
Routing with uncertainty in the position of the

destination

Evangelos Kranakis∗, Danny Krizanc†, Lata Narayanan‡, Anup Patnaik§, Sunil Shende¶

∗School of Computer Science
Carleton University, Ottawa, Canada

†Dept. of Mathematics & Computer Science

Wesleyan University, Connecticut, USA
‡Dept. of Computer Science & Software Engineering

Concordia University, Montreal, Canada
§Dept. of Computer Science & Software Engineering

Concordia University, Montreal, Canada
¶Dept. of Computer Science

Rutgers University, Camden, New Jersey, USA

Abstract— Position-based routing algorithms for mobile ad hoc
networks utilize the position or location of the destination node to
inform routing decisions. We consider the problem of routing in
an ad hoc network where the source node knows the approximate
position of the destination node, but is uncertain about its exact
current location. We investigate two approaches to this problem:
one, based on a traversal of the faces of a planar sub-graph

of the graph representing the network, and the second, based
on flooding a limited area of the graph that represents the
region the destination is likely to be found. We propose several
variants of both approaches, and do extensive simulations to
analyze the performance of the algorithms. Our results indicate
that a simple modification of the basic flooding approach yields
the best trade-off for optimizing delivery rate, stretch factor, as
well as transmission cost. If however, delivery is required to be
guaranteed, then a variant of the face tree approach in [1] that
we propose has the best performance.

Keywords: Wireless networks, ad hoc networks, MANET,

routing, geocasting, face traversal, flooding, greedy routing.

I. INTRODUCTION

Mobile ad-hoc networks (MANETs) have been the subject

of intensive research in the last few years. A MANET is

characterized by the lack of fixed network infrastructure. Hosts

in the network can be mobile, and can communicate using

wireless broadcasts with other hosts within their transmission

range. Since all hosts may not be within the transmission range

of each other, a protocol for multi-hop routing is required to

ensure communication between any two hosts in a MANET.

In general, the routing protocol cannot make any assumptions

about the topology of the network, and so, mobile hosts have

to build and update their routing tables automatically. If no

assumption can be made about the location of the hosts in

the network, routing protocols use a type of flooding of the

network by control packets to obtain information about the

network topology and to guarantee the delivery of messages

[2], [3].

To reduce the amount of control traffic in MANETs, several

authors have proposed the use of host location information [4],

[5], [6], [7], [8]. We refer to the problem of routing from

a source node s to a destination node d at position p by

ROUTE(s, d, p). Algorithms that solve this problem are often

called position-based routing algorithms. A survey of such

algorithms can be found in [9]. In such algorithms, every node

in the network is assumed to know the locations of itself and

its neighbors. In addition, the position of the destination host

is known to the source node, and is made available in the

packet header. These algorithms limit the extent of flooding,

but generally do not guarantee delivery. For instance, there are

several scenarios where greedy routing [10], compass routing

[11], or their combination are known to fail. One position-

based algorithm that does guarantee delivery in a MANET is

face routing, in which a planar sub-graph of the network is

constructed locally, after which routing is performed using the

right-hand rule to traverse those faces of the planar subgraph

which are intersected by the line segment connecting the

source to the destination [11]. Face routing can sometimes

lead to very long paths in the graph. Bose et al. [5] propose

a combination of greedy and face routing called GFG (also

proposed by [6] as the GPSR routing protocol) that guarantees

delivery of packets at the same time as reducing the length of

paths.

All the routing algorithms above assume the use of exact

location information about the destination node. This infor-

mation can be obtained using a location service [12], or from

messages previously received from the destination. But in

both these cases, there can be inaccuracies in the position

information. In the presence of such inaccuracies, the routing

algorithm may have reduced rate of delivery. In particular, face

routing can no longer guarantee delivery.

In this paper, we assume that the source node s knows

the destination node d’s position (x0, y0) at time t0, but is

interested in sending a packet to d at time t1 where t1 > t0.

If the maximum velocity of node d is v units per second,

then the position of d at time t1 is a point inside the circle

with center (x0, y0) and radius v(t1−t0) units. This motivates

the problem of routing with uncertainty in the position of the

- 9 -

1-4244-0495-9/06/$20.00 ©2006 IEEE

l

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

s

dp

q

t

�
�
�
�

Fig. 1. An example where flooding within the uncertainty circle fails

destination. Instead of routing to a specific destination at a

known position (x, y), we are interested in routing to a specific

destination whose position is somewhere inside a circle with

known center and radius. We refer to the problem of routing

from a source node s to a destination node d contained in the

circle of radius r centered at position p as ROUTE-U(s, d, p, r)

and r as the uncertainty radius.

Related work

An obvious approach to solve ROUTE-U(s, d, p, r) is to use

an algorithm to perform ROUTE(s, d, p), with an augmentation

to stop if the destination node is found anywhere enroute.

Since the destination may no longer be at position p, and

may not be encountered enroute to the position p, the message

may not be delivered. A second approach would be to ignore

the imprecise location information and simply flood the entire

network, but as stated above, this is resource-inefficient.

The problem of routing with uncertainty in the position

of the destination is similar to, and is subsumed by, the

problem of geocasting, where the objective is to route to all

nodes in a given geographical region. Such an application may

be especially relevant to sensor networks, where it may be

necessary to broadcast a message to all nodes in a specific

geographical area. In [13], the authors use a form of directed

flooding, where packets are only forwarded in a rectangular

zone defined as the smallest such region containing both the

source and the geocast region. The authors of [14] give an

algorithm which consists of reaching a node q contained in

the circle with radius r centered at p, and then flooding all

nodes contained in the circle. This approach also does not

guarantee delivery, since it is possible that every path from

q to d contains nodes outside the circle to which flooding is

limited. See Figure 1 for an illustration of this phenomenon.

In [15], an algorithm that performs a traversal of a planar

graph in O(n2) steps is given. The algorithm is based on

constructing and traversing a tree of the faces of the planar

graph. This was improved in [1], to an algorithm that can be

used for geocasting with guaranteed delivery in a MANET

in O(n log n) steps [5]. An important point to note is that

these algorithms are memoryless, that is, no routing state

needs to be stored at nodes, and no additional information

needs to be carried in the packet. Recently, Stojmenovic [16]

gives two additional algorithms for geocast that guarantee

delivery. The first algorithm is essentially flooding inside the

circle, augmented by face traversals initiated by inside border

nodes; this approach was also outlined in [14]. In the second

algorithm, the packet is sent simultaneously to a grid of points

just outside the circle, which then initiate flooding inside the

circle.

Our contributions

In this paper, we investigate the performance of flooding-

based and face-tree traversal-based approaches to the prob-

lem of routing with uncertainty. To this end, we propose

several variants of both basic flooding and the face tree

traversal algorithm given in [1], [5]. Based on their memory

requirements, we classify the algorithms into memoryless,

constant memory and non-constant memory. The memoryless

algorithms do not maintain any routing state at the nodes.

The constant memory algorithms require constant amount of

memory at every node for maintaining routing state. The non-

constant memory algorithms require non-constant memory for

the routing state at every node. In all algorithms, we assume

that we are allowed to include O(log n) bits of information in

the header of the packet for routing purposes.

We study the effect of the number of nodes and the size of

the uncertainty radius on the delivery rate, stretch factor, and

the transmission cost of the algorithms. The delivery rate is

the percentage of packets that get transmitted successfully to

the destination. The stretch factor is the number of hops taken

by a packet compared to the minimum hop path available in

the network, averaged over all successfully delivered packets.

The transmission cost is the ratio of total number of times that

copies of the packet get transmitted in the course of successful

delivery of the packet to the number of transmissions in the

minimum hop path, averaged over all successfully delivered

packets. It is a measure of the energy costs of the algorithm.

While face tree traversal-based approaches are guaranteed

to deliver the packets, flooding-based approaches may fail in

some cases. On the other hand, flooding can be expected

to have much better stretch factor. These general trends are

confirmed by our experimental results. The surprising findings

of our experiments are listed below:

• Flooding-based algorithms show an interesting behavior

whereby the delivery rate first decreases and then in-

creases as the uncertainty radius increases. We give an

explanation for this in Section III.

• A simple augmentation of flooding, that we call EX-

TENDED SN FLOODING , achieves very high delivery

rate, at the same time as achieving very low stretch factor,

and a drastically reduced transmission cost.

- 10 -

• While the accepted wisdom is that flooding is very

resource-inefficient, and would have a high transmission

cost, our results show that some variations of the face

tree approach, including the version given in [5] have

a very high transmission cost as well. Indeed, there

is considerable overlap between the transmission cost

profiles of the two approaches. In particular, the cheapest

algorithms among the ones studied are EXTENDED SN

FLOODING and SN FLOODING , while the two most

expensive algorithms are face-tree based algorithms.

• The difference between geocasting and ROUTE-U is

highlighted by the fact that a technique that provably im-

proves the performance for geocasting appears to degrade

the performance for ROUTE-U.

• The original face tree based approach is memoryless as

compared to the flooding-based approaches which require

a constant amount of routing state at nodes. However,

an obvious modification of FACE TREE that uses extra

memory does not yield much benefit. In particular, its

performance is still worse than the best flooding approach

in our experiments.

Organization of the paper

In Section II, we present the algorithms we propose to study

in this paper. Section III gives our experimental results, and

we conclude with some discussion in Section IV.

II. THE ALGORITHMS

In this section, we describe several algorithms to solve the

problem ROUTE-U(s, d, p, r). We assume that the network can

be represented by a unit disk graph (UDG). For convenience,

we refer to the circle of radius r centered at p as the

uncertainty circle and r as the uncertainty radius. All our

algorithms have two phases. In the first phase, we attempt

to reach any node in the uncertainty circle. Any algorithm

can be used for this; in our experiments, we use the GFG

algorithm proposed in [5] to solve the problem ROUTE(s, d, p).

We follow the path given by this algorithm until we reach a

node, say q, inside the uncertainty circle. In the second phase,

we attempt to find a path from q to d, using either a face

tree traversal based approach or a flooding-based approach

as described below. In the following, for each algorithm, the

worst-case complexity is given as a function of n, the number

of nodes in the network, and is an upper bound on the number

of hops traversed during the second phase of the algorithm.

Detailed pseudocode for all algorithms can be found in [17].

A. Face Tree Traversal Approaches

The geocasting algorithm given in [5] employs GFG routing

on the problem ROUTE(s, d, p) until reaching a node inside

the circle. At this point, it constructs a tree of all the faces

intersecting and contained in the region, and traverses the tree

in depth first order as described in [1]. The traversal of the

face tree is followed until returning back to the start edge. This

algorithm can clearly be used to solve the problem ROUTE-

U(s, d, p, r).

s’

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

b

a

1 2

3

4

56

7

8

�
�
�
�

Fig. 2. An example showing the face tree for a planar graph with (a, b) as
the start edge. The arrows moving from child to parent face, passing through
the entry edges, represent the edges of the face tree.

Since some of the variants of this algorithm that we describe

depend on further details of the face traversal algorithm, we

give them here. We start with an arbitrary fixed point s′ in

the plane. Every face has a unique entry edge, which is the

edge that minimizes a certain function f over all edges in the

face. A first approximation of this function f is the distance

from the edge to the point s′. In [1], Bose and Morin define

a relationship on the faces of the planar graph using the entry

edges. For any face f they define its parent f ′ as the other face

that the entry edge for f belongs to. Based on this relationship

they define a face tree as the spanning tree of all the faces of

the graph. A traversal of the face tree then would result in

visiting all the nodes in the graph. An example showing the

face tree of a planar graph can be seen in Figure 2.

Bose and Morin also give an innovative doubling approach

to determine if a given edge e is the entry edge. Essentially,

starting with d = 1, we traverse d edges to the left of e, then

2d edges to its right, and so on, until an edge e′ is encountered

such that f(e′) < f(e) (which confirms that e is not the entry

edge), or until we are sure that all edges of the face have been

seen (which confirms that e is the entry edge).

We proceed to describe several variants of the above algo-

rithm. All these algorithms utilize only the edges of planar

subgraph of the unit disk graph representing the network. In

our simulations we use the Gabriel Graph algorithm [18] for

planarization. This algorithm computes the edges belonging to

the planar subgraph incident on a given node in constant time

using only local information.

1) DOUBLING FACE TREE : This is essentially the algo-

rithm for geocasting given in [1], modified to stop as soon

as the destination is encountered. To reduce the stretch factor,

we make another slight change to the algorithm. We store the

entry edge for the current face in the packet once it is found.

Hence, the entry edge need not be computed again as long as

we traverse the same face. For the example in Figure 2, the

faces are traversed in the order 1, 2, 3, 4, 3, 8, 3, 2, 5, 2,

1, 6, 7, 6, 1. This algorithm is memoryless with a worst-case

complexity of O(n log n).

- 11 -

s’�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

s

p

q

d

r

1

2

3

4

5

u

v

��
��
��

��
��
��

Fig. 3. An example where the path taken by DOUBLING FACE TREE is much
longer than that taken by DFS FACE TREE .

2) DFS FACE TREE : In the DFS FACE TREE algorithm,

the faces of the planar graph are traversed in the same

order as in the DOUBLING FACE TREE algorithm. However,

the entry edge computation is different. In the DFS FACE

TREE algorithm, to determine if a given edge is the entry edge,

we simply do a left-hand based traversal of the entire face as

in [15]. As in the DOUBLING FACE TREE algorithms, we store

the entry edge for the current face in the packet to avoid doing

the same computation a second time. This algorithm is also

memoryless and has a worst-case complexity of O(n2).
Interestingly, as our experimental results show, there are

many situations where DFS FACE TREE has smaller stretch

factor than the DOUBLING FACE TREE algorithm. The reason

is that DFS FACE TREE can sometimes end up encountering

the actual destination while simply doing its entry edge com-

putation, which involves traversing the entire face. Note that

when used for geocasting, DFS FACE TREE can never have a

better performance than the DOUBLING FACE TREE algorithm.

An example of this phenomenon is shown in Figure 3. The

start edge is (q, r). DFS FACE TREE finds the destination

d while checking if (q, v) is an entry edge for face 4,

while visiting face 2. On the other hand, DOUBLING FACE

TREE quickly determines that (q, v) is not the entry edge

for face 4, therefore visits face 2 then returns to face 1 then

visits face 3 then returns to face 1 and now while checking if

edge (u, q) is an entry edge for the opposite face it finds the

destination d. For this example, the length of the path found

by DOUBLING FACE TREE is 56 hops while that found by

DFS FACE TREE is 14 hops.

3) MARK ENTRY EDGE FACE TREE : In this version of

face tree traversal, faces are traversed in the same order as in

the previous two algorithms, but the entry edge computation is

different. In the MARK ENTRY EDGE FACE TREE algorithm,

first-time entry edge computation is done in the same way as

in the DFS FACE TREE algorithm, that is, by traversing the

entire face. At this point, however, we mark the entry edge.

This means the next time we enter the face, we do not need to

do the entry edge computation, which potentially decreases the

number of hops required. Hence, as shown in Figure 2, when

the packet returns to face 3 from face 4, the entry edge for the

face has already been computed and saved. This is unlike the

DOUBLING FACE TREE and the DFS FACE TREE algorithms

where the entry edge will need to be computed again. The

marking of the entry edges requires storing of O(d) routing

state at the nodes, where d is the maximum degree of a node.

The worst-case time complexity is O(n).
4) BFS FACE TREE : In this algorithm, the face tree is

traversed in breadth first order. For the example in Figure 2.

the faces are traversed in the order 1, 2, 1, 6, 1, 2, 3, 2, 5, 2, 1,

6, 7, 6, 1, 2, 3, 4, 3, 8, 3, 2, 1. This algorithm is memoryless

but requires a queue with the addresses of O(n) nodes to be

carried around in the packet. The worst-case complexity is

O(n3).
5) ‖-FACE TREE : This is a parallelized version of the

Face Tree algorithm. While traversing a face, if a given edge

is the entry edge for the opposite face, then another copy

of the packet is spawned to explore that face. Each packet

continues the traversal until either finding the destination or

until completing the traversal of a face. For the example in

Figure 2, first face 1 is traversed, then faces 2 and 6 in parallel,

then faces 3 and 5 in parallel, and finally faces 7, 4 and 8 in

parallel. The algorithm is memoryless and has a stretch factor

of O(n) in the worst case.

B. Flooding-based approaches

In all the flooding-based algorithms, we follow the same

path as GFG routing on the problem ROUTE(s, d, p), until a

node inside the region is reached. This node then broadcasts

the packet to all its 1-hop neighbors. Any node receiving

this packet broadcasts it if and only if it lies inside the

region. Any further copies of the packet are ignored. Also, in

flooding-based algorithms, unlike the face tree traversal-based

algorithms, all the edges in the unit disk graph are traversed.

In all the flooding-based approaches, a unique identifier

corresponding to the packet to be flooded must be stored

at each node, to prevent re-transmission of the same packet

ad infinitum. This requires a per packet constant memory of

routing state to be maintained at the nodes. In the cases when

the packet is delivered, the algorithm always finds the shortest

path in the second phase.

1) AN FLOODING: We call the basic algorithm described

above All-neighbor (AN) Flooding.

2) SN FLOODING : The difference between Subset Neigh-

bor (SN) Flooding and AN Flooding is that nodes inside the

region, instead of broadcasting the packet to all 1-hop neigh-

bors, forward it to only a subset of 1-hop neighbors whose

neighbors in turn include all 2-hop neighbors of the original

node. Computing a minimal subset of such 1-hop neighbors is

known to be an NP-complete problem for arbitrary graphs, but

its complexity for unit disk graphs is unknown [19]. Hence we

use a greedy algorithm to compute the subset: we iteratively

select a 1-hop neighbor that covers the maximum number of

- 12 -

l

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
���

�
�
�

s

p

q

d

r

tm

n o

��
��
��

��
��
��

Fig. 4. An example where SN FLOODING within the uncertainty circle fails
but AN FLOODING succeeds.

2-hop neighbors (in the uncertainty region) not yet covered,

and stop when all 2-hop neighbors have been covered.

The SN FLOODING algorithm reduces the transmission cost

by restricting flooding of packets, however, it fails to deliver

the packet in some situations where AN FLOODING succeeds.

As seen in Figure 4, the only path from s to d goes via the

node t. However, the SN FLOODING algorithm would not send

the packet to node t, which results in a failure of delivery. In

contrast, in AN FLOODING all nodes inside the region flood

to all their neighbors. Hence, the packet would be sent to t
which in turn would deliver it to d, its 1-hop neighbor.

3) EXTENDED AN FLOODING: In order to discover paths

to the destination, we extend the region of flooding by a

constant value in this algorithm. Extended AN Flooding on

the problem ROUTE-U(s, d, p, r) is identical to flooding on the

problem ROUTE-U(s, d, p, r + λ) where λ is the transmission

radius of nodes. Therefore, in Figure 1, the packet will be sent

to nodes l and t thereby reaching the destination d.

4) EXTENDED SN FLOODING : In this algorithm, we

extend the uncertainty radius of SN FLOODING . That is,

Extended SN Flooding on the problem ROUTE-U(s, d, p, r) is

the same as SN Flooding on the problem ROUTE-U(s, d, p, r+
λ).

III. SIMULATION RESULTS

To evaluate the relative performance of these algorithms we

will consider their packet delivery rates, stretch factors, and

transmission costs. We first describe our simulation environ-

ment, and then describe and interpret our results, comparing

our algorithms with each other.

A. Simulation Environment

In the simulation experiments, a set S of n points (where

n ∈ {75, 100, 125}) is randomly generated on a rectangle

of 800m by 700m. For the transmission range λ of nodes,

we use 120m. After generating G = UDG(S), a source and

destination node is randomly chosen. If there is no path from s
to d in UDG(S), the graph is discarded; otherwise, all routing

algorithms are applied on G. This process is repeated for

100 node-pairs on each graph, and then for 1000 graphs. The

delivery rate is the percentage of packets that get transmitted

successfully to the destination on a valid graph. The stretch

factor is the number of hops taken by a packet compared to the

minimum hop path available in the network, averaged over all

successfully delivered packets. The transmission cost is the

ratio of total number of times that copies of the packet get

transmitted in the course of successful delivery of the packet

to the number of transmissions in the minimum hop path,

averaged over all successfully delivered packets.

B. Face tree traversal-based algorithms

The graphs in Figures 5, 6, and 7 present the results

for face tree traversal-based algorithms for 75, 100, and 125

nodes, respectively.

The delivery rate is 1 for all face tree traversal-based

algorithms and is therefore not shown here. The stretch factor

of ‖-FACE TREE is best followed by BFS FACE TREE ,

DFS FACE TREE , MARK ENTRY EDGE FACE TREE , which

all have similar performance followed by DOUBLING FACE

TREE which has the worst performance. While all others are

quite close, the doubling algorithm’s performance is signifi-

cantly worse.

The stretch factor of all algorithms increases with increasing

uncertainty radius, especially the non-parallelized algorithms.

This is because as the uncertainty radius increases, more

and more of the graph is being searched using the face tree

traversal method. In particular, there is a greater chance of the

exterior face being traversed.

Somewhat surprisingly, using marked bits does not help in

reducing the stretch factor for smaller values of uncertainty

radius. At higher values of uncertainty radius, the MARK

ENTRY EDGE FACE TREE implementation starts to outperform

all face tree traversal-based algorithms except ‖-FACE TREE .

The transmission cost of BFS FACE TREE , MARK ENTRY

EDGE FACE TREE , and DFS FACE TREE is much lower

than that of ‖-FACE TREE or DOUBLING FACE TREE . For

all algorithms, as the number of nodes increases, the stretch

factor and transmission cost both increase. In particular, the

transmission cost of ‖-FACE TREE becomes intolerable.

We conclude that the performance of DFS FACE TREE ,

BFS FACE TREE , and MARK ENTRY EDGE FACE TREE are

all similar, and they use the least energy, while ‖-FACE

TREE achieves the best stretch factor.

C. Flooding-based algorithms

The graphs in Figures 8, 9, and 10 present the delivery

rate, stretch factor, and transmission cost for flooding-based

algorithms respectively for 75 and 125 nodes. The results for

100 nodes are quite similar to those for 75 nodes and can be

found in [17].

- 13 -

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 200 400 600 800 1000 1200

S
tr

e
tc

h
 f

a
c
to

r

Uncertainty radius

DFS Face Tree
BFS Face Tree

|| Face Tree
Mark-Bits Face Tree
Doubling Face Tree

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 200 400 600 800 1000 1200

T
ra

n
s
m

is
s
io

n
 c

o
s
t

Uncertainty radius

DFS Face Tree
BFS Face Tree

|| Face Tree
Mark-Bits Face Tree
Doubling Face Tree

Fig. 5. Face tree traversal-based algorithms: Stretch factor and transmission cost for varying uncertainty radius. Number of nodes= 75.

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200

S
tr

e
tc

h
 f

a
c
to

r

Uncertainty radius

DFS Face Tree
BFS Face Tree

|| Face Tree
Mark-Bits Face Tree
Doubling Face Tree

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200

T
ra

n
s
m

is
s
io

n
 c

o
s
t

Uncertainty radius

DFS Face Tree
BFS Face Tree

|| Face Tree
Mark-Bits Face Tree
Doubling Face Tree

Fig. 6. Face tree traversal-based algorithms: Stretch factor and transmission cost for varying uncertainty radius. Number of nodes= 100.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

S
tr

e
tc

h
 f

a
c
to

r

Uncertainty radius

DFS Face Tree
BFS Face Tree

|| Face Tree
Mark-Bits Face Tree
Doubling Face Tree

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200

T
ra

n
s
m

is
s
io

n
 c

o
s
t

Uncertainty radius

DFS Face Tree
BFS Face Tree

|| Face Tree
Mark-Bits Face Tree
Doubling Face Tree

Fig. 7. Face tree traversal-based algorithms: Stretch factor and transmission cost for varying uncertainty radius. Number of nodes= 125.

- 14 -

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

D
e

liv
e

ry
 r

a
te

Uncertainty radius

AN Flooding
Extended AN Flooding

SN Flooding
Extended SN Flooding

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 200 400 600 800 1000 1200

D
e

liv
e

ry
 r

a
te

Uncertainty radius

AN Flooding
Extended AN Flooding

SN Flooding
Extended SN Flooding

Fig. 8. Flooding-based algorithms: Delivery rate for varying uncertainty radius. Number of nodes = 75 (left) and 125 (right).

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 200 400 600 800 1000 1200

S
tr

e
tc

h
 f

a
c
to

r

Uncertainty radius

AN Flooding
Extended AN Flooding

SN Flooding
Extended SN Flooding

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 200 400 600 800 1000 1200

S
tr

e
tc

h
 f

a
c
to

r

Uncertainty radius

AN Flooding
Extended AN Flooding

SN Flooding
Extended SN Flooding

Fig. 9. Flooding-based algorithms: Stretch factor for varying uncertainty radius. Number of nodes = 75 (left) and 125 (right).

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200

T
ra

n
s
m

is
s
io

n
 c

o
s
t

Uncertainty radius

AN Flooding
Extended AN Flooding

SN Flooding
Extended SN Flooding

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200

T
ra

n
s
m

is
s
io

n
 c

o
s
t

Uncertainty radius

AN Flooding
Extended AN Flooding

SN Flooding
Extended SN Flooding

Fig. 10. Flooding-based algorithms: Transmission rate for varying uncertainty radius. Number of nodes = 75 (left) and 125 (right).

- 15 -

It is interesting to note that all flooding-based algorithms

have a dip in the delivery rate at around r = 2λ where λ
is the transmission radius of nodes. This can be explained

by the following observation. When r ≤ λ/2, all nodes in

the uncertainty circle are directly connected to each other,

therefore flooding must succeed (this is confirmed by the

experiments). Similarly, when the uncertainty radius is large

enough that the entire field is contained in the uncertainty

circle, flooding is guaranteed to succeed, since we only use

connected graphs. However, as the uncertainty radius increases

from λ/2, the chance of having two disconnected components

inside the uncertainty circle first increases, and then again

decreases as the number of nodes inside the circle increases.

EXTENDED AN FLOODING improves the delivery rate, but

cannot guarantee delivery for all values of uncertainty radius,

though always over 95% for all values studied.

The stretch factor is almost the same for all flooding-

based approaches. The stretch factor is in general very good,

always less than 1.25, and exactly 1 for uncertainty radius

>= 5λ. As noted earlier, the flooding-based algorithms find

the shortest path in the second phase when the packet is

successfully delivered. Thus, an average stretch factor greater

than one reflects the fact that the shortest path may not

always be found in the first phase where GFG is being

used to reach the uncertainty zone. As the uncertainty radius

increases, the part of the path which is constructed in the first

phase is proportionally smaller; this explains why the stretch

factor decreases as the uncertainty radius increases as seen in

Figure 9. Also, the stretch factor decreases as the number of

nodes increases; this is in line with the well-known behavior

of GFG.

The transmission cost of SN FLOODING and EXTENDED

SN FLOODING are similar and much lower than other

flooding-based approaches. The cost of AN FLOODING is

higher, and the cost of EXTENDED AN FLOODING is even

higher.

Extended SN flooding appears to achieve a good balance

between delivery rate and transmission cost.

IV. DISCUSSION

It is clear from our simulations that the flooding-based

approaches have much better stretch factor than the face-tree

approaches. However, many of the face tree-based algorithms

examined here are memoryless, and as such are not compara-

ble to the flooding-based algorithms, which all require routing

state to be maintained at nodes. One interesting finding is

that storing routing state as in MARK ENTRY EDGE FACE

TREE does not seem to improve the stretch factor except when

the uncertainty is very high.

Flooding is known to be resource-inefficient. However, our

experiments show that the transmission cost of AN FLOOD-

ING, the most expensive algorithm in the flooding-based class,

while worse than most of the face tree based approaches,

is not significantly higher, and indeed, is better than the

‖-FACE TREE and DOUBLING FACE TREE algorithms. At

the other end, the transmission costs of SN FLOODING and

EXTENDED SN FLOODING are lower than the cheapest Face-

tree algorithm. Thus, making minor adjustments to the basic

flooding algorithm results in greatly reduced transmission cost

while not sacrificing the delivery rate or the stretch factor.

Meanwhile, the high stretch factor of the face-tree based

approaches also translates to a high transmission cost.

In conclusion, if marked bits are not practical, or if guaran-

teed delivery is required, then DFS FACE TREE would seem

to be best approach of the ones studied here, but otherwise,

EXTENDED SN FLOODING would be the best choice.

REFERENCES

[1] P. Bose and P. Morin, “An improved algorithm for subdivision traversal
without extra storage,” International Journal of Computational Geome-

try and Applications, vol. 12, no. 4, pp. 297–308, 2002. Special issue
of selected papers from the 11th Annual International Symposium on

Algorithms and Computation (ISAAC 2000).
[2] V. Park and S. Corson, “A highly adaptive distributed routing algo-

rithm for mobile wireless networks,” in Proceedings of INFOCOM’97,
pp. 1405–1413, 1997.

[3] J. Broch, D. Johnson, and D. Maltz, “The dynamic source routing
protocol for mobile ad hoc networks,” Internet-draft, draft-ietf-manet-

dsr-00.txt, 1998.
[4] S. Basagni, I. Chlamtac, V. Syrotiuk, and B. Woodward, “A distance

routing effect for mobility (dream),” in 4th ACM/IEEE Conference on

Mobile Computing and Networking (MobiCom ’98), pp. 76–84, 1998.
[5] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with

guaranteed delivery in ad hoc wireless networks,” Wireless Networks,
vol. 7, pp. 609–616, 2001.

[6] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in 6th ACM Conference on Mobile Computing and

Networking (MobiCom ’00), pp. 243–254, 2000.
[7] Y.-B. Ko and N. Vaidya, “Location-aided routing (LAR) in mobile ad

hoc networks,” in 4th ACM/IEEE Conference on Mobile Computing and

Networking (MobiCom ’98), pp. 66–75, 1998.
[8] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc

routing: Of theory and practice,” in Proc. of the 22nd ACM Symposium

on the Principles of Distributed Computing (PODC), pp. 63–72, July
2003.

[9] S. Giordano and I. Stojmenovic, “Position based routing algorithms for
ad hoc networks:a taxonomy,” Ad Hoc Wireless Networking, X. Cheng,

X. Huang and D.Z. Du (eds.), pp. 103–136, 2004.
[10] X. Lin and I. Stojmenović, “Gedir: Loop-free location based routing in

wireless networks,” in IASTED Int. Conf. on Parallel and Distributed

Computing and Systems (PDCS ’99), pp. 1025–1028, 1999.
[11] E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric

networks,” in Proc. of 11th Canadian Conference on Computational

Geometry, pp. 51–54, August 1999.
[12] T. Camp, J. Boleng, and L. Wilcox, “Location information services in

mobile ad hoc networks,” in Proceedings of the IEEE International

Conference on Communications (ICC ’02), pp. 3318–3324, 2002.
[13] Y.-B. Ko and N. H. Vaidya, “Geocasting in mobile ad hoc networks:

Location-based multicast algorithms.,” in WMCSA, pp. 101–110, 1999.
[14] K. Saeda and A. Helmy, “Efficient geocasting with perfect delivery in

wireless networks,” in Proceedings of WCNC, 2004.
[15] M. de Berg, R. van Oostrum, and M. Overmars, “Simple traversal of

a subdivision without extra storage,” in SCG ’96: Proceedings of the

twelfth annual symposium on Computational geometry, pp. 405–406,
1996.

[16] I. Stojmenovic, “Geocasting with guaranteed delivery in sensor net-
works,” IEEE Wireless Communications Magazine, vol. 11, pp. 29–37,
December 2004.

[17] A. Patnaik, “Routing protocols for ad hoc networks with uncertainty in
the position of the destination,” Master’s thesis, Concordia University,
2006.

[18] K. Gabriel and R. Sokal, “A new statistical approach to geographic
variation analysis,” Systematic Zoology, vol. 18, pp. 259–278, 1969.

[19] G. Calinescu, I. Mandoiu, P. J. Wan, and A. Z. Zelikovsky, “Selecting
forwarding neighbors in wireless ad hoc networks,” Mobile Networks

and Applications, vol. 9, no. 2, pp. 101–111, 2004.

- 16 -

