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Abstract—Community Cloud computing is a new trend on
cloud computing that aims to build service infrastructures upon
Wireless Community Networks taking advantage of underused
community physical resources. Service allocation protocols are
a key design challenge that all cloud systems must properly
address to optimize resource utilization. They are specially
important when cloud services requires a Quality of Service (QoS)
and network stability or performance (delay, jitter, minimum
bandwidth) cannot be guaranteed a-priory. This work presents
a study that tries to understand how to address cloud service
deployments in such scenario. In particular, we start proposing
an allocation algorithm to find optimal solutions when there is
a central authority that coordinates the process. These solutions
optimize the communication cost in two ways: (1) minimizing the
service overlay diameter and, (2) minimizing the coordination cost
along the network. Based on the study of the algorithm and the
experimental simulations, we study the variables that outcome
optimal service allocations in detriment to other solutions. We
verify these findings using data mining techniques. Researchers
can take advantage of the simulation results and our observations
to design more reliable distributed algorithms able to dynamically
self-adapt to network changes.

Keywords—Service allocation, community cloud, wireless net-
work

I. INTRODUCTION AND MOTIVATION

Wireless Community Networks (WCN) showed up as a
cutting-edge model of open communication infrastructure,
as they offer low-cost but participatory connectivity to cit-
izens. These novel infrastructures are constructed, operated,
maintained and owned by the citizens themselves and bring
closer information technologies to underdeveloped countries or
isolated areas often out of the plans of traditional telecommu-
nication operators. Many of them succeeded in the recent years
across the world as non-profit actions, thanks to the progress
of ad-hoc wireless technologies. Guifi.net [1], Athens Wireless
Metropolitan Network [2], FunkFeuer [3], Seattle Wireless [4]
and Consume [5] are the most fruitful exponents of community
Internet access providers.

Through their openess, neutrality and the effort of their
own members, Guifi.net [1] [1] has become the world’s bigger
independent wireless community network. Mainly deployed in
Catalonia (Spain), it has more than 17,000 operative nodes
and up to 30,000 km of links. It uses a growing pattern mostly
based on planed radio-link deployment adapted to each region.

As a result, the network topology contains many recognizable
topology patterns also present in other community networks.

Beyond participants’ initiatives to improve the Internet
access or increase the network quality and security, most
community members also devote efforts to build and deploy
distributed and scalable applications. This useful applications
(e.g. web or FTP servers, monitoring systems) are typically
provided to other community members as an open-access
service, often without any other form of recognition than pro-
moting the community network usage. As a natural evolution
of this model, some communities started to provide mecha-
nisms that regulate and normalize how their members deploy
services or contribute with their computational resources. In [6]
authors adopted the term Community Cloud Computing to
describe such contributory systems that provide community-
based services upon Wireless Community Networks.

Several initiatives can be found in the literature of
community-based clouds, like Cloud@Home [7], Nebulas [8],
Contributory Communities [9] or Clommunity [10]. They all
set the trend on the aggregation of user-donated computing
resources in such a way they can be regarded as a platform
to provide long-lived services, as happens in traditional cloud
computing.

A common particularity of these scenarios is that cloud
services coordination and performance computing are highly
dependent on the diversity caused by the networking charac-
teristics of their host being in a community network. Some
examples of such diversity are: (a) network deployment based
on geographic singularities rather than network QoS, (b) pow-
erless and heterogeneous network – and computation – equip-
ment or (c) wireless radio links with asymmetric quality of
services.

This paper aims to explore the consequences of a local
service allocation in a particular wireless community cloud,
called Clommunity, such that minimizes the coordination cost
of such services. In our proposal, service locality is defined as
a service deployment which guarantees a solution overlay with
minimum diameter. A typical service with this requirements is
a redundant information backup. The coordination cost, which
in Clommunity is associated to the use of nodes from different
administrative zones, has been also minimized looking for
placement solutions that traverses a minimum number of
zones. In the previous example, is has also sense for the clients



if they want fast access to their backup content.

To evaluate the potential interest of our idea, we employed
a topological snapshot from Guifi.net community network
taken on April 2013. We assumed a central coordination
entity that has knowledge about the WCN topology in real-
time, which is not improvable due the Guifi.net monitoring
agregation system. Then, we used an exploratory algorithm to
find all the optimal and sub-optimal service overlay placement
on the Guifi.net core network, namely the minimum sub-
network diameter that traverses less zones in Guifi.net network
backbone representation.

The results of this paper focus on the study of the selected
deployment features, rather than providing a straightway im-
plementable algorithm for a real-world scenario. The experi-
mental results were also validated using wll-known machine
learning techniques. Our main contribution is to provide results
that can be easely generalized to build descentralized diame-
ter and zone optimal algorithms for service deployments in
Community Cloud Computing systems.

The rest of the paper is structured as follows. Next section
(II) describes the experimental scenario we used to perform
our study. In Section III we present an exploratory service
allocation algorithm. We present and discuss the obtained
results in Section IV. We then analyze in detail these results
using machine learning techniques in Section V. Related
researches to our proposal and analysis are listed and described
in Section VI. Finally, Sections VII and VIII close the paper
with the lessons learned and conclusions of our work.

II. SYSTEM MODEL

In this section we present the models used to carry out our
simulations. The Guifi.net community network was modeled
using the previous work presented in [11] [12] based on data
collection and experimentation over the real network. Further-
more, the computational model is based on the Clommunity
project specifications.

A. Network structure

Current community networks consist of a set of locations
interconnected through mostly wireless equipment that users
— different stake-holders such as individuals, companies,
administrations or universities — must install and maintain
in addition to its links, typically on building rooftops. These
hardware devices can be either low power computers that
provide some service to network devices connected to them
or network devices that create network connections to other
nodes, namely links. These nodes and links are organized
under a set of mutually exclusive and abstract structures called
administrative zones, which represent the geographic areas
where nodes are deployed.

After long-term observations of the community members
behaviour, we can also infer some properties that could assist
us to build our model:

1) Network planning. New nodes are added to the network
to cover needs or improve particular network quality.
Therefore, new equipment or links only become opera-
tional after an intensive test period. Thus, it is guaranteed

any two nodes would eventually be able to communi-
cate unless a great variation of external conditions (e.g.
weather, interferences, etc).

2) Long-term equipment contributions. Even though users
are responsible to fund and maintain their devices, the
operational cost is close to zero. Hence, users usually
show no interest in withdrawing them unless there is an
external and improvable reason (e.g. a legislative change).

For our purpose, both properties enables the static, un-
weight and bidirectional topologies proposed in [11] [12] as
a realistic network model where nodes can always be reached
by others. In such models, network topology was divided into
two representation graphs called base-graph and core-graph.

The base-graph of Catalunya Guifi.net has a node if and
only if (a) its location is marked as “Working” status; and
(b) at least one of its operational devices is connected to
another node device. Hence, it represents the whole network
(core infrastructure and clients). The core-graph consists on a
subgraph from the first one on which the terminal nodes of the
graph (i.e. leaf nodes) were removed. So, it does not contain
client nodes. Table I overviews the main properties of the base
and core graphs that we used in our study.

Table I. PROPERTIES SUMMARY OF THE USED NETWORK GRAPHS

nodes/edges
degree

max/mean/min diameter zones

Base-Graph 8907/9047 495/2.03/1 26 129
Core-Graph 419/559 27/2.67/1 24 85

Figure 1 depicts the resulting zones partition graph of the
Guifi.net core-graph. The size of each vertex is proportional to
the number of Guifi.net locations contained in that zone, while
the thickness of the edges stands for the number of physical
links between nodes on both connected zones. The base-graph
zones partition graph is not printed because we focused the
service deployment on the core-graph only.

Figure 1. Guifi.net zones partition graph.



As the zones partition graph represents a geographic struc-
ture, it is not surprising that it contains some zones weakly
connected – geographic innaccesible areas – and other with
high degree of connectivity – surrounded by many other zones.

B. Clommunity architecture

Clommunity architecture is based on a hybrid peer-to-peer
model with three hierarchical levels of responsability. On each
level, their members are able to share information between
themselves. However, their coordination is managed by some
peer designated from the inmediate upper layer. Three types
of peers can be easily identified:

1) Resource nodes are networking and computing equip-
ment placed along the Wireless Community Network by
users. Besides than contributing as any other “conven-
tional” participant to the maintenance of the network
quality and stability, they also share all or part of their
physical resources to other community members in an
infrastructure as a service (IaaS) fashion. Our model
assumes all of these nodes have the same tye and amount
of resource, in such a way that from the service point of
view there is not allocation preference.

2) Zone managers are single nodes – only one within each
zone – selected among all the resource nodes with the
extra responsability to manage local zone services and
coordinate inter zones agregated information. In practice,
these managers are selected nodes with powerful compu-
tational capabilities and high availability.
Our model does not explicitly identifies these managers
and assumes the existance of at least one of them in each
area. However, our model reckon with the coordination
cost of placing services in computational resources be-
longing to different zones. Thence, our aim is to account
and minimize the zone traversal of services.

3) Controller is a unique centraized entity in our system. It
manages all the service allocation requests from the users
and updates service structures by pulling the configuration
information for the zone managers.

C. Allocation model

With the intention of generalizing the allocation model for
community services, we made few assumptions that give to
our model the flexibility to adapt to many different types of
real services and conditions. We considered a service a set of
S generic processes or replicas (with different roles or not)
that interact or exchange information through the community
network. Each of these replicas will be deployed over a node in
the network, creating a service overlay graph with the selected
nodes. Each of these nodes will host one and only one process,
no matter which service it belongs to.

It is important to remark the services aimed in this work
should be at infrastructure level, as cloud services in current
dedicated datacenters. Therefore, these services would be only
deployed over the core resources of the network (the ones in
the core-graph) and accesed by the base-graph clients. One step
further in the descentralization strategy would be to include
user-hosted services, similarly as done in volunteer computing
or in the Contributory Communities proposal.

Finally, our goal is to obtain service allocations that present
the minimum possible distance in number of hops between the
two furthest selected resources. To achieve this, we will only
consider service overlays with no partitions on it, which will
asure the elected nodes are as close as possible in the network
topology.

III. SERVICE ALLOCATION ALGORITHM

We devised an algorithm that explores many different
allocations seeking for local minimal diameter services lever-
aging the administrative split of Guifi.net in different zones
(Algorithm 1).

The algorithm constructs different service allocations
within each zone and angles for the local optimal by comparing
them using the ISBETTER() method. This method evaluates the
service diameter and, in the case of equal diameter allocations,
the mean outdegree (understood as the mean boundary of the
nodes in the service overlay with the nodes outside of it).
The service allocation with smallest diameter and largest mean
outdegree is kept as the optimal.

After that, it starts an iterative process of joining adjacent
zones and applying the same search process on these aggrega-
tions, scavenging for more optimal allocations by combining
nodes in several network areas. Once all the zones and zone
compositions are evaluated, the best found service allocation
(evaluated as in the zone search process) is chosen as the actual
service allocation in the network.

Algorithm 1 Find optimal diameter service overlay
Require: N(Vn,En) . Network graph
Require: Z(Vz,Ez) . Zones graph
Require: S . Number of nodes in the service
Require: L . Number of zones to aggregate

1: bestSer ← null
2: for all Vzi∀i ∈ Z do
3: bestSer ←EVALZONE(

N,Z, Vzi , Vn ∈ Vzi , S, L, bestSer)
4: end for
5: optSer ← null
6: for all service ∈ bestSer do
7: if ISBETTER(service, bestSer) then
8: optSer ← service
9: end if

10: end for
11: return optSer

Algorithm 1 relies on the method EVALZONE() to evaluate
the different service allocations in a zone and generate the
adjacent node aggregations, as sketched in Algorithm 2. The
algorithm iterates through the nodes in that zone and selects
the closest S − 1 nodes in number of hops (using method
MINDAROUND(). This allocation is then compared with the
best allocation found so far for that given zone or zone
aggregation and if it reduces the diameter or increases the
outdegree, it is kept as the new optimal allocation. From now
on we will refer to the solution that overlay optimizes diamter
and the number of zones travesed as the optimal solution. In
the same way we will refer to evaluated solutions that only
optimizes the solution diameter as sub-optimal solutions.



The auxiliar MINDAROUND() method runs a Breadth-First-
Search algorithm (BFS) in the network graph taking as root
the given node and selects the first S − 1 closest resources to
it. In the case of several nodes at the same distance, nodes
are selected randomly. Thanks to this feature, our algorithm
performs faster than a pure exhaustive search procedure, since
size equivalent allocations are not evaluated.

Algorithm 2 Find optimal diameter node set in a zone
Require: N(Vn,En) . Network graph
Require: Z(Vz,Ez) . Zones graph
Require: zone . Selected zone in Z
Require: nodes . Nodes in zone
Require: S . Number of nodes in the service
Require: L . Number of zones to aggregate
Require: bestSer . Map of best services for each zone

1: procedure EVALZONE(N,Z, zone, nodes, S, L, bestSer)
2: L← L− 1
3: bestSer[zone]← null
4: for all node ∈ nodes do
5: service←MINDAROUND(N,nodes, node, S)
6: if ISBETTER(service, bestSer[zone]) then
7: bestSer[zone]← service
8: end if
9: end for

10: if L > 0 then
11: for all neighbor of zone ∈ Z do
12: newNodeSet← nodes+ Vn ∈ neighbor
13: bestSer ←EVALZONE(

N,Z, neighbor, newNodeSet, S, L, bestSer)
14: end for
15: end if
16: return bestSer
17: end procedure

Notice the same set of nodes might be obtained from
different root nodes, since allocations in near network areas
would involve the exact same nodes. This phenomena is caused
by the randomness introduced in the MINDAROUND() method
to determine the closest nodes to a given resource. We avoid
re-evaluating these allocations by a cache mechanism. We also
use a similar mechanism to avoid evaluating several times the
same zone aggregation. However, we omitted both features in
Algorithm 2 for simplicity.

Although we are aware this algorithm is not a fast heuristic
to quickly find optimal allocations, its simplicity and the
wide range of evaluated allocations allowed us to perform
several studies over the network and so understand the traits of
Guifi.net. Notice that given a first node as stating searh point,
the algorithm only needs local information to find the sub-
optimals overlays around her – using a well-known BFS search
tree. Hence, if the Controller was able to properly select the
initial zone manager – as the less computationally loaded zone
– our algorithm would be easily implementable in a distributed
manner.

IV. EXPERIMENTAL RESULTS

We used the search and selection methodology early pre-
sented in Section III to simulate the allocation of several

services in Guifi.net. The challenge was to determine key
features of the network and its nodes that could help us to
design new heuristic framework for local service allocation in
community networks.

Our first interest was to ascertain the minimal diameter
that could be obtained when allocating services of different
sizes and how zones were aggregated to achieve that. Figure 2
shows for each different service of n nodes (3, 5, 7, 10, 15 and
20) both (a) the diameter of the service overlay (as minimum,
maximum and average values) and (b) the average number of
zones traversed by each bucket of optimal solutions.

Figure 2. Obtained service diameter (max, min and average) and number of
aggregated zones (average) for different optimal service overlay orders.

Notice that it is always possible to find an optimal service
allocation with an overlay diameter of 2 hops within Guifi.net.
Aditionally, the average solutions diameter increases as the
number of nodes that composes the services does. It is also
interesting to discover that the average number of aggregated
zones considered to find the optimal allocation does not depend
on the service size. Both behaviors indicate the existence of
nodes with very high degree values, either within the same
zone or between several zones in the network topology.

Next sections are focused on finding the patterns that
identify these solutions and which nodes’ properties lead to
optimal service allocations in terms of overlay diameter and
zone traversal.

A. Effects of multiple zones traversal

The Guifi.net split in administrative areas appeared to be
a property to explode when allocating local services, in which
seems reasonable to place the service replicas close to its final
users. Therefore, we were interested on finding out how many
nodes in the network were at one hop of any service replica
when the final allocation was done across different network
zones.

We plot in Figure 3 the cumulative probability function
(CDF) of the number of nodes in the network base-graph
that are at a single hop to any of the nodes in the optimal
service overlay. Different zone agregation sizes are considered
independently.

As one can logically expect, Figure 3 shows that the
more zones are taken into account for resource selection, the
more nodes are at one hop of any of the allocated replicas.



Figure 3. CDF of base-graph nodes at 1 hop to optimal solutions components,
for 1, 2, 3 and 4 zones solutions.

This result is very reasonable because the selected nodes are
spread along geographic larger network areas and so, closer to
many other nodes in the whole network. For instance, around
50% of the service allocations obtained considering only one
administrative zone had about 100 nodes or less at one hop.
However, 17% of the solutions reach the same limit of nodes
at one hop if the considered resources are from four different
zones. We did not expand the network aggregation to larger
values due to the locality nature of the intended services: the
more nodes regarded as the node election area, the further the
service could end up placed, breaking the intended locality.

Other experiments were performed switching the diameter
of the solutions and showed there is not a clear correlation
between the number of nodes reachable at one hop and the
sub-optimal solutions that minimizes the overlay diameter.

B. Impact on dynamic deployment

One of the intentions of this research is to discover patterns
that could lead us to a robust service allocation mechanism
for long-lived services in communitary environments. In such
systems, it is likely that more than a few services should be
handled, leading to a scarcity of resources to provide optimal
allocations. Therefore, we inspected the similarity of the dif-
ferent possible service overlays under diverse circumstances,
regarding the service size and the number of aggregated zones.

We defined the correlation coefficient for a set of solutions
as the average percentage of common nodes after comparing
each pair of solutions on the set. Figure 4 shows this correla-
tion coefficient between optimal and sub-optimal solutions for
six different node deployments. The horizontal axes stands for
the diameter difference between the compared node selections.
For example the diameter difference 1 corresponds to the
comparison of all solution with diameter d (from 1 to 8) with
their adjacent solutions of diameter d - 1 and d + 1. The zero
position stands for all the solutions with the same diameter.

The results show that the larger the service, the more
likely the selected resources would be the same if we want
to maintain the smallest service diameter. This is due to the
fact the same nodes would be involved in all the allocations of
minimal diameter because they are the ones with higher degree
values. Therefore, very few services of large size (>10 nodes)
could be supported if only the absolute optimal allocation is

Figure 4. Solutions’ correlation coefficient on diameter-adjacent service
allocations

required. On the other hand, dealing with small services (<10
nodes) should be easier in this kind of networks. Notice that
both observations are independent of the diameter difference
between solutions.

Moreover, Figure 4 also shows that the correlation co-
efficient between two services decreases as their diameter
difference increases. This fact implies that in a dynamic cloud,
in which services are allocated and deallocated continuously, if
we want to maximize the number of supported services, non-
optimal overlays should be allocated to some cloud consumers
in certain circumstances. Accordingly, we must introduce
a tradeoff between services allocation optimization and the
number of effectively allocated services.

Figure 5 shows the overlay correlation coefficient when
aggregating all optimal and sub-optimal solutions found after
evaluating 20-node service allocations. In each case, we ploted
the diamter difference between solutions and the number of
different zones traversed.

Figure 5. Solutions’ correlation coefficient on diameter-adjacent and zones-
adjacent for 20-node service allocations

Figure 5 indicates the same logical phenomena for network
locality observed earlier. As long as the size of the adjacency
diameter increases, the correlation coefficient between solu-
tions decreases. Moreover, as a general rule, the agregation of
solutions in zones shows that there is no significant impact. The
artifact shown by the 2-diameter / 3-zones different solutions
could suggest that there is a big exception to the general
rule observed. However, it is caused by the concentration of



the space of solutions in two unique sets (1 and 2 adjacent
solutions difference).

C. Solutions’ dependency on social graph parameters

As we explained earlier, our algorithm searches in a large
space of solutions, looking for those that minimize the overlay
diameter. Identifying the properties of the chosen nodes that
makes more likely to have a smaller diameter overlays would
help us to design future efficient algorithms that reduces the
comptutation time using greedy randomized heuristics.

As a first step in this direction, we decided to check the
importance of nodes degree centrality metric. Degree Central-
ity is defined as the fraction of the nodes that a particular
node is directly connected to. The nodes with higher degree
centrality have more connections to the rest of the network
and intuitevilly, are better candidates to build smaller degree
sub-graphs.

Figure 6 exposes in a scatterplot the relationship between
the average degree centrality of the resources in a service
overlay and its diameter for service allocations. To ease the
understanding of the figure, we plotted only services of 10, 15
and 20 components.

Figure 6. Service overlay diameter in function of the average degree centrality
of the selected resources for 10, 15 and 20 nodes services

The analysis of Figure 6 shows that most of the solutions
are concentrated on a small set of average centrality values
(from 0.043 to 0.016). As a general rule, overlay networks
that have higher diameter are composed by nodes with lower
degree centrality. These results follow our intuition that the
number of neighbours that a node is connected to defines their
chances to easily reach the number of nodes needed to build
the service.

Recall that on Section IV-A we discussed the independency
between solution diameters and the number of nodes directly
connected to the service overlay in the base-graph. That means
the increment of the average degree centrality of optimal
solutions can only be explained by the increase of the intra-
solution connectivity in the overlay graph. As a result, smaller
diameter solutions are also the most intra-connected ones.
Hence, these solutions are more resilent to network failures
and graph partitions.

A similar analysis performed using other social graph
metrics (e.g. betweness centrality or nodes’ degree) did not

show a clear correlation. However, next section presents a
comprehensive analysis on such solution components.

V. ANALYSIS OF SOLUTIONS PROPERTIES AND
SOLUTIONS COMPONENTS

Feature selection is an important step to identify the
components of a system that makes some results better or
more desiderable than others. These techniques are specially
useful when datasets have many variables and possibly cor-
related data, but it is necessary to first discard non-relevant
variables [13]. This process, known as feature subset selection,
uses machine learning techniques to reduce the space of
possible solutions [14].

Our main objective is to reduce the properties of the nodes
– as individuals, but also their collective ones – that are
members of optimal service allocations. By clearly identifying
them, we would able to improve our search algorithm in terms
of elapsed time, communication cost and information needed.

We created six different datasets, one for each of the service
sizes we simulated. The datasets are composed by all solutions
evaluated by our Algorithm 1 (see method ISBETTER() on
line 7), no matter if they are optimal, sub-optimal or another
minimum diameter solution not evaluated. Additionally to the
diameter of the solutions and the number of zones travessed,
we also evaluated the following features for each solution:

1) isOptimal. This feature is a boolean that indicates
whether a given solution has been finally selected by our
algorithm or it is an intermediate solution evaluated and
discarted. It helps the algorithms to avoid false positives.

2) Core-graph neighbors. This feature counts the number
of nodes at 1, 2 and 3 hops to the selected overlay in
the core-graph to detect local communtiy properties that
make some solutions better than others.

3) Base-graph neighbors. This feature counts the number
of nodes at 1, 2 and 3 hops to the selected overlay in the
core-graph. The idea is to filter dependencies between
core-graph and base-graph communities.

4) Nodes’ degree. This feature lists the degree of each node
in the solution. It is intended to measure the fact that
a more connected node is more likely to build a low
diameter tree with the required number of nodes around
her.

5) Nodes’ degree centrality. This feature lists the sorted
degree centrality of each node in the solution. Our simula-
tion results have shown that the solution diameter depends
on this parameter.

6) Nodes’ closeness centrality. This feature lists the sorted
closeness centrality of each node in the solution. It is
defined as the inverse of the average distance to all
other nodes and is a good measure on how efficient is a
particular node to propagate information in the network.

7) Nodes’ betweness centrality. This feature lists the sorted
betweness centrality of each node in the solution. For
a node n is defined as the sum of the fraction of all-
pairs shortest paths that pass through n. Previous results
demonstrated that solutions have a dependency of the
degree centrality but not in betweness centrality. We are
specilly interested on discovering the existence of any
kind of equivalence.



A. Feature selection algorithms

We took advantage of the Weka machine learning frame-
work [15] to execute two very well-known feature selection
algorithms: (1) Correlation-based Features Subset Selection
(CFS), and (2) ReliefF. The objective of both algorithms is
to detect relevant features that we can after analyze to detect
and use patterns to build better allocation algorithms. Next, we
present a brief description of both algorithms:

Correlation-based Features Subset Selection (CFS): eval-
uates the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the
degree of redundancy between them. The algorithm selects
subsets of features that are highly correlated with the class,
but having low correlation between them.

ReliefF: evaluates the worth of an attribute by repeatedly
sampling an instance and considering the value of the given
attribute for the nearest instance of the same and different class.
The independent searching of this algorithm also provides a
“relevance” weight to each feature, but it does not consider
redundant or correlated results.

B. Selecting and analyzing features

We run the selection algorithms multiple times with differ-
ent combination of objectives, meaning triying to “guess” the
solutions with minimum diameter or the solutions marked as
better. As we expected, both algorithms returned the diameter
as an important feature to mark as best a particular solution,
but not vice versa. This result is consistent with our overlay
evaluation, as the minimum diameter is a necessary condition
but not sufficient.

Another important difference between both algorithms is
that ReliefF suggested particular nodes identifiers as a key
feature. It was useful to check the correlation coefficient results
presented in Section V, but it was useless to detect generic
features. Hence, to reduce the ReliefF resulting feature set
while keeping the optimal salient characteristics of the data, we
removed the node identifiers as a trait. Then, both algorithms
provided comparable information.

In order to minimize the diameter of the selected solutions,
CFS proposes to use the minimum nodes’ degree centrality,
some random degree centrality values and the maximum
nodes’ closeness centrality as the key features. Nevertheless,
to evaluate the best solution, it becomes more important use a
combination of degree, minimum nodes’ closeness centrality
and nodes’ the medium betweeness centrality features. ReliefF
algorithm in contrast, selects a complicated and not connclu-
sive combination of the previous values.

Using selected features and the experimental sets, we run
the PART algorithm [16] to build a decision tree to classify all
posible solutions and try to find optimal ones. The algorithm
builds a tree with 41 different rules and is able to classify
correctly 94.5767% of the solutions.

However, using only the first rule rovided by PART we are
able to classify more than 50% of the solutions with a single
error comparing only three items: (1) minimum closeness
centrality, (2) maximum betweness centrality and (3) maxi-
mum degree. This restrictive combination of conditions is not

applicable to select the first node of the optimal solutions
to construct the overlay around it, but it will help us to
filter similar candidates in the EVALZONE() procedure (see
Algorithm 2).

VI. RELATED WORK

Service placement is a key function of cloud management
systems. Typically, it is responsible of monitoring all the
physical and virtual resources on a system and balance their
load through the allocation, migration and replication of tasks.
The very final goal is to guarantee the service level agreement
with the user, as well as to optimize the cloud consumption
cost. Although the problem has been studied in centralized
scenarios for a long time, it is still a studied issue in distributed
architectures where network QoS has an important impact on
the computational performance.

Among others, in [17] authors proposed an optimal allo-
cation solution for ambient intelligence environments using
tasks replication to avoid network performance degradation.
Replication introduces an extra computational cost and turns
the network to transitory states where it is not operable, which
defeats this kind of solutions on large-scale networks.

A recent work by Rius et.al. [18] proposes a two-level
architecture to solve the scheduling placement problem in
large-scale computing systems. The main idea behind, similar
to those applied in Clommunity, is to divide the resources
in smaller areas controlled by low-level schedulers (LS). LS
monitor their resources and apply policies at fine-grained level.
All LS are controlled by a higher-level scheduler (HS) that
coordinates them to distribute the tasks in a balanced and
efficient manner. However, even it is a very promising work,
it still lacks of QoS guarantees.

As far as we known, there are only two researches in the
literature that provides service placement in distributed clouds
with network-aware capabilities. While in the first one [19]
– tested by [20]– authors propose a selection algorithm to
allocate resources for service-oriented applications, the second
proposal [21] focuses on resource allocation in distributed
datacenters.

Notice that all these proposals emphasize the network
latency or the resources distance as an utility measurement of
the service deployment quality. Intuitively, it makes sense for
local services, because the closer the resources are – in terms
of network distance – the fewer communication overhead our
cloud service will suffer. We use the same metric in our evalu-
ation, but we wanted to introduce the coordination assesment,
understood as the extra overhead caused by communication
between different groups of resources.

VII. LESSONS LEARNED

After the detailed analysis of our results and the machine
learning study, we summarize the lessons learned about opti-
mal solutions for service allocation on static community cloud
scenarios and their characteristics.

Coordination cost. In our experimental model, the coordi-
nation cost has been revealed almost fixed between 2 or 3 zones
traversal on optimal solutions. However, the number of zones
over which a given service is deployed have a huge impact on



the number of clients that will have fast access to the service.
Hence, new algorithms must take into account there is a trade-
off between the coordination cost and their service availability
and reachability in the network.

Solutions components and properties. A clear pattern has
been also observed in the node features that conform the
optimal allocations. They reveal the minimum degree centrality
can be used to select the first node that compose the service.
However, selecting the next nodes in a particular range of
closeness and betweness centrality is specially useful to obtain
more optimal overlays.

VIII. CONCLUSIONS AND FUTURE WORK

Community networks provide a perfect scenario to deploy
cloud platforms to share services and resources in a contrib-
utory manner to their members. Recent works were focused
on designing techniques and scalable architectures to provide
proper service allocation, but to the best of our knowledge,
none of them studied the task coordination issues.

In this work we introduced an allocation algorithm that,
far from being optimal in computation times, provides optimal
overlay allocations without need to verify the whole solution
space. We used this first implementation as a baseline to
identify node traits in the optimal service allocations. Addi-
tionally, we discovered and discussed some general rules that
will ease the decentralization of the algorithm in a dynamic
environment.

In future research, we plan to develop and implement
a decentralized version of the presented algorithm, taking
advantage from the lessons learned about nodes’ selection.
Furthermore, we want to investigate cloud scenarios based
on users contributed resources. Introducing such hetereogene-
ity and network dinamism will require to consider network
partitions and nodes temporal availability. Moreover, other
kind of services will need other overlay requirements, like
geographic distribution or graph coverage. In other words, we
plan to generate a fast response greedy allocation algorithm
to provide network-awareness to multiple community cloud
services deployment. Finally, we plan to test the whole system
on the Clommunity platform.
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