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Abstract—The Smart Party is a ubiquitous computing 

application based on the Panoply middleware.  The Smart 
Party allows attendees at a party to transparently participate in 
the selection of music played at the party.  The methods used to 
select music, based on the preferences of the partygoers, has a 
substantial impact on how satisfied these partygoers will be.  
This paper examines different algorithms for selecting music in 
a Smart Party, and discusses lessons from the research that are 
applicable to other socially-based ubicomp applications. 
 

Index Terms—ubiquitous computing, social computing, user 
satisfaction. 

I. INTRODUCTION 
The Internet is revolutionizing the social interactions of its 

users, and the emerging ubiquitous computing environment 
is only a step behind.  In the near future, ubiquitous 
computing will offer new and enhanced ways for people to 
meet, work together, and cooperate in a wide variety of 
activities.  Such ubicomp applications will succeed by offer 
perceived value to their users, both by enabling new 
activities and applications, but also through improving our 
existing activities.  For these latter applications, we must 
find ways to quantify their benefits and evaluate various 
techniques designed to increase application benefits. 

Many social ubicomp applications are designed to help 
people interact in groups.  Some groups, such as a school 
class or a club, are predefined, while others can be formed 
opportunistically, such as users in an area of poor Internet 
connectivity who pool their computing and data resources 
for the common good.  By using common characteristics and 
goals to organize groups of users, ubicomp applications can 
improve both the individual and overall user experience.    

This paper examines one specific illustrative example of 
using ubicomp technology to form users with common 
interests into groups, resulting in an improved social 
experience.   The application is called the Smart Party [1].  
The Smart Party application gathers musical preferences for 
guests attending a party in a user’s house.  Based on their 
preferences and available media, it chooses a music play list, 
adjusting to changing membership as guests come and go.  
The preferences and the actual music media are gathered 
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from the guests’ portable devices, giving a broader selection 
of possible music to play than that belonging to the host. 

The goal of the Smart Party application is to provide a 
cooperative, satisfying musical experience at a party.   By 
varying the algorithm used to select which song to play in 
which room, one varies both individuals’ average 
satisfaction with the party and the distribution of fairness 
among individuals.  Similarly, examining different user 
strategies for deciding whether to stay in a particular room or 
move to another room can affect satisfaction and fairness. In 
this paper, we examine the effects on satisfaction and fair 
distribution of satisfaction among partygoers based on our 
exploration of these alternatives in simulation. 

The paper is organized as follows.  Section 2 describes the 
Smart Party application in more detail.  Section 3 describes 
our simulation approach.  Section 4 presents simulation 
results for various single room song selection algorithms.  
Section 5 describes the effects of making multiple rooms 
available to the guests of a Smart Party.  Section 6 discusses 
related work.  Section 7 describes future directions and 
discusses how we can generalize the results of these 
experiments to more general ubicomp social applications. 

II. THE SMART PARTY 
The Smart Party was built using the Panoply ubiquitous 

computing middleware that we have developed [2].  This 
framework provides strong support for group formation and 
cooperation in ubiquitous environments. 

In the Smart Party, a group of people attend a gathering 
hosted at someone’s home. Each person carries a small 
mobile device that stores its owner’s music preferences and 
song collection. The party environment consists of a series of 
rooms, each equipped with speakers. The home is covered 
by one or more wireless access points.  

As each guest arrives, his mobile device securely and 
automatically associates with the correct network to connect 
it to the Smart Party infrastructure. As party attendees move 
within the party environment, each room programs an audio 
playlist based on the communal music preferences of the 
current room occupants, and the content they have brought to 
the party. Guests automatically and dynamically collaborate 
with the host network, which manages their collective 
preferences and steers the music choices.   Decisions are 
based on information already in the users’ devices, so no 
user intervention or input is required. Figure 1 shows an 
example of a fully formed and configured Smart Party.  
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Figure 1.  A fully configured Smart Party 

Each time a room needs to select a song to play, it consults 
the mobile devices belonging to the users in that room.  
Based on their musical preferences (which are derived from 
information on their devices about which songs they listen to 
frequently), the Smart Party gathers information about 
candidate songs to play and uses some algorithm to choose a 
song.  The simplest algorithm is round robin, which allows 
users in a room to take turns choosing a song.  Each user gets 
to hear the song he most wants to hear, but perhaps the 
selections will not be pleasing to any of the other users, 
which can result in poor overall satisfaction.   

A more sophisticated algorithm is to have users nominate 
songs, then vote on them proportionally to their liking of 
each nominated song.  As we will see in section IV, this 
algorithm produces more satisfaction and greater fairness.  
(An important point for this and other algorithms is that 
measures are required to ensure that the same song is not 
played over and over.)   A further enhancement is to analyze 
the preferences of users in the room and automatically form 
them into groups that share musical tastes.  The group 
decides on the song its members would, collectively, like 
best, and the group pools its votes for that song.  Group 
membership can change dynamically as partygoers come and 
go.  This improves satisfaction and fairness over simple 
voting, as it tends to lead to popular compromises. 

III. THE SMART PARTY SIMULATION 
We have built a working prototype of the Smart Party in 

our lab, but doing large scale testing on this prototype is 
impractical.  We have instead performed testing of song 
selection algorithms in a simulation framework.  This 
simulation is specific for this purpose, so it does not replicate 
all elements of the application or Panoply.  For example, it 
does not simulate the localization mechanisms used to 
determine where users are, nor the protocols used to transfer 
media data from a user device to the Smart Party’s speakers, 
though these and all other elements of the Smart Party are 
fully implemented in the real application.   For more details 
on the actual application, see [1]. 

The simulation uses real user preference data gathered 
from LastFM, which is a web site that allows users to upload 
their media preferences from a variety of sources.  This web 
site records which tracks the user has heard, and play counts 
for these tracks. For each simulated Smart Party, a random 

subset of users and media is selected. Many different random 
selections are simulated.  The basic simulation runs the 
selection algorithm 30 times for each simulated party.  
Assuming 4 minute songs, this would yield a two hour party.  
For each selection, the simulation calculates the satisfaction 
for each user.  Simulations were run for many different sizes 
of parties, from a small party of 4 users to a large party of 
80.  To minimize the random effects based on selecting some 
particular set of users and songs, we performed multiple runs 
with different sets of users and songs for each scenario 
investigated.  We here report median results from the several 
runs of each scenario. 

Song preference is measured on a scale of zero to five. The 
satisfaction gained from a song with a k-rating is 2k (except 
songs with a 0 rating, which yield a satisfaction of 0). To 
determine a song’s rating from the LastFM data, songs were 
separated into 5 buckets by play count. The distribution of 
songs into buckets ended up following an exponential curve, 
with the number of songs in the top bucket (the songs most 
often played) being smallest, and the bottom two buckets 
(songs that were played rarely) containing the majority of the 
songs. If a song is not in a user’s profile, it is considered to 
have a 0 rating, and no satisfaction is gained by hearing the 
song at the party.   In reality, a user is sometimes pleased by 
a song he has never heard before, but we have no realistic 
model of this effect, so we conservatively assume that 
unrated songs will not be liked. 

In the party simulation, overall satisfaction is the sum of 
the satisfaction gained during the party by all users. 

The fairness of the distribution of satisfaction is quantified 
by calculating the Gini Coefficient [3].  The Gini Coefficient 
is widely used as a measurement of the distribution of wealth 
in a population. It is a ratio between 0 and 1. A Gini 
Coefficient of 0 expresses perfectly equal distribution of 
available wealth among a population; a value of 1 expresses 
perfectly unequal distribution, where all wealth is held by 
one member of a population and others have no wealth.  

Instantaneous fairness is a measure of the equality of the 
distribution of satisfaction gained by guests in a single 
round. Overall fairness is a measure of the equality in 
distribution of overall satisfaction among guests. 

IV. SELECTING SONGS FOR A SINGLE ROOM 
We examined several algorithms by which users in a 

single room can participate in choosing what music to play.  
In the Round Robin algorithm, each user in turn is allowed to 
pick his favorite song.  In the Non-cooperative Voting 
algorithm, users nominate songs and vote for the various 
songs nominated, based on relative personal preference.  In 
Sphere-based Voting, users with common musical tastes 
form a Panoply group (called a sphere of influence) that 
effectively allows them to pool their influence to get more 
votes for something they will all like. 

While Round Robin sounds reasonable, even a little 
thought will reveal some potential problems.  In essence, 
Round Robin allows each partygoer to periodically choose 
the song to be played, which presumably would be that 
partygoer’s personal favorite.  However, it might well be that 
all the other partygoers do not care for that song at all.  One 
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user gets excellent satisfaction in each round, but the others 
might not get any.  Thinking aesthetically, the result might 
well be a party in which the music played swings wildly 
from one genre or artist to another completely different one.  
An algorithm that seeks to balance the preferences of the 
many will probably do better. 

For the two voting algorithms described, however, it is 
less clear which would make users happier.  Is it better for 
each user to propose a song, then have all users vote on 
them?  Or is it better for users with similar tastes propose 
songs their group will like, and then vote? 

First, we must describe these voting algorithms in a little 
more detail. In the Non-cooperative Voting algorithm, each 
guest suggests his or her favorite song.  That song is added 
to the list of the candidates that is submitted to all the guests 
for voting. Guests vote for a song by consulting their 
preference list. If that song or its artist exists in their 
preference list, they submit their rating for that candidate as 
their vote. Otherwise, their rating will be zero, which 
translates to a vote of zero for that song. Once all the votes 
are collected, the Smart Party sorts the candidates by their 
scores, from highest to lowest. It drops the bottom half of the 
list and re-submits the list of the candidates to the guests for 
another round of voting. This procedure is repeated until one 
song wins and is played. 

In Sphere-based Voting, people with common interests 
form groups and submit their votes through the group leader 
called the “vote coordinator.” The vote coordinator is the 
guest who has formed the group. Each vote coordinator 
chooses a set of preferred artists, which are the “goals” for 
that group. When a guest enters a room it looks for existing 
vote coordinators and checks to see if it is attracted to any of 
those groups by comparing the artists in his/her preference 
list against those in the group’s goal set. If the attraction 
value is higher than a certain threshold, that guest joins the 
group. If not, the guest forms his own group, possibly 
attracting other guests to join him.  When a vote is called for, 
group members can only suggest songs whose artists match 
the group’s goals. Otherwise, the procedure is similar to 
Non-cooperative Voting.  The groups are not static. Guests 
can leave their group and join others if the current set of 
goals for another group better matches their own tastes. 

Figure 2 shows the satisfaction results for the two voting 
algorithms.  Each bar shows the median of 150 different 
simulations, and the error bars show the first and third 
quartiles of the data. 

For small Smart Parties of less than 8 users, round-robin 
wins, as users are able to, in turn, select their favorite songs. 
Because we use a 2k model for calculating satisfaction, 
perfect satisfaction of one user (k=5), with no satisfaction for 
other users, gives a total satisfaction of 32.  For four users, 
choosing a song that gives a 3 satisfaction for all of them 
yields the same level of satisfaction.  So unless all users at 
the small party have some fairly strong tastes in common, 
the satisfaction metric we use would tend to favor satisfying 
someone perfectly, rather than a few users imperfectly.  
Thus, as expected, both Non-cooperative Voting and Sphere-
based Voting perform worse than Round Robin.  
Examination of some cases shows that both result in the 
selection of lower-ranked songs shared in common. As more 

users participate, Non-cooperative Voting and Sphere-based 
Voting result in higher satisfaction because the presence of 
an increasing number of ”popular” songs causes in an 
upswing in satisfaction, and a larger number of somewhat 
satisfied users ultimately overwhelms the benefit of a single 
very satisfied user. 

 
Figure 2.  Overall Smart Party satisfaction for various song selection 
algorithms 

Consider fairness for the same algorithms. Error! 
Reference source not found. shows the median overall 
fairness for the same parties as in Figure 2. Fairness here is 
averaged over an entire party, with the median selected from 
the 150 different parties tested for each size and algorithm.  
Fairness, as discussed in Section III, is based on the Gini 
coefficient, so lower numbers indicate greater fairness than 
higher numbers.  As with satisfaction, the error bars indicate 
the first and third quartiles. 

 
Figure 3.  Median overall party fairness 

Note that Round Robin is extremely fair for small parties, 
on an overall party basis.   In essence, each guest gets his 
turn choosing a song, and thus has a fair share of the overall 
selection of the music at the party.  Since only 30 songs are 
played at the party, when there are more than 30 guests, 
some guests never get to choose a song, and, unless they 
fortuitously like music chosen by others, they end up 
receiving much less satisfaction than those who get to 
choose a song.  As a result, fairness for Round Robin 
selection drops substantially as the parties get larger.  
However, overall party fairness is no better for the other 
algorithms, even at large parties.  If one is perpetually in the 
losing voting block, the party will not seem particularly fair. 
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Fairness can be computed on a whole party basis, as in 
Figure 3, or on a round-by-round basis.  The latter is perhaps 
more meaningful, since if many partygoers perceive a few 
rounds of a party as being unfair to their interests, they might 
well leave. Figure 4 shows median instantaneous (round-by-
round) fairness for the same parties as discussed above. 

 
Figure 4.  Instantaneous fairness 

Round Robin’s turn-taking in 2 person parties tends to 
cause one person to be happy and the other unhappy in each 
round, resulting in a fairness of .5 for a typical round.  As the 
party gets bigger, one waits more rounds for one’s turn, 
stewing in dissatisfaction all the while.  This is reflected by 
the round-based fairness getting worse and worse as party 
size grows.  While we see some of this effect for the voting 
algorithms, for sphere-based voting, round-based fairness 
more or less stabilizes at .5.  Those in the winning voting 
group are generally happy in each round, and those out of it 
are generally unhappy.  Of course, even within the winning 
group, some members like the chosen song more than others, 
so there is a further satisfaction skew that worsens the 
fairness.  Still, these round-based fairness results suggest that 
a group-based voting scheme will be less likely to drive 
away partygoers in the midst of a party. 

V. CONSIDERING USER MOVEMENT 
Another choice an unsatisfied user has at a Smart Party is 

to move to another room where the music might be more to 
his liking.  To evaluate the effects that guest movement has 
on the Smart Party experience, we investigated methods of 
improving user satisfaction based on user mobility. 

We developed several mobility models. These models are, 
at their core, sets of rules that specify when and to which 
room a guest should move. These rules only incorporate 
information that the guest has available to them in the party; 
they do not require any oracular orchestration or knowledge.  

In all experiments, guests are initially distributed evenly 
between available rooms. The actual Smart Party prototype 
does not synchronize the playing of songs in different rooms, 
so rooms may call for votes and play songs asynchronously, 
and guests may move between rooms at any time. However, 
there is no song length information associated with the 
Last.FM data we use for our simulation, and the simulation 
is simplified by treating all votes for a song round as 
simultaneous and synchronous.  As a result, all songs are 
assumed to be the same length, and the party operates in 

phases, with guests moving, voting and listening in lockstep. 
The following mobility models were tested in the Smart 

Party simulation framework: 
• No movement – Guests never move for the duration of 

the party. 
• Random movement – Guests pick a room at random 

after each song. 
• Threshold-based random movement – Guests track 

several previously heard songs, and if the average 
satisfaction gained from these songs drops below 
some threshold, the guest chooses a room at random. 
Otherwise, the guest does not move.  

• Threshold-based to room with highest satisfaction – 
If unsatisfied with the current room, the guest looks 
at the last several songs played in all rooms and 
moves to the room with the highest average 
satisfaction over this historical data. 

The mobility models are compared with populations of 18, 
30, and 60 guests in 3, 5, and 10 rooms respectively. In each 
scenario, there were thus an average of six guests per room, 
and the party starts with exactly six guests in each room, 
placed randomly.  For all except the No-movement case, no 
restrictions were subsequently placed on the number of 
guests in a room.  In all cases, songs were selected using the 
Non-cooperative Voting algorithm. 

 Figure 5 shows that offering music selections in multiple 
rooms results in much more satisfying parties.  The No-
movement case is roughly comparable to the satisfaction 
seen in Figure 2 for the Non-cooperative Voting algorithm, 
with slight differences because, effectively, the No-
movement case has several independent six-guest rooms, 
while the Figure 2 results were plotted for 4 and 8 guests. 

 
Figure 5.  Median satisfaction for different movement algorithms 

Once we allow even the most basic of movement 
algorithms, satisfaction increases dramatically.  In the 
Random-movement case, each user randomly chooses a new 
room to move to at the end of each song.  There is no 
attempt to choose a “good” room or move in concert with 
other users sharing similar tastes.  Yet even this non-
intelligent movement algorithm results in a 20% or better 
improvement in satisfaction. 

Why? Any guest movement “stirs up” the state of the 
party, making previously unselectable songs more likely to 
be chosen. For example, consider three users in three 
different rooms who have the same favorite song, but no 
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other users have heard of this song. These users may not be 
able to get the song played in their separate rooms. However, 
when users can move between rooms, perhaps at some point 
these three users find themselves in the same room. 
Suddenly, these three guests now have enough votes to get 
the song played, thus increasing their overall satisfaction. 

The Threshold-based Random and pure Random 
movement algorithms produce nearly identical results. One 
might have expected that having satisfied users stay where 
they are and only unsatisfied users switching to a new room 
would be much better.  However, the “stirring up” effect is 
more valuable.  One characteristic of the Smart Party is that 
it is biased against replaying songs during a single party, 
which means that there is a decreasing chance that a user 
who is satisfied in one location will remain equally satisfied 
there as time goes by.  The songs he likes that he can get 
played in that room, with the cooperation of others in the 
room, are gradually exhausted.  He is eventually more likely 
to find opportunities to play the songs he likes in a randomly 
chosen room than he is in the room he currently occupies. 

 The best algorithm is to move to a room that has been 
playing the music you like best, when you are not satisfied 
with the music you are currently hearing.  This algorithm can 
provide up to 41% improvement in median satisfaction over 
the No-movement case.   

This result is not surprising.  That other room contains 
guests who probably share your musical tastes, and, since the 
guests there who are winning the elections are likely happy 
with the chosen music, they will stay there.  (The use of a 
threshold to prevent movement when the differences are only 
trivial amplifies this effect.)  Therefore, you are likely to 
hear music in the future similar to the music you have heard 
in the past.  Without actually forming groups, this algorithm 
achieves a similar effect to that shown in Figure 1 without 
ever trying to identify genres or groups of users with similar 
preferences.  Just as in that figure, the party moves to a state 
where one room plays R&B, another plays hip-hop, a third 
plays oldies, and so on.  As Figure 5 also shows, this effect 
improves as you have more rooms available, since now there 
is an opportunity for more specialized groups to form based 
on tastes that are narrow, but perhaps deeply felt. 

This model performs best with a shorter history length 
(two songs). This is because the amount of movement 
occurring in the party causes the history data to become stale 
quickly. Since roughly four in ten guests change rooms every 
round under the satisfaction-based model, a song that played 
in a room five rounds ago is likely a very poor indicator of 
what song will be played next in that room. 

We also tested two models where movement was based on 
the number of guests in a room, on the theory that moving to 
a lightly populated room would give a user a higher chance 
of having his preferred songs selected.  These models did not 
perform even as well as random movement, though they 
were still significantly better than not moving at all. By 
examining the movements that would occur in a threshold-
based model that moved to the least crowded room every 
time, we see why this type of selection creates a problem. At 

the beginning of the party, all guests are evenly distributed 
between rooms. Therefore, when a guest’s satisfaction drops 
below the threshold, the guest leaves the room, choosing a 
room at random since there is a tie between all rooms in the 
party for the least-populated room. The next guest to have 
their satisfaction drop below the threshold and desire a room 
change is then forced into the room that the first guest just 
left, since it is now the least crowded room. Therefore, only 
half of the guests moving in the party get a room choice, and 
the other half are forced into the room just abandoned. 

Fairness is significantly improved by user mobility, as one 
might guess.  Users who are perpetually unhappy when 
forced to stay in one room can, instead, go somewhere else.  
Figure 6 plots the median overall party fairness values for the 
18 guest, three room case only, since the other cases 
produced similar results.  All movement algorithms produce 
much better fairness than no movement, with the algorithm 
calling for users to move to the most congenial room doing 
best. .  This is likely to mirror real human behavior.  If one 
hates the music one is hearing in one room, and one knows 
different music is playing in another room, what could be 
more natural than trying that other room? 

 

 
Figure 6.  Median overall fairness for movement algorithms 

VI. RELATED WORK 
Other projects have investigated issues of fairness and 

user satisfaction for group-based music experiences. The 
most related work is MusicFX [4] and FlyTrap [6], which 
both explore adaptive social music experiences situated in 
physical environments. Both projects focus on equitable 
music selection within a shared environment. MusicFX and 
FlyTrap both use RFID-based detection of user badges to 
determine user presence, and then activate user agents on a 
centralized server that represent the users and vote on their 
behalf for tracks (FlyTrap) or music channels (MusicFX). 
Follow-on work to MusicFX [7] investigates the use of an 
economics-based model to improve the fairness of overall 
channel selection. Extra vote weight is given to individuals 
who are forced to listen to non-preferred music. The use of 
the Gini coefficient by Prasad and McCarthy [7] directly 
inspired our use of the same technique.  The economic 
scheme proposed by [7] could be adapted to our Smart Party 
to improve overall fairness.  

Our Smart Party differs in several ways from these other 
projects. We support a Smart Party consisting of multiple 
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environments with dynamic membership. Members may 
bring in new music via their mobile devices, and members 
coordinate their voting based on dynamically-built 
preference groups.  

Another related project is Poolcasting, [8], a web-based 
social radio system. In Poolcasting, users attach to the 
system, share music, and create radio channels. The 
Poolcasting system schedules music for the channels using a 
metric that incorporates satisfaction, fairness, and variety 
measures to select the next song for each channel. To ensure 
musical continuity, Poolcasting leverages a large pool of 
user-generated playlists to identify related songs. This is an 
interesting feature and one that we are considering 
incorporating in the future. 

Additionally, a group at the International School of New 
Media at the University of Lübeck in Germany has 
developed what they refer to as “Campus Party,” or the 
“Smart Party” [9]. The Campus Party also uses RFID-based 
user detection, as well as a centralized database of user 
preferences and static music repository. The Campus Party 
uses a simple preference evaluation heuristic to select the 
current “best” song based on current occupancy of a room. 
The details of their selection algorithm are not described in 
their paper. Again, we differ from this work in terms of our 
support for multiple connected environments, coordinated 
voting within preference groups, dynamic membership, etc.  

VII. FUTURE WORK AND CONCLUSIONS 
The Smart Party is one example of using ubiquitous 

computing techniques to augment a social experience.  Many 
more such applications will be developed.  The lessons we 
can learn about general techniques to improve how these 
applications do their jobs are more important than the 
particular improvements seen in the Smart Party itself, as are 
lessons related to the limitations of the technology. 

This investigation into improving user satisfaction and 
fairness in the Smart Party offers several general lessons.  
First, using ubiquitous technology to help people cooperate is 
a good idea.  Song selection mechanisms that either explicitly 
or implicitly led to groupings of users with shared tastes not 
only improved overall satisfaction, but also fairness.  Since 
ubicomp technology can augment existing human capabilities 
to find congenial companions, by proper leveraging of this 
technology we can help people join in groups that they might 
not otherwise realize are possible or worthwhile. 

Second, choices are good.  Algorithms that do not include 
some capability for human choice to operate tend not to 
perform as well.  This is most obvious in the room movement 
algorithms, where a postulated human choice to move to 
another room greatly improves satisfaction and fairness.  As 
mentioned earlier, the key point is giving users different 
options, in our case rooms that play different kinds of music.  
The group algorithms also point in this direction.  While the 
current algorithms are based purely on computer-available 
information, algorithms that incorporate human input in 
group formation are likely to do even better.   

Third, even fairly simple algorithms can offer substantial 
benefit.  Random movement works quite well in a multiroom 
case, and the only slightly more complex algorithm based on 

observing recent song selections is even better.  While the 
more complex group formation algorithm is better than 
simple voting, even a basic voting algorithm does well for the 
Smart Party.  Other ubiquitous computing social applications 
are likely to see similar effects, suggesting that it is always a 
good idea to investigate the simple ways to improve the 
application’s performance before worrying about complex 
algorithms. 

But this work does have its limits, as well.  Our 
measurements of satisfaction and fairness are all simulated, 
based on past human behavior.  People are, however, much 
more complicated than that, and we would thus expect real 
Smart Parties to display much different human behavior than 
we see in our simulations.  Tastes vary based on 
circumstances, and there are other reasons to stay in or leave 
a room than whether you like the music.  Methods of more 
accurately judging how well human users are served by their 
ubicomp applications are clearly necessary.  More generally, 
it is vital to remember that the Smart Party application is a 
servant to a real human party, not its master.  Ubicomp 
applications should be designed to serve people, not to force 
them to behave as the application designers envisioned. 

The Smart Party could be enhanced in many ways.  As 
one obvious example, unsatisfied users have at least two 
options to increase satisfaction, based on these results: join a 
group to increase your voting power, or move to another 
room where things might be better.  Which should users do, 
or, as suggested above, which are users actually likely to do 
in a real party?  To what extent should the application expect 
to get more explicit feedback and guidance from its users, 
and how can such input be easily gathered and effectively 
used?  Is a party whose music is jointly selected by its 
attendees actually a better experience for humans than a party 
where a host or a DJ selects all the music for them?  These 
questions, too, can be generalized to apply to a broad range 
of social-based ubiquitous computing applications. 

REFERENCES 
[1] K. Eustice, V. Ramakrishna, N. Nguyen, and P. Reiher, “The Smart 

Party: A Personalized Location-aware Multimedia Experience,”  in 
Proc. Consumer Communications and Networking Conference 
(CCNC),Las Vegas, 2008. 

[2] K. Eustice, “Panoply: Active Middleware for Managing Ubiquitous 
Computing Interactions,” Ph.D. dissertation, Dept. Comp. Sci., 
UCLA, Los Angeles, CA, 2008. 

[3] C. Gini, "Variabilitá e mutabilita" 1912 reprinted in Memorie di 
metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria 
Eredi Virgilio Veschi 1955. 

[4] J. McCarthy and T. Anagost,  “MusicFX: An Arbiter of Group 
Preferences for Computer Supported Collaborative Workouts,” in 
Proc. of the ACM 1998 Conference on Computer Supported 
Cooperative Work, 1998. 

[5] A. Crossen, J. Budzik, and K. Hammond, “Flytrap: Intelligent Group  
[6] Music Recommendation,” in Proc. of the 7th Intl. Conf. on Intelligent 

user interfaces., San Francisco, 2002. 
[7] M. Prasad and J. McCarthy, ”A Multi-Agent System for Meting Out 

Influence in an Intelligent Environment,” in Proc. of the 11th 
Innovative Applications of Artificial Intelligence Conf., 1999. 

[8] C. Baccigalup and E. Plaza, “Poolcasting: A Social Web Radio 
Architecture for Group Customization.” in Proc. of 3rd Intl. Conf. on 
Automated Production of Cross Media Content for Multi-channel 
Distribution, 2007. 

[9] E. Nikolova, H. Tamari, A. Saha, and A. Schrader, ”Pervasive 
Campus: Smart Party,” in Proc. of the 2nd Intl. Conf. of Digital Live 
Art, 2007. 


