning model.

1) Without Transfer Learning (WTL): Training models
without transfer learning including Autoregressive In-
tegrated Moving Average (ARIMA), Support Vector
Regression (SVR), Multilayer Perceptron (MLP) and
Long Short-Term Memory (LSTM).

2) Single Best (SB): We use one source dataset to pre-
train MLP and LSTM and one target dataset to fine-tune
MLP and LSTM. Among the multi-source datasets, we
record the best single-source transfer results in MLP and
LSTM.

3) Multi-source MLP (MSM): We use multi-source datasets
to pre-train MLP and one target dataset to fine-
tune MLP. This category includes Multi-task Learning
(MTL), Average Ensemble (AE), Weighted Average
Ensemble for Transfer Learning (WAETL), Forward
Ensemble Selection (FES), and Tree-structured Parzen
Estimator Ensemble Selection (TPEES).

4) Multi-source LSTM (MSL): We use multi-source
datasets to pre-train LSTM and one target dataset to fine-
tune LSTM. This category includes Multi-task Learning
(MTL), Average Ensemble (AE), Weighted Average
Ensemble for Transfer Learning (WAETL), Forward
Ensemble Selection (FES), and Tree-structured Parzen
Estimator Ensemble Selection (TPEES).

a) Training without Transfer Learning:: For training
without transfer learning, we use Bayesian optimization to
select hyper-parameters of LSTM and MLP model and use
gird search to choose hyper-parameters of ARIMA and SVR.
For LSTM and MLP, we search hyper-parameters including
the number of epochs (E), learning rate (α), the size of
mini-batch (B) and optimizer (O) within the ranges of [100-
2000], [0-0.001], [16, 64, 128, 256, 512, 1024] and [Adam,
SGD, RMSProp], respectively. Adaptive Moment Estimation
(Adam), Stochastic Gradient Descent (SGD), RMSprop are
gradient descent optimization algorithms. The loss function
used in the experiment is Mean Square Error (MSE).

b) Training with Transfer Learning:: For training with
transfer learning, we use the LSTM and MLP architecture of
Roondiwala et al. [24] for forecasting. The hyper-parameters
of E, α, B and O are chosen via Bayesian optimization within
the ranges of [100-1000], [0.001-0.00001], [16, 64, 128, 256,
512, 1024] and [Adam, SGD, RMSProp], respectively. The
loss function used in the experiment is Mean Square Error
(MSE).

A. Datasets

Datasets used in the experiments are downloaded from
Yahoo Finance (https://finance.yahoo.com/). Three different
groups of datasets are selected. They are listed in Table I.
G1 is the stocks of banks in Hang Seng Index (HSI) which
includes HSBC, HSB, CCB, BOCHK, BOCOM and BOC as
source datasets and ICBC as target dataset. G2 is the health
related stocks which includes MRK, NVS, PFE and UNH as
source datasets and JNJ as target dataset. G3 is the energy

related stocks which includes CVX, RDS-B, TOT and XOM
as source datasets and PTR as target dataset. The range of all
stocks from the datasets are from 2015 to 2019.

Group Full Name Short Name
The Hongkong and Shanghai Banking Corporation HSBC
Hang Seng Bank Limited HSB

G1 China Construction Bank Corporation CCB
Bank of China (Hong Kong) Limited BOCHK
Bank of Communications Co., Ltd BOCOM
Bank of China Limited BOC
Industrial and Commercial Bank of China ICBC
Merck & Co., Inc. MRK

G2 Novartis AG NVS
Pfizer Inc. PFE
UnitedHealth Group Incorporated UNH
Johnson & Johnson JNJ
Chevron Corporation CVX

G3 Royal Dutch Shell PLC RDS-B
TOTAL S.A. TOT
Exxon Mobil Corporation XOM
PetroChina Company Limited PTR

TABLE I: Datasets Used in the Experiments

In the experiments, time series data have been preprocessed
before they are fed into supervised learning model. First, time
series dataset are transformed into acceptable dataset format.
The input vector x consists of 22-day historical close price
of stock: x = [p(t), . . . , p(t−21)] and the output vector y
consists of 1-day stock price from time t: y = pt+1. We
use min-max scaler to rescale the time series data in [-1, 1]
interval. In the experiments, we used 60%, 20% and 20% of
the target dataset for training, validating and testing. After
the learning process, the output of the model are inverse-
normalized before computing the indicators. In this paper, we
choose three classical indicators (MAPE, RMSE and R2)
to measure the predictive accuracy of each model. MAPE
measures the size of the error. RMSE is the mean of the
square root of the error between the predicted value and the
true value. R2 is used for evaluating the fitting situation of
the prediction model. The lower the MAPE and RMSE,
the better the model in forecasting. In contrast, higher the R2,
better the trained model.

B. Error comparison

In the experiments, we compare our proposed multi-source
transfer learning WAETL and TPEES with other different
forecasting methods. The experiment results are listed in Table
II. The proposed methods are listed in bold letters.

From these results, we can observe that ARIMA is not
suitable for financial time series forecasting because it always
obtains the worst performance. We can also observe that the
performance of MLP and LSTM are better than ARIMA and
SVR in most of the cases. Besides, models with transfer
learning have significant impact on time series forecasting
in most of cases. However, in some situation, we can find
that the results of LSTMs in Single Best (SB) and Multi-
source category are worse than LSTM in Without Transfer
Learning (WTL) category. This situation is often labeled as
negative transfer learning [14]. In G1 and G2, we can also
observe that results of models in multi-source category are
better than models from single best category. In addition, we

https://finance.yahoo.com/


Group Category Model MAPE RMSE R2

ARIMA 4.7079 0.3300 -0.2965
Without Transfer SVR 0.9739 0.0746 0.9347
Learning (WTL) MLP 1.0326 0.0783 0.9282

LSTM 0.9499 0.0738 0.9362
Single MLP 0.9495 0.0733 0.9371
Best (SB) LSTM 0.9059 0.0707 0.9416

MTL 1.0027 0.0767 0.9312
Multi- AE 0.9448 0.0732 0.9373

G1 source WAETL 0.9297 0.0720 0.9394
MLP (MSM) FES 0.9282 0.0718 0.9398

TPEES 0.9186 0.0715 0.9402
MTL 0.9375 0.0734 0.9371

Multi AE 0.8977 0.0710 0.9410
source WAETL 0.8962 0.0710 0.9410
LSTM (MSL) FES 0.8980 0.0710 0.9411

TPEES 0.8888 0.0705 0.9419
ARIMA 6.4239 10.4424 -2.9508

Without Transfer SVR 1.1149 2.1166 0.8381
Learning (WTL) MLP 0.9268 1.8342 0.8774

LSTM 0.8201 1.7115 0.8932
Single MLP 0.8401 1.6858 0.8964
Best (SB) LSTM 0.8176 1.7116 0.8932

MTL 0.8447 1.7452 0.8890
Multi- AE 0.8168 1.6862 0.8964

G2 source WAETL 0.8663 1.7470 0.8888
MLP (MSM) FES 0.8109 1.6713 0.8982

TPEES 0.8083 1.6693 0.8984
MTL 1.5821 2.7568 0.7230

Multi- AE 0.8892 1.7220 0.8919
source WAETL 0.8637 1.7064 0.8939
LSTM (MSL) FES 0.8488 1.6984 0.8949

TPEES 0.8373 1.6930 0.8955
ARIMA 18.7188 11.4203 -0.9829

Without Transfer SVR 3.5668 2.6927 0.8853
Learning (WTL) MLP 2.6026 1.8314 0.9463

LSTM 1.4969 1.1651 0.9783
Single MLP 1.4233 1.1215 0.9799
Best (SB) LSTM 1.6093 1.2128 0.9764

MTL 1.7025 1.2763 0.9739
Multi- AE 1.6940 1.2672 0.9743

G3 source WAETL 1.8794 1.3879 0.9691
MLP FES 1.5585 1.1895 0.9773
(MSM) TPEES 1.5217 1.1692 0.9781

MTL 2.2074 1.6122 0.9584
Multi- AE 1.7058 1.2777 0.9738
source WAETL 1.7620 1.3234 0.9719
LSTM (MSL) FES 1.7114 1.2807 0.9737

TPEES 1.7042 1.2754 0.9739

TABLE II: Experiment Results for Different Forecasting Methods

can observe that results of WAETL are worse than results of
TPEES. It is possible that the performance of some models
in the model pool is indeed poor, resulting in a inferior
WAETL model. Furthermore, the similarity of source and
target dataset calculated by the distance function may not be
accurate. However, in TPEES, poor models in model pool may
be not selected since TPEES model selection is based on their
impact on the ensembled model. All in all, TPEES achieves
the best results in majority of the cases.

To further investigate the performance of the proposed
approaches, we conduct more detailed experiments on dataset
G1. In this experiment, we use each stock in G1 as a target
dataset and the rest of the stocks as source datasets. The
experiment results are listed in Table III, IV, V, VI, VII and
VIII. From these results, we found that models in multi-source
MLP, multi-source LSTM and single best category are better
than models from Without Transfer Learning category in most
of the cases. In Table III (HSBC), Table VI (BOCHK), Table
VIII (BOCOM), Table VII (BOC), the performance of MTLs
in multi-source (MLP) is better than in multi-source LSTM.
Besides, the best results are found in multi-source MLP and

multi-source LSTM category. TPEES also achieves best results
in Table III (HSBC), Table V (CCB), Table VI (BOCHK), and
Table VII (BOC).

Category Model MAPE RMSE R2

ARIMA 3.9042 3.0650 -0.7349
Without Transfer SVR 0.8782 0.7509 0.8945
Learning (WTL) MLP 0.8264 0.7260 0.8999

LSTM 0.7481 0.6649 0.9160
Single MLP 0.7737 0.6801 0.9121
Best (SB) LSTM 0.7335 0.6552 0.9185

MTL 0.7476 0.6568 0.9181
Multi- AE 0.7480 0.6565 0.9181
source WAETL 0.7554 0.6633 0.9164
MLP (MSM) FES 0.7516 0.6598 0.9173

TPEES 0.7486 0.6554 0.9184
MTL 0.7930 0.6959 0.9080

Multi- AE 0.7502 0.6654 0.9159
source WAETL 0.7348 0.6567 0.9181
LSTM (MSL) FES 0.7509 0.6666 0.9156

TPEES 0.7307 0.6536 0.9189

TABLE III: Experiment Results for HSBC as Target Dataset and
HSB, CCB, BOCHK, BOCOM, BOC, ICBC as Source Datasets

Category Model MAPE RMSE R2

ARIMA 14.9583 30.5365 -5.6414
Without Transfer SVR 1.3342 3.2411 0.9236
Learning (WTL) MLP 1.3209 3.2278 0.9235

LSTM 1.2924 3.2787 0.9211
Single MLP 0.9053 2.3615 0.9591
Best (SB) LSTM 0.8928 2.3208 0.9605

MTL 0.9335 2.3783 0.9585
Multi- AE 0.9250 2.3707 0.9587
source WAETL 0.8922 2.3408 0.9598
MLP (MSM) FES 0.8910 2.3061 0.9610

TPEES 0.8970 2.3165 0.9606
MTL 0.9177 2.3681 0.9588

Multi- AE 0.8856 2.3079 0.9609
source WAETL 0.9090 2.3551 0.9593
LSTM (MSL) FES 0.8879 2.3221 0.9604

TPEES 0.8854 2.3157 0.9606

TABLE IV: Experiment Results for HSB as Target Dataset and
HSBC, CCB, BOCHK, BOCOM, BOC, ICBC as Source Datasets

Category Model MAPE RMSE R2

ARIMA 4.9897 0.3834 -0.1024
Without Transfer SVR 0.9828 0.0856 0.9459
Learning (WTL) MLP 1.0673 0.0917 0.9379

LSTM 0.9026 0.0826 0.9497
Single MLP 0.9294 0.0837 0.9483
Best (SB) LSTM 0.9089 0.0824 0.9498

MTL 1.0564 0.0898 0.9404
Multi- AE 0.9280 0.0828 0.9494
source WAETL 0.9509 0.0844 0.9474
MLP (MSM) FES 0.9201 0.0836 0.9483

TPEES 0.9115 0.0827 0.9495
MTL 0.9405 0.0839 0.9481

Multi- AE 0.9175 0.0824 0.9499
source WAETL 0.9177 0.0823 0.9500
LSTM (MSL) FES 0.9151 0.0820 0.9504

TPEES 0.9157 0.0819 0.9504

TABLE V: Experiment Results for CCB as Target Dataset and HSBC,
HSB, BOCHK, BOCOM, BOC, ICBC as Source Datasets

C. Evaluation of distance functions

In this paper, we proposed two ensemble methods for multi-
source transfer learning. TPEES selects models based on the
performance of models and does not calculate the similarity
between source and target datasets. However, in WAETL, the



Category Model MAPE RMSE R2

ARIMA 21.2078 7.0005 -7.1548
Without Transfer SVR 1.5240 0.6362 0.9298
Learning (WTL) MLP 1.4428 0.5976 0.9367

LSTM 1.2458 0.5461 0.9471
Single MLP 1.1838 0.4889 0.9576
Best (SB) LSTM 1.0467 0.4632 0.9619

MTL 1.2201 0.5309 0.9500
Multi- AE 1.0866 0.4788 0.9593
source WAETL 1.0822 0.4757 0.9599
MLP (MSM) FES 1.0708 0.4759 0.9598

TPEES 1.0612 0.4700 0.9608
MTL 1.7555 0.7371 0.9036

Multi- AE 1.0551 0.4675 0.9612
source WAETL 1.0298 0.4673 0.9613
LSTM (MSL) FES 1.0440 0.4618 0.9622

TPEES 1.0369 0.4613 0.9623

TABLE VI: Experiment Results for BOCHK as Target Dataset and
HSBC, HSB, CCB, BOCOM, BOC, ICBC as Source Datasets

Standards Model MAPE RMSE R2

ARIMA 5.7815 0.2410 -0.4019
Without Transfer SVR 0.9247 0.0435 0.9551
Learning (WTL) MLP 0.8520 0.0415 0.9593

LSTM 0.7812 0.0397 0.9628
Single MLP 0.8629 0.0409 0.9604
Best (SB) LSTM 0.7825 0.0395 0.9632

MTL 0.8393 0.0410 0.9602
Multi- AE 0.8612 0.0412 0.9599
source WAETL 0.8483 0.0406 0.9611
MLP (MSM) FES 0.8358 0.0405 0.9612

TPEES 0.8349 0.0404 0.9614
MTL 2.3387 0.1085 0.7218

Multi- AE 0.7795 0.0394 0.9633
source WAETL 0.7866 0.0395 0.9632
LSTM (MSL) FES 0.7759 0.0394 0.9632

TPEES 0.7766 0.0393 0.9634

TABLE VII: Experiment Results for BOC as Target Dataset and
HSBC, HSB, CCB, BOCHK, BOCOM, ICBC as Source Datasets

Category Model MAPE RMSE R2

ARIMA 10.4469 0.7643 -2.5990
Without Transfer SVR 0.9039 0.0808 0.9597
Learning (WTL) MLP 0.9998 0.0860 0.9545

LSTM 0.9684 0.0856 0.9549
Single MLP 0.9640 0.0819 0.9587
Best (SB) LSTM 0.9024 0.0798 0.9608

MTL 0.9668 0.0830 0.9576
Multi- AE 0.9198 0.0803 0.9603
source WAETL 0.9885 0.0846 0.9559
MLP (MSM) FES 0.9265 0.0806 0.9600

TPEES 0.9449 0.0817 0.9589
MTL 1.3794 0.1196 0.9119

Multi- AE 0.9087 0.0797 0.9609
source WAETL 0.9525 0.0822 0.9584
LSTM (MSL) FES 0.9218 0.0804 0.9602

TPEES 0.9116 0.0797 0.9608

TABLE VIII: Experiment Results for BOCOM as Target Dataset and
HSBC, HSB, CCB, BOCHK, BOC, ICBC as Source Datasets

similarity between source and target datasets is used as weight.
Therefore, in addition to the error comparison, we further
investigate the performance of different distance functions
which are used for calculating the weights in WAETL. In this
experiment, we compare the result of WAETL when different
distance functions are used. These algorithms include CORre-
lation ALignment (CORAL) loss [16], Wasserstein Distance
(WD) [17], Dynamic Time Warping (DTW) [18], and Pearson
Correlation Coefficient (PCC) [19]. The results are listed in
Table IX, X, and XI.

From the MAPE results (Table IX), we can observe that

Dt
WAETL MLP

Coral WD DTW PCC
HSBC 0.7554 0.7434 0.7497 0.7485
HSB 0.8922 0.9128 0.9046 0.9080
CCB 0.9509 0.9293 0.9175 0.9239
ICBC 0.9298 0.9499 0.9368 0.9417

BOCHK 1.0822 1.0701 1.0741 1.0715
BOCOM 0.9885 0.9194 0.9404 0.9367

BOC 0.8483 0.8371 0.8353 0.8354

Dt
WAETL LSTM

Coral WD DTW PCC
HSBC 0.7348 0.7410 0.7415 0.7484
HSB 0.9090 0.8854 0.8862 0.8864
CCB 0.9177 0.9163 0.9146 0.9161
ICBC 0.8962 0.8945 0.8950 0.8969

BOCHK 1.0298 1.0413 1.0428 1.0427
BOCOM 0.9525 0.9155 0.9139 0.9117

BOC 0.7866 0.7776 0.7811 0.7825

TABLE IX: MAPE of Different Distance Functions Used in
WAETL.

Dt
WAETL MLP

Coral WD DTW PCC
HSBC 0.6633 0.6576 0.6593 0.6569
HSB 2.3408 2.3477 2.3416 2.3454
CCB 0.0844 0.0836 0.0828 0.0827
ICBC 0.0720 0.0736 0.0728 0.0730

BOCHK 0.4757 0.4727 0.4724 0.4723
BOCOM 0.0846 0.0806 0.0814 0.0812

BOC 0.0406 0.0406 0.0405 0.0405

Dt
WAETL LSTM

Coral WD DTW PCC
HSBC 0.6567 0.6598 0.6606 0.6645
HSB 2.3551 2.3086 2.3091 2.3097
CCB 0.0823 0.0825 0.0825 0.0824
ICBC 0.0710 0.0709 0.0709 0.0710

BOCHK 0.4673 0.4637 0.4644 0.4648
BOCOM 0.0822 0.0801 0.0802 0.0801

BOC 0.0395 0.0393 0.0394 0.0394

TABLE X: RMSE of Different Distance Functions Used in WAETL.

Dt
WAETL MLP

Coral WD DTW PCC
HSBC 0.9164 0.9179 0.9174 0.9180
HSB 0.9598 0.9595 0.9597 0.9596
CCB 0.9474 0.9483 0.9495 0.9494
ICBC 0.9394 0.9367 0.9381 0.9377

BOCHK 0.9599 0.9604 0.9604 0.9605
BOCOM 0.9559 0.9600 0.9592 0.9594

BOC 0.9611 0.9611 0.9611 0.9612

Dt
WAETL LSTM

Coral WD DTW PCC
HSBC 0.9181 0.9173 0.9171 0.9161
HSB 0.9593 0.9609 0.9609 0.9608
CCB 0.9500 0.9497 0.9498 0.9499
ICBC 0.9410 0.9412 0.9413 0.9411

BOCHK 0.9613 0.9619 0.9618 0.9617
BOCOM 0.9584 0.9605 0.9604 0.9605

BOC 0.9632 0.9633 0.9632 0.9632

TABLE XI: R2 of Different Distance Functions Used in WAETL.

Coral obtains the best results four times, WD achieves six
times, DTW achieves three times and PCC achieves once.
From the RMSE results (Table X), Coral obtains the best
results four times, WD achieves five times, DTW achieves
none, and PCC achieves five times. From the R2 results (Table
XI), Coral obtains the best results four times, WD achieves five
times, DTW achieves two times and PCC achieves three times.
Although we find that WD and Coral do not always produce
the best results, they are the most stable and robust among all



the tested functions. Therefore, we can conclude that utilizing
WD and Coral to calculate the weights for WAETL can get
lower MAPE, lower RMSE and higher R2 in time series
forecasting.

V. CONCLUSION

In this paper, we propose two multi-source transfer learning
methods namely Weighted Average Ensemble for Transfer
Learning (WAETL) and Tree-structured Parzen Estimator En-
semble Selection (TPEES). Extensive experiments are con-
ducted to compare the performance of the proposed ap-
proaches with other competing methods. The experiment re-
sults reveal that TPEES achieves best result in most of the
cases. In addition, we further analyze the impact of four
similarity functions for multi-source transfer learning. We
found that WD and Coral distance functions achieve favorable
results when they are used for calculating the weights in
WAETL approach. The main contributions of this paper are
as follows. First, the proposed approaches allow the effective
use of multiple source datasets for training in financial time
series forecasting. In other words, the proposed approaches
effectively solve the insufficient training data problem in
developing deep learning models for financial domain. Second,
our approach demonstrates that multi-source transfer learning
can be applied to exploit the correlation among stocks from
the same industry. Third, our evaluation on using different
distance functions can be used as a guideline for calculating
the distance among sources in instance based multi-source
transfer learning. As for the future work, we are planning to
extend our models to take into account negative correlation
and other technical indicators from stock market data.
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