
Mistify: Augmenting Cloud Storage With Delay-Tolerant Cooperative Backup

Karthik Nilakant, Jon Crowcroft and Eiko Yoneki

University of Cambridge Computer Laboratory

Cambridge, United Kingdom

Email: firstname.lastname@cl.cam.ac.uk

Abstract—A variety of personal backup services now allow
users to synchronise their files across multiple devices such
as laptops and smartphones. These applications typically op-
erate by synchronising each device with a centralised storage
service across the Internet. However, access to the Internet
may occasionally not be available, leaving any unsynchronised
content in a vulnerable state. To address this, applications could
alternatively make use of storage capacity provided by other
devices within close proximity, using ad-hoc or local network
connectivity. Such devices can provide a secondary storage tier
in case of Internet connectivity issues, and could also be used
to forward files to central storage at a later time.

In our proposed design, we delegate the task of propagating
information across locally networked devices to a lower layer,
by making use of a content-centric opportunistic network
platform (Haggle). This allows our application, Mistify, to treat
the neighbourhood of peers as a single distributed content
repository (or “mist”), in a manner similar to the way in
which existing applications interface with the cloud. Mistify
employs a differentiated replication strategy, with the aim of
improving the safety of items in the mist. In our evaluation
of the prototype, we have found that in a simulated network
of locally-connected peers, the prototype was able to achieve a
high level of availability for stored content, without resorting
to flooding. Furthermore, Mistify was able to deliver a high
proportion of content to the cloud, even when only a small
proportion of nodes were given Internet connectivity.

I. INTRODUCTION

Centralised, hosted file storage services such as Google

Drive, Dropbox, Microsoft’s SkyDrive and Apple’s iCloud

are now widely used, and for many users have begun to

supplant external storage devices as a means of backing up

personal documents and other files. These services enable

file synchronisation amongst multiple devices, allow docu-

ments to be accessed from any Internet-connected machine,

and facilitate sharing and collaboration of stored content.

Typically, the services utilise large clusters of servers to

facilitate high availability and low latency.

There are, however, a range of circumstances where lack

of connectivity restricts the applicability of these services.

To illustrate: a group of tourists may be taking photographs

on their smartphones while on vacation. One person’s pho-

tographs may be initially stored on flash memory within

the phone, and synchronised with a centralised storage

service such as those described above. Commonly, while

cellular phones are “roaming”, data access may not be

available or may be prohibitively expensive. If the tourists

lose or damage their phones, then all of their unsynchronised

photographs will also be lost. However, this could be avoided

if the smartphones were able to cooperatively back up

locally stored files, using peer-to-peer wireless networking.

Such networking capabilities are available on most mobile

smartphone platforms today.

Although it may be possible to construct decentralised

storage services that operate using opportunistic short-range

communication between devices, the costs are often thought

to outweigh any possible benefits of such an approach.

Wireless Internet connectivity is widely available throughout

the developed world, through WiFi access points and cellular

data networks. Conversely, opportunistic routing in networks

of mobile agents is an inefficient process usually requiring

redundant replication of data bundles.

In our proposed solution, a centralised service should be

utilised whenever possible due to the increased efficiency

and reliability of that approach. However, when access to the

centralised service is unavailable, the backup service could

temporarily switch to a decentralised mode of operation. If

“cloud storage” refers to centralised services accessed over

the Internet, one might coin the term “mist storage” to refer

to these temporary decentralised storage systems. We intro-

duce the design and operation of a mist-based cooperative

backup service called “Mistify”. Mistify takes advantage of

the data storage capabilities of other participating clients in a

local area, by distributing encrypted content for safekeeping.

The primary contributions of this paper are:

1) Demonstrating that an effective second-tier storage

service can be built using an existing framework for

delay tolerant, opportunistic networking. We evaluate

a working prototype on a virtualised network testbed,

using human interaction data gathered from a real

mobility experiment.

2) Illustrating how this decentralised mode of operation

can be integrated with a simple centralised storage

model, providing a supplementary level of service.

Our evaluation of the prototype showed that even peers

that were in the lower quartile of the network’s degree

distribution could achieve successful replication for at least

70% of their files, and in most cases above 90% coverage is

possible for well-connected peers. Furthermore, through del-

egated forwarding, approximately 30% of the community’s

content can be transferred to central storage even when less

than 20% of peers have Internet connectivity.

II. ARCHITECTURE

Mistify aims to satisfy two basic requirements. Firstly,

content of specific interest to a user needs to be retrieved as a

matter of priority. This includes content that is either owned

by the user (typically retrieved during a restore operation),

or has been explicitly entitled to the user. Secondly, Mistify

peers attempt to boost the safety of any content in the mist,

by retrieving it for local storage, if it is deemed necessary

(this process is called “locality replication”). In order to

achieve these aims in an environment that is subject to on-

going change, Mistify employs delay-tolerant opportunistic

networking.

A. Opportunistic networking

Mistify makes use of the Haggle framework for oppor-

tunistic communication [1]. Haggle provides two key fea-

tures. Firstly, its content-centric “search based” API allows

Mistify to interact with a virtual content repository, by

publishing tagged content, and subscribing to those tags.

Secondly, Haggle arranges for opportunistic, delay-tolerant

forwarding of content between publishers and subscribers,

using any available networking interface such as WiFi or

Bluetooth.

Delay tolerance is provided through use of the PROPHET

protocol [2]. PROPHET is currently an IETF draft, and

operates by recording histories of contact with other peers.

The probability of being in contact with each other peer

is derived from this history, and a vector containing these

probabilities is distributed to other peers. PROPHET can

then calculate transitive probabilities for forwarding content,

via peers that are closer probabilistically.

B. Strategy

By making use of Haggle, Mistify behaves as a topology

independent system, and does not track other devices on the

network; instead, it discovers the attributes of content held

in the mist. It then develops interests in specific content,

based on relationships between the user and the content’s

owners. Mistify’s replication strategy attempts to minimise

over-replication of data, and prioritises certain content based

on social relationships between users and their files.

Mistify has two basic constructs that are mapped to Hag-

gle’s “data objects”: “Chunks” and “Entitlements”. Chunks

are bundles of encrypted data and associated metadata,

which correspond to files within a user’s replicated filesys-

tem. A Chunk’s owner is the original user that published

the Chunk. It is envisaged that Chunks could also be used to

aggregate smaller files, or disaggregate larger files into man-

ageable bundles. Entitlements are used to advertise Chunks

for retrieval by other peers. Private entitlements allow groups

Figure 1: Diagram showing a conceptual overview of the

Mistify architecture. The mist service, implemented in a

virtualised testbed, is arbitrated by the Haggle client on each

peer. Mistify also utilises cloud storage (implemented using

an Amazon EC2 instance) if available.

of users (other than the content owner) to access a bundle of

encrypted Chunks, whereas public entitlements are used to

advertise Chunks for replication to other possibly untrusted

peers. The architecture is illustrated in figure 1. To assess

the safety of a Chunk, clients check the public Entitlements

published by other peers in the network. All Chunks are

encrypted before publication. Private entitlements can be

used to grant access to this encrypted content.

Replication is a two step process. Each peer subscribes to

public Entitlements that are published to the mist by other

peers, resulting in this low-volume metadata being flooded

through the network (similar to routing updates in a link

state routing protocol). Each Entitlement contains one or

more “seeds”, that advertises Chunks that are available for

retrieval from that user. In order to subsequently retrieve a

Chunk that has been advertised, Mistify registers an explicit

interest in that Chunk with Haggle. Haggle will then arrange

for the Chunk and its encrypted content to be forwarded to

the requester. Whenever a peer retrieves a recent Entitlement,

this has the effect of refreshing the availability of those

seeds. Each Mistify peer makes an independent assessment

of the safety of each Chunk, by keeping track of the number

of replicas advertised by other users in the same locality.

III. IMPLEMENTATION

In this section, we describe the core components and

tuning parameters that make up the Mistify prototype. The

prototype is a Java application, which connects to the Haggle

framework using the libhaggle API library over the Java

Native Interface. Haggle is a native C++ application, which

can be compiled on multiple platforms such as Linux,

Windows and Android smartphones. In this particular study,

the performance of the prototype was evaluated using a

virtualised testbed environment, which is described further

below.

A. Safety calculation

In general terms, a Chunk’s “safety” is an estimate of the

likelihood that a replica can be obtained from the mist within

a pre-defined time interval. Since this calculation depends

on a number of variables, these are combined into a single

formula:

S =
1

R

∑ T − tp

T

where T is the maximum time threshold to regard a peer

as available, tp is the amount of elapsed time since a

public Entitlement containing the Chunk was received from

peer p, and R is the targeted number of replicas for each

Chunk. Only peers that have been contacted within the time

window specified by T are considered for each Chunk. After

performing this calculation on each Chunk, those with a

safety value exceeding 1 are regarded as safe (that is, enough

replica advertisements within the safety window have been

witnessed in the repository). Each of these parameters are

configurable at run-time, and are summarised in table I.

B. Strategy refinements

In addition to the basic safety preservation strategy described

above, two further refinements were required to cater to

specific scenarios.

1) Containment: Chunks could be replicated to a device

that has roamed outside its “home” community. When the

device returns to its home community, the safety metric

of the replicated Chunk within the remote community will

drop, causing the Chunk to be replicated in a network that

the original content owner cannot access. To counteract

this, the selection process was modified to ensure “owner

presence”. To assess this, each seed that is a candidate for

retrieval must have a current replica that is advertised by the

content owner, within a time interval denoted by an owner

presence factor’ (this parameter is expressed as a proportion

of the safety window).

2) Request collision: Another issue that leads to over-

replication is that when a new node enters a network of

previously connected nodes, the existing nodes will learn

about new content at approximately the same time, and will

try to replicate it simultaneously. To avoid this, the list of

unsafe Chunks is shuffled by each peer prior to selection and

random offsets are added to each Chunk selection interval.

The throttling rate is also scaled by the number of local

peers currently detected, so that replication will proceed

more slowly in larger co-located groups.

C. Cloud integration

In the current prototype, an SFTP service is used to model

a passive central storage provider. Mistify connects to the

cloud service using a separate module that regularly checks

for connectivity and if available, initiates synchronisation.

Mistify also allows forwarding to the cloud via other (pos-

sibly untrusted) peers. To facilitate this, each user allows

public access to a known location in their cloud repository.

This is currently implemented using a special directory in

each user’s SFTP path. Each Chunk contains the necessary

metadata to allow other peers to locate the owner’s cloud

repository. Peers upload Chunk content into this repository,

and leave a serialised Entitlement to allow the owner to

identify the uploaded Chunk. When one of the owner’s

devices has connectivity to the cloud, it will process the

contents of the public directory, and move the associated

files to the appropriate locations in the main repository.

D. Encryption

In the current prototype, a lightweight encryption scheme

has been used. The main purpose of this is to show how

cryptography fits into the framework. A third-party library

known as “Jasypt” provides the bulk of the cryptographic

functionality. If a user subsequently wants to entitle some

Chunks to a group, an Entitlement is created, where each as-

sociated Chunk’s key is re-encrypted with the target group’s

key.

E. Haggle testbed

The trials were performed using a Haggle testbed, which is

built on a PC with an 8-core CPU and 24GB RAM running

Debian Squeeze, and installed with the Xen hypervisor. An

array of virtual nodes was instantiated on the testbed system.

Each of the nodes run a basic Debian-based operating

system, and also feature a Java runtime environment (for

running Mistify). The virtual nodes are each allocated with

128 megabytes of RAM, and a 1 gigabyte local disk. To drive

each trial, a test scenario runner initialises the environment,

starts the application on each node, and models changes

in topology by analysing events in a pre-collected network

trace. The original trace files contain records of connectivity

between nodes, which can be translated into scripts by

the scenario runner that block or allow traffic between the

corresponding virtual nodes over the virtual network bridge.

IV. EVALUATION

In order to evaluate the operation of the prototype under

realistic conditions, the testbed was driven by connectivity

trace data collected from a prior study [3]. In that study,

a group of 35 undergraduate students were given tracking

devices, which recorded contacts with other devices in close

range. In order to simulate this activity in the testbed

environment, the connectivity trace was used to activate

firewall rules on the host for the testbed’s virtual network.

Parameter Description Default

Advertisement rate The application will publish public Entitlements at a rate specified by this parameter. 15 seconds
Chunk safety
window length

Only Chunk replicas identified in public entitlements retrieved within this time interval
are considered in the safety calculation.

300 seconds

Target number of
replicas

Allows Mistify to attempt to maintain an increased number of (explicit) replicas per
Chunk.

1 replica

Owner presence
factor

In order to consider a Chunk for local retrieval, an Entitlement containing the Chunk
must be received from the Chunk owner, within the time interval specified by this
parameter. The value is expressed as a multiple of the safety window length.

0.5

Maximum number
of tracked peers

When calculating Chunk safety, the application will only use Entitlements from a
number of recently contacted peers, as specified by this parameter.

40

Locality replication
throttling rate

The application is able to request unsafe Chunks at a rate not exceeding this parameter
(scaled by the number of peers in the locality).

2 MiB / minute

Table I: Description of available parameters used to tune Mistify’s strategy subsystem.

For instance, when a period of connectivity between two

nodes began, a corresponding command would be executed

on the host, enabling network traffic between the matching

virtual instances in the testbed. The trace data from the

study spans several days, however for this trial a period of

three consecutive days from the trace was used. Time was

accelerated in the trials, such that one day of trace activity

passed in approximately five minutes. This has the effect of

reducing intra-contact time, which means that data throttling

rates must be set aggressively to allow effective replication.

The participants had varying characteristics in the contact

network. We define “aggregate degree” as the total number

of unique nodes that were in contact with a particular node

throughout the period, and “average degree” as the mean

number of contacts that a node had at each time interval.

A. Mist mode operation

In the first set of trials, Internet connectivity was com-

pletely disabled, forcing Mistify to make exclusive use of

decentralised local storage. To initialise the scenario, one

of the virtual instances was selected as a content owner,

and was populated with ten megabytes in 100 files. The

remaining participants were initialised with separate user

IDs, and would make use of locality replication to improve

the safety of the owner’s Chunks. For each of the trials,

traffic on the virtual network was recorded, in addition to

various metrics as seen on the content owner. The final state

of the content caches on each node was also recorded at the

conclusion of each trial. Unless otherwise stated, the default

tuning parameters as shown in table I were used in each trial.

In the following subsections, we discuss the effect of varying

each of the parameters in this scenario. The results of each

trial are summarised in table II. The results from this part

of the evaluation could be used to design specific policies

based on resource availability and user preference, which are

implemented using the tuning parameters described above.

1) Base case: In our first trial, the prototype was con-

figured with all parameters set to default values. A node

with approximately median characteristics was chosen as

the content owner (node 28, which was ranked 15th for

Configuration Availability Top 25% Replicas Explicit

Base case 0.97 0.94 1041 0.18

see §IV-A2

Node 34 0.92 0.90 782 0.14
Node 16 0.99 0.99 1077 0.12
Node 26 0.72 0.70 443 0.18

see §IV-A3

30s window 0.84 0.84 342 0.09
60s window 0.86 0.85 577 0.20
10m window 0.99 0.99 937 0.14

see §IV-A3

No presence 0.99 0.98 1133 0.10
0.1 Presence 0.79 0.75 506 0.12
0.25 Presence 0.96 0.81 890 0.21
1.0 Presence 0.93 0.85 924 0.15

see §IV-A3

5 peers 0.86 0.84 827 0.09
15 peers 0.92 0.92 897 0.17

see §IV-A4

1 MB/min 0.56 0.46 216 0.23
4 MB/min 1.00 1.00 1186 0.21

Table II: Final state of peers.

aggregate degree, and 21st for average degree). In table II,

the results after adjusting various parameters described in

the following sections is shown. “Availability” indicates the

proportion of Chunks that were replicated; “upper quartile

availability” shows the proportion of Chunks that were

replicated to the nodes closest neighbours; “replicas” shows

the total amount of Chunk replication; “explicit requests”

identifies the proportion of those replicas that were retrieved

as a result of an explicit request by the application. In an

ideal scenario, all Chunks would be replicated to a small

group of commonly contacted peers, and the number of

replicas created for each Chunk would be minimised. In

figure 2, the aggregate data rate of traffic over the duration

of the trial has been plotted, in order to show the level of

activity. Overlaid on the traffic graph are plots of medium-

term and short-term availability, as observed by the content

owner. This shows the proportion of Chunks that the owner

had seen on the network within the default safety window.

Note that these figures are measured at the application layer,

and therefore exclude implicitly replicated Chunks. In figure

3 (left), the distribution of files is shown, with respect to the

number of replicas that were found in the network. Separate

curves were plotted for explicit and implicit replication –

that is, replicas that were created due to a Chunk request

generated by Mistify, or replicas generated by Haggle’s

delay-tolerant forwarding subsystem (note that each explicit

replica is also counted as an implicit replica, since it will

occupy the content cache at the requesting node). A mean of

10.4 implicit replicas per Chunk were created. Conversely,

figure 3 (right) shows the cumulative frequency distribution

of the combined (implicit) Chunk replicas across the nodes

in the environment. The surge towards the right hand side

of the curve shows that there are a concentration of nodes

that receive substantially more replicas as a result of delay-

tolerant routing, which is also reflected in the upper quartile

availability figure.

2) Owner characteristics: The delay-tolerant platform

should allow any type of node to replicate its content

amongst the other nodes in the environment, possibly with

a longer propagation delay for those nodes that are not

well connected in the network. To evaluate this, a selec-

tion of nodes with specific characteristics were selected as

originators of content in separate trials. Node 34 had a

high average degree but only a median aggregate degree.

Node 16 had a high aggregate degree but a median average

degree. Node 26 was ranked in the bottom quartile for both

measures. In each graph, values for medium-term availability

(replicas seen within the safety window), and short term

availability (replicas seen within the time taken to publish

two Entitlements) are plotted, as observed by the Mistify

instance on the owner node. The application is only aware

of Chunks that have been explicitly replicated to other nodes

in the owner’s locality, which means the plotted figures

will underestimate Chunk availability. As one might expect,

nodes with a higher level of connectivity in the network

tend to see more replicas in their immediate locality. Table

II summarises the final distribution of both implicit and

explicit replicas in the network. In each case, over 70%

of the owner’s files were successfully replicated to other

nodes in the mist. Node 26 replicated fewer Chunks, but still

maintained a high rate of coverage. The figures for implicit

replication for all types of nodes suggest that if enough time

is allowed for retrieval over the DTN, even nodes with lower

than average connectivity characteristics should be able to

restore the majority of their Chunks if the need arises.

3) Safety evaluation: As described earlier, only Chunks

that a Mistify peer has seen advertised within a pre-defined

safety window are considered for local retrieval. Further-

more, the “owner presence” criterion requires that one of

the Chunk advertisements must originate from the owner of

that content, within a time period specified by the presence

factor parameter. The default safety window length of five

minutes roughly equates to 24 hours of accelerated time in

the trace data. An analysis of the connectivity trace for node

28 revealed a mean inter-contact interval of approximately

3.6 hours, or 45 seconds in the testbed environment. In

the next set of trials, the window size was set to 30,

60 and 600 seconds, holding all other parameters at their

default values. Interestingly, an order-of-magnitude decrease

in window length (from 600 to 60 seconds) only resulted in a

marginal decrease in Chunk availability (from 99% to 85%),

although it markedly reduced the number of replicas that

were produced. This result seems counter-intuitive, since a

longer safety window implies that a peer will avoid retriev-

ing Chunks with existing replicas for longer. To investigate

this further, the owner presence factor was also tested. The

trials were repeated using values of 0, 0.1 0.25 and 1.0 for

the presence factor (note that a value of zero has the effect of

disabling the owner presence check). The results appear to

show a similar pattern to the safety window figures, however

it seems that the act of enabling the presence check is enough

to significantly stem over-replication.

In the previous trials, the prototype was configured to

collect Entitlements from every other peer in the network.

In a network of the size used in these experiments, the

computational overhead imposed by tracking all peers is

unlikely to be significant. However, the tests were repeated

with the peer tracking limit set to 5 and 15 peers, to highlight

any differences in behaviour. The results do not show a

dramatic increase in replication – this is probably due to

the fact that many peers are already filtered out of the

safety calculation by the safety window and owner presence

criteria.

4) Throttling: The throttling rate is an upper limit on the

total amount of data in Chunks that a Mistify peer may

explicitly retrieve per time unit. A high rate may result in

over-replication of Chunks, while a low rate may result in

poor recoverability of Chunks. The trials were repeated with

the throttling rate set to 1000 and 4000 kilobytes per minute

(in accelerated time). Again, the results are presented in

table II. The results show an expected increase in Chunk

availability and explicit / implicit replication. Unfortunately,

the successive increases in replication coverage are relatively

minor compared to the amount of over-replication that

occurs.

B. Mixed mode operation

In the next scenario, the aim was to evaluate the effect of

introducing connectivity to a centralised storage repository.

There are two specific use cases that are demonstrated in

this section: firstly, the behaviour of the application when

Internet connectivity is restored at a specific time in the trial;

and the behaviour of the application when a subset of peers

are granted Internet access for the duration of the trial. All

tuning parameters were set to default values, and in these

trials all nodes were populated with one megabyte of data

in ten files, in order to mitigate any bias caused by selecting

a specific node as a content originator.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800 900

P
ro

p
o
rt

io
n
 o

f
m

a
x
im

u
m

Time (s)

Network traffic
Mid-term availability

Short-term availability

Figure 2: This graph shows the level of network activity in the virtual network, together with a local view of replica

availability from the perspective of the content owner. All parameters were set to default values for this trial.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

P
(n

<
N

)

Replicas per file

Implicit replicas
Explicit replicas

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
(n

<
N

)

Replicas per node

Implicit replicas
Explicit replicas

Figure 3: These cumulative distribution functions show how replicas were spread through the network in the base case trial.

The left graph shows the number of replicas seen per file, whereas the right graph shows the number of replicas stored at

each peer.

1) Cloud connectivity response: As shown above, util-

ising the mist carries the cost of Chunk over-replication.

A desirable property would be to ensure traffic in the mist

ceases as soon as Chunks are able to be replicated to the

cloud over an Internet link. However, just as Chunk adver-

tisements must propagate through the DTN to allow content

to be replicated, a similar advertisement must instruct peers

to stop replicating. To evaluate this response, a trial was

conducted where Internet connectivity was enabled on the

content originator at a specific time in the trace. Note that

delegated forwarding to the cloud was disabled in this case.

Specifically, the chosen connection time occurred at 50%

through the duration of the scenario. Figure 4 illustrates

network traffic seen in the virtual network over time, in

each of the trial cases. The graph shows that the surge in

replication traffic towards the end of the trace is avoided

when Internet connectivity is available – however, there is

still a moderate level of replication traffic, most likely caused

by earlier requests that have propagated through the network.

2) Delegated cloud backup: To evaluate the second

mixed-mode use case, subsets of nodes were randomly

selected from the network to act as delegated forwarders

of Chunks. The trial was conducted using groups of five,

ten and fifteen nodes with Internet connectivity enabled.

Each trial was repeated with ten different randomly selected

groups. The results are presented in table III. The table

shows the mean proportion of Chunks that were successfully

forwarded to the cloud repository in each trial configuration.

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800 900

N
e

tw
o

rk
 t

ra
ff

ic
 (

K
B

/s
)

Time (s)

Connectivity enabled at midpoint
No internet connectivity

Figure 4: These two network traces illustrate how Mistify

responds to the availability of the cloud. In the second trace,

Internet connectivity was enabled at a point halfway through

the trial.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400

S
iz

e
 o

f
c
lo

u
d

 r
e

p
o

s
it
o

ry
 (

K
B

)

Time (s)

5 peers
10 peers
15 peers

Figure 5: This graph plots the size of the cloud content

repository as it changes over time, with subsets of different

sizes connected to the cloud.

As discussed earlier, the current architecture means that

Mistify is only able to forward Chunks that have been

explicitly requested, since implicit replicas are hidden within

the Haggle layer. If access to Haggle’s content cache was

possible through API hooks, a higher proportion of Chunks

could be replicated to central storage. To get an indication of

the improvement in availability that could be brought about

by this, the prototype was modified to copy files directly

from Haggle’s content repository to the cloud (note that

these files are devoid of metadata, and therefore would not be

able to be restored by the owner). These figures are shown in

the next column of the table, and indicate that if the layering

constraints of the prototype were relaxed by allowing further

API access to Haggle’s internal workings, an increase of

2 to 2 times as much forwarded data may be possible. In

Number of forwarders Uploaded replicas

5 29.3
10 42.7
15 51.3
5 (modified) 76.3

Table III: This table shows the number of replicas that

were successfully forwarded to the cloud by random groups

of different sizes. The modified trial allowed implicitly

replicated content to be uploaded.

figure 5, traffic traces from three typical trials in this scenario

are shown, illustrating the improvement brought about with

more Internet-connected peers.

V. RELATED WORK

The type of applications that are most similar to Mistify

can be classed as “cooperative backup”. Examples include

Pastiche[4], Cimbiosys[5], MoSAIC[6] and PodBase[7].

Each of these applications make use of opportunistic storing-

and-forwarding to provide a short-term archival service.

Cimbiosys is a peer-to-peer filtered replication system,

which has been adapted to integrate with delay-tolerant

routing strategies. In that study, a vehicular network trace

was used to evaluate the efficacy of a messaging system

built on the prototype. MoSAIC also provides a similar

service to Mistify, with the aim of eventually forwarding

data to a central provider. The main difference is that Mistify

can make use of the underlying delay-tolerant forwarding

framework to map out more complex relationships between

users and their data.

Other research projects similar to Mistify have been devel-

oped to assist in the evaluation of lower layer frameworks.

For example the Anzere storage system makes use of a

constraint-based distributed execution framework known as

Rhizoma [8]. Anzere supports decentralised dissemination

and collaborative storage of smartphone files such as im-

ages and videos. Conversely, the Courier smartphone-based

system uses a host-centric mechanism to allow higher level

applications to take advantage of storage capabilities offered

on peer devices, through the service [9]. As an example,

the authors developed an application that utilises the storage

service to “swap out” files on a smartphone with a local

storage repository, increasing the smartphone’s “virtual”

storage capacity in a similar manner to a memory paging

system.

Another branch of distributed storage research has fo-

cused on improving consistency of updates to data. The

Bayou database [10] is seen as a pioneering example of

using weak consistency replication techniques to provide

file synchronisation operation in a frequently partitioned

network. The PRACTI framework followed on from that

project, which defines the necessary requirements for an

efficient “eventually consistent” storage system, utilising

version vectors and partial replication. Mistify could be

enhanced with PRACTI functionality, to allow storage of

collaborative data. Erasure coding instead of replication is

another possible option, however we must first establish

whether or not an erasure coding approach is feasible in

networks of this nature [11].

VI. CONCLUSIONS AND FUTURE WORK

Mistify is able to provide a reasonable level of safety

for content, in the absence of Internet connectivity and

even for users with limited local connectivity. It is able

to achieve a high level of file coverage without flooding

the network with replicas. Finally, Mistify is also able to

leverage cloud connectivity, even when only a fraction of

participants in the community are Internet-connected. The

results presented above will also provide the basis for a more

adaptive tuning system, which modifies parameters such as

the safety window and throttling rate at run time, in order

to adapt to different types of network conditions.

As discussed above, providing API access into Haggle’s

content store will allow Mistify to learn about implicitly

replicated Chunks that have accumulated due to delay toler-

ant forwarding. This will allow the application to react to this

type of traffic and reduce over-replication. Another approach

would be to modify the functionality of Haggle’s interest

objects, by allowing the application to specify a scope for

each interest. This would allow Mistify to specify a general

interest in Chunks from the local content repository, interests

in local Chunks only from direct neighbours, and interests

in remote Chunks via delegated forwarding. Extending this

further, interests could be marked with a “time to live” field,

to reduce the effect of poor Chunk selections that propagate

widely through the network. Finally, the application will

also need access to Haggle’s resource management layer.

This will allow it to throttle traffic flowing through the peer

due to implicit replication, which is currently not able to be

controlled by Mistify.

Further development of the application will require trace

data from other studies. Of particular interest are con-

tact traces which also record the availability of network

infrastructure to each participant. This will allow us to

conduct mixed-mode tests without needing to randomly

select Internet-connected participants. The testbed environ-

ment will also need to be upgraded with further resources

in order to be able to conduct larger-scale experiments with

hundreds of nodes. These types of experiments will allow

us to assess the scalability of the application (in terms of

users and content), which needs to be ensured before any

live user trials will be possible.

ACKNOWLEDGEMENT

This research is part-funded by the EU grants for the

RECOGNITION project (FP7-ICT 257756) and the EPSRC

DDEPI Project, EP/H003959.

REFERENCES

[1] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot,
A. Goel, M. H. Lim, and E. Upton, “Haggle: seamless
networking for mobile applications,” in Proceedings of the
9th international conference on Ubiquitous computing, ser.
UbiComp ’07. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 391–408. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1771592.1771615

[2] A. Lindgren, A. Doria, and O. Scheln, “Probabilistic
routing in intermittently connected networks,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 7, no. 3, pp. 19–20,
Jul. 2003. [Online]. Available: http://doi.acm.org/10.1145/
961268.961272

[3] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: Social-
based Forwarding in Delay Tolerant Networks,” in MobiHoc,
2008.

[4] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche:
making backup cheap and easy,” SIGOPS Oper. Syst. Rev.,
vol. 36, pp. 285–298, December 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844155

[5] P. Gilbert, V. Ramasubramanian, P. Stuedi, and D. Terry,
“Peer-to-peer data replication meets delay tolerant network-
ing,” in Distributed Computing Systems (ICDCS), 2011 31st
International Conference on, june 2011, pp. 109 –120.

[6] L. Courtes, O. Hamouda, M. Kaaniche, M.-O. Killijian, and
D. Powell, “Dependability evaluation of cooperative backup
strategies for mobile devices,” in Dependable Computing,
2007. PRDC 2007. 13th Pacific Rim International Symposium
on, dec. 2007, pp. 139 –146.

[7] A. Post, P. Kuznetsov, and P. Druschel, “Podbase: transparent
storage management for personal devices,” in Proceedings
of the 7th international conference on Peer-to-peer systems,
ser. IPTPS’08. Berkeley, CA, USA: USENIX Association,
2008, pp. 1–1. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1855641.1855642

[8] Q. Yin, A. Schpbach, J. Cappos, A. Baumann, and T. Roscoe,
“Rhizoma: A runtime for self-deploying, self-managing over-
lays,” in Middleware 2009, ser. Lecture Notes in Computer
Science, J. Bacon and B. Cooper, Eds. Springer Berlin /
Heidelberg, 2009, vol. 5896, pp. 184–204.

[9] A. Karlson, G. Smith, B. Meyers, G. Robertson, M. Cz-
erwinski, A. Karlson, G. Smith, B. Meyers, G. Robertson,
and M. Czerwinski, “http://research.microsoft.com courier: A
collaborative phone-based file exchange system,” 2008.

[10] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch, “The bayou architecture: Support for data
sharing among mobile users,” in IEEE WMCSA, 1994.

[11] W. Lin, D. Chiu, and Y. Lee, “Erasure code replication
revisited,” in Peer-to-Peer Computing, 2004. Proceedings.
Proceedings. Fourth International Conference on, aug. 2004,
pp. 90 – 97.

