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Abstract—The present paper is devoted to the evaluation of
energy detection based spectrum sensing over different multipath
fading and shadowing conditions. This is realized by means of a
unified and versatile approach that is based on the particularly
flexible mixture gamma distribution. To this end, novel analytic
expressions are firstly derived for the probability of detection
over MG fading channels for the conventional single-channel
communication scenario. These expressions are subsequently em-
ployed in deriving closed-form expressions for the case of square-
law combining and square-law selection diversity methods.The
validity of the offered expressions is verified through comparisons
with results from respective computer simulations. Furthermore,
they are employed in analyzing the performance of energy
detection over multipath fading, shadowing and composite fading
conditions, which provides useful insighs on the performance and
design of future cognitive radio based communication systems.

I. I NTRODUCTION

The need for efficient utilization of spectrum resources
has become a fundamental requirement in modern wireless
networks, mainly due to the aforementioned spectrum scarcity
and the ever-increasing demand for higher data rate applica-
tions and Internet services [1]. In this context, cognitiveradio
(CR) communications is a particularly interesting wireless
technology that has been proposed as an effective method that
is capable of mitigating the spectrum scarcity by adapting their
transmission parameters according to the respective environ-
ment [2]. To this end, cognitive radios have been shown to
be highly efficient in maximizing spectrum utilization due to
their inherent spectrum sensing capability. In a CR network
environment, users are categorized in either primary users
(PUs) or secondary users (SUs). Based on this, the former are
the ones who have been typically assigned licensed spectrum
slots, and hence, have higher priority, whereas the latter are
accessing vacant frequency bands opportunistically.

Based on the above, numerous spectrum sensing techniques
have been proposed over the past decade and can be clas-

sified into three main categories, namely, energy detection
(ED), matched filter detection and cyclostationary or feature
detection. One of the earliest methods is the likelihood ratio
test (LRT) [3], which although it has been considered optimal,
its technical exploitation is rather limited and impractical as
it requires the exact knowledge of the signal-to-noise ratio
(SNR) distributions as well as the corresponding channel
information [4]. On the contrary, matched filter detection
techniques [5], [6] typically require accurate synchronization
and exact information about the transmitted signal waveform,
such as its bandwidth and modulation type. Likewise, cyclo-
stationary detection [7] uses the statistical properties of the
transmitted signals to enhance the probability of detection.
On the contrary, ED based sensing practically constitutes the
most common detection method and has received considerable
attention [8] [9] thanks to its low computational and imple-
mentation complexity. In ED, the presence of a PU signal is
simply detected by comparing the output of the energy detector
with a pre-determined energy threshold which depends on the
a priori knowledge of the noise power level [10]. Therefore,
poor knowledge of the noise power level leads to a high
probability of false alarm and an SNR floor. Based on this,
several analyses have been proposed for resolving this issue by
estimating the noise power level, e.g. see [5], [11], [12] and the
references therein. For instance, the authors in [12] proposed
an iterative algorithm that optimizes the decision threshold
for fulfilling the false alarm probability requirement. Unlike
the conventional ED based spectrum sensing methods, which
rely on the statistical covariance of the received signal, do
not require the knowledge of the noise power level since their
operation relies on the the difference that statistical covariance
matrices of the received signal and the noise. See e.g. [13] and
references therein.

It has been also extensively shown that fading phenomena
create detrimental effects on the performance of conventional
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and emerging wireless communications, including cognitive
radio systems. In this context, the ED performance over multi-
path fading channels, such as Rayleigh, Rician, and Nakagami-
m was analyzed in [14], and [15], respectively, whereas the
corresponding performance over the more generalizedκ − µ
andκ − µ extreme fading channels was investigated in [16].
However, in addition to multipath fading, in most scenarios,
the received signal is also degraded by shadowing effects
since it has been shown that multipath and shadowing effects
typically occur simultaneously [17]. Therefore, it is evident
that there is an undoubted necessity to quantify and analyzethe
CR performance over composite multipath/shadowing fading
channels [18]. Nevertheless, it has been shown that such an
analysis is particularly tedious, since composite fading models
can only be represented by cumbersome, if not intractable,
infinite integrals. For example, the probability of detection
of the ED based spectrum sensing over Nakagami-lognormal
(NL) fading channels was addressed in [17]; yet, the offered
solution is semi-analytic, as it is not represented in closed
form, while the impact of fading and shadowing effects
is evaluated numerically. Based on this, several alternative
models that characterize the composite fading channels have
been shown to provide simplified performance analysis for
the CR networks. For example, in the analyses of [19]–[23],
the K distribution is utilized to study the ED performance
over Rayleigh/Lognormal (RL) channels. The energy detector
performance for the MoG distribution [24] is derived in
[25]. In [26], the sufficiency and optimality of cooperative
wireless sensor networks that are based on energy detectionis
analyzed over NLOS fading environments, where zero-mean
Gaussian mixtures are assumed as a viable model for NLOS
fading channels. A unified and versatile analyses over the
ED performance can be made feasible through the use of
more recent generalized composite fading models, such as
κ− µ/Inverse-Gaussian [27] andη − µ/Inverse-Gaussian [28]
models.

In the present paper, we consider the generic and versatile
mixture gamma (MG) based approach to derive new exact
expressions for the average detection probability over gener-
alized and composite fading channels. Specifically, a simple
closed-form expression is derived for the case of integer values
of the involved scale parameterβk. It is recalled here that
the MG model [29], [30] has been proposed as an alternative
model to various generalized and composite fading channels,
namely, Lognormal [30, eq. (6)], Weibull [30, eq. (5)], NL
[30, eq. (9)],KG [29, eq. (8)],η − µ [29, eq. (10)],κ − µ
[29, eq. (17)], Hoyt [29, eq. (15)], and Rician [29, eq. (20)]
channels. This model is both accurate and flexible to represent
all aforementioned fading channels and thus, it constitutes
a generic unified fading model. In the present analysis, the
derived average detection probability is also extended to
the case of diversity reception by means of the square-law
combining (SLC) and square-law selection (SLS) schemes. It
is noted that the probability of detection of the MG model
has been derived in [28], yet, the solution provided therein
is different from the approach in this paper. In addition, the

present paper also provides novel and useful expressions for
the SLC and SLS schemes.

The reminder of the paper is organized as follows: Section II
provides a brief description of the system model, while Section
III is devoted to the derivation of average detection probability
expressions using the MG model with and without diversity
reception. Analytical and numerical simulation results are
presented in Section IV, while closing remarks are provided
in Section V.

II. SYSTEM MODEL

In a typical opportunistic cognitive radio configuration, a
secondary user, which is assumed to employ energy detection
for spectrum sensing, aims to determine whether a PU utilizes
its assigned frequency band or not. Here, we assume that the
channel gains,hj , are independent and identically distributed
(i.i.d.) and are modeled using the generalized MG distribution,
where j = 1, ..., L. Furthermore, the received signal copies
at the SU node andjth antenna can have two possible
hypotheses, modeled as

H0 : yj(t) = vj(t)
H1 : yj(t) = hj(t) + vj(t) ,

(1)

where H0 and H1 represent the absence and presence of
a signal, respectively,s(t) corresponds to the transmitted
signal from the PU, with energyEs = E[|s(t)|2], and
vj(t) ∼ CN (0, σ2

n) is the circularly symmetrical complex
additive white Gaussian noise (AWGN). Here, the SU utilizes
an energy detector that compares the amplitudes|yj|Mj=1 of the
received signal to a thresholdλ. Therefore, the output of this
process for each antenna can be represented as follows

Zj = |yj |2
H1

≷
H0

λ , (2)

where the time indext has been omitted for the sake of
notational simplicity.

For the conventional case of AWGN channels, the condi-
tional detection and false-alarm probabilities are determined
with the aid of [31], namely

Pd = Qu(
√

2γj ,
√

λn), (3)

Pf =
Γ(u, λn

2 )

Γ(u)
, (4)

whereu is time-bandwidth product,Qu(·, ·) is the general-
ized Marcum-Q function [32],Γ(·, ·) is the upper incomplete
gamma function [33, eq. (8.35)],Γ(·) is the standard gamma
function [33, eq. (8.31)],λn = λ/σn

2 is the normalized
threshold, andγj =

|hj |
2Es

2σ2
n

is the instantaneous SNR of the

jth PU-SU link.
As the probability of false-alarm is based on the null

hypothesis, it remains the same regardless of the involved
fading conditions. Thus, in the subsequent sections, we focus
on the derivation of the average detection probability for both
the conventional single-channel communication and for multi-
channel communications with diversity reception.



III. PROBABILITY OF DETECTION OVERCOMPOSITE

FADING CHANNELS

A. Single-antenna Scenario

It is recalled that the MG distribution is a generic and versa-
tile distribution since it has been shown capable of providing
accurate representation of several generalized and composite
fading models. The corresponding probability density function
(PDF) can be expressed as [21]

fγ(x) =
C
∑

k=1

αk

γ0

(

x

γ0

)βk−1

exp

(

−ζkx

γ0

)

, (5)

where the scale and shape parameters of thekth compo-
nent are denoted byβk and ζk, respectively. Furthermore,
the mixing coefficient of thekth component is denoted by
αk, having the constraints,0 ≤ αkΓ(βk)/ζ

βk

k ≤ 1 and
∑C

k=1 αkΓ(βk)/ζ
βk

k = 1. To this effect, the average proba-
bility of detection for the MG distribution can be written as

P d,MG =

C
∑

k=1

αk

γ0

∞̂

0

Qu(
√
2x,

√

λn).(
x

γ0
)
βk−1

e−
ζkx

γ0 dx .

(6)
Here, an exact closed-form expression is derived under the
assumption thatβk is a positive integer, i.e.βk ∈ N. This
is realized with the aid of Theorem 1 in [34, eq. (3)] and
by carrying out some long but basic algebraic simplifications
yielding

P d,MG =

C
∑

k=1

αkΓ(βk)Γ(u,
λn

2 )

Γ(u)ζβk

k

+

C
∑

k=1

βk−1
∑

l=0

αkΓ(βk)

γβk

0

×
(λn

2 )
u
1F1(l + 1, u+ 1, λn/2

1+1
ζk
γ0

)

u!( ζkγ0
)
βk−l

(1 + ζk
γ0
)
l+1

exp(λn

2 )
, (7)

where1F1(., ., .) is the confluent hypergeometric function [33,
eq. (9.210.1)]. It is noted here that the above expression has
a relatively simple algebraic representation which renders it
convenient to handle both analytically and numerically since
the confluent hypergeometric function,1F1(., ., .), is included
as built-in function in popular software packages such as
MATLAB, MAPLE and MATHEMATICA. It is worth noting
that our derivations obtained in (7) coincides numericallywith
the expressions for the case of Rayleigh fading channel in [14]
and [15].

B. Diversity Reception

1) Square-Law Combining: Under SLC, the received sig-
nals from each branch are integrated, squared, and then
summed up. It is also recalled that SLC is similar to the
maximal-ratio combining scheme in the sense that the total
instantaneous SNR at the output of the combiner is equivalent
to that in MRC, i.e.

γΣ =

L
∑

l=1

γl . (8)

Nevertheless, SLC does not require channel estimation [34].
As a result, the conditional false-alarm probability would
follow (4), with u replaced byLu. In order to evaluate the
corresponding average detection probability, it is essential to
derive the PDF ofγΣ. To this end, for the case ofL = 2, the
PDF of γΣ can be obtained as follows:

f (2)
γΣ

=

ˆ γ

0

fγ1(x)f(γ − x)dx =

C
∑

i=1

C
∑

j=1

αiαj

γ0βi+βj

×
ˆ γ

0

xβi−1e
−

ζi
γ0

x
(γ − x)βj−1e

−
ζj
γ0

(γ−x)
dx. (9)

In order to evaluate (9), we split the solution into two
scenarios, namely whenζi = ζj and ζi 6= ζj . In the former
scenario, eq. (9) reduces to the following integral

f (2)
γΣ

|(ζi=ζj) =

C
∑

i=1

C
∑

j=1

αi

γ0βi

αj

γ0βj
e
−

ζj
γ0

γ

×
ˆ γ

0

xβi−1(γ − x)βj−1dx . (10)

By performing the change of variablesu = x
γ and with the

aid of [33, eq. (8.380)] and the functional relation in [33,
eq. (8.384)], we obtain the following closed-form solution

f (2)
γΣ

|(ζi=ζj) =

C
∑

i=1

C
∑

j=1

αiαj

γ0βi+βj

Γ(βi)Γ(βj)

Γ(βi + βj)
e−

ζj
γ0

γγβi+βj−1.

(11)
On the contrary, for the caseζi 6= ζj , eq. (9) is solved with
the aid of the binomial theorem in [33, eq. (1.111)] and under
the assumption thatβj ∈ N. To this effect, the representation
in (9) can be equivalently re-written as follows

f (2)
γΣ

|(ζi 6=ζj) =

C
∑

i=1

C
∑

j=1

βj−1
∑

l=0

(

βj − 1

l

)

(−1)l
αiαj

γ0βi+βj

× γβj−l−1

e
ζj
γ0

γ

ˆ γ

0

xβi+l−1e−
x
γ0

(ζi−ζj)dx.(12)

Evidently, the above integral can be expressed in closed-form
with the aid of [33, eq. (8.350.1)] yielding

f (2)
γΣ

|(ζi 6=ζj) =

C
∑

i=1

C
∑

j=1

βj−1
∑

l=0

(

βj − 1

l

)

(−1)lαiαj

γ0βj−l(ζi − ζj)βi+l

× γβj−l−1e
−

ζj
γ0

γ
γ

(

βi + l,
γ(ζi − ζj)

γ0

)

, (13)

whereγ(a, x) ,
´ x

0 ta−1e−tdt denotes the lower incomplete
gamma function. Thus, by expressing theγ(a, x) function
according to [33, eq. (9.352.6)], one obtains the following



closed-form expression,

f (2)
γΣ

|(ζi 6=ζj) =

C
∑

i=1

C
∑

j=1

βj−1
∑

l=0

(

βj − 1

l

)

(−1)lαiαj

γ0βj−l

× (ζi − ζj)
−βi−lγβj−l−1e−

ζj

γ0
γΓ(βi + l)

× (1 − e
−

γ(ζi−ζj)

γ0

βi+l−1
∑

t=0

(

γ(ζi−ζj)
γ0

)t

t!
),(14)

which is valid forβi ∈ N, while

f (2)
γΣ

= f (2)
γΣ

|(ζi=ζj) + f (2)
γΣ

|(ζi 6=ζj) . (15)

By following the same methodology, a similar expression can
be obtained forf (3)

γΣ as in (16) and (17) at the top of the next
page.

It is noted here that the above methodology allows the
derivation of similar expressions forf (4)

γΣ , f
(5)
γΣ and so forth.

Based on this, the corresponding average detection proba-
bility is readily obtained by

P
(L)

d,Σ =

ˆ ∞

0

QLu(
√

2γΣ,
√
λ) f (L)

γΣ
(γΣ) dγΣ. (18)

For the case ofL = 2 and by inserting (11) and (14) in (18),
it follows that

P
(2)

d,Σ|(ζi=ζj) =

C
∑

i=1

C
∑

j=1

αiαj

γ0βi+βj

Γ(βi)Γ(βj)

Γ(βi + βj)

×
ˆ ∞

0

Qu(
√
2γΣ,

√
λ)e

−
ζj
γ0

γ

γ−(βi+βj−1)
dγ, (19)

and

P
(2)

d,Σ|(ζi 6=ζj) =

C
∑

i=1

C
∑

j=1

βj−1
∑

l=0

(

βj − 1

l

)

(−1)lαiαjΓ(βi + l)

γ0βj−l(ζi − ζj)βi+l

× I1(γ0)−
C
∑

i=1

C
∑

j=1

βj−1
∑

l=0

βi+l−1
∑

t=0

(

βj − 1

l

)

× (−1)lαiαjΓ(βi + l)

t!γ0βj−l+t(ζi − ζj)βi+l−t
I2(γ0), (20)

where

I1(γ0) =

ˆ ∞

0

Qu(
√
2γΣ,

√
λ)γβj−l−1

e
ζj
γ0

γ
dγ , (21)

and

I2(γ0) =

ˆ ∞

0

Qu(
√
2γΣ,

√
λ)γβj+t−l−1

e
ζi
γ0

γ
dγ . (22)

Notably, the involved integrals in (19), (21), and (22)
have the same algebraic representation as (6). Therefore, by
utilizing Theorem 1 in [34, eq. (3)] and after some algebraic
manipulations yields the closed-form expressions in (23) and
(24), at the top of the next page.

In the same context, by following a similar methodology
one can obtain the average detection probability for higher

diversity orders while the probability of false alarm remains
unchanged, i.e.Pf,Σ = Pf in (6).

2) Square-Law Selection: Under SLS, the branch with the
maximumγj is selected as follows [14]

γSLS = max
j=1,..,L

(γj) . (25)

UnderH0, the false-alarm probability for the SLS scheme can
be expressed as

Pf,SLS = 1− Pr(γSLS < λn|H0) . (26)

Substituting (25) in (26), we obtain

Pf,SLS = 1− Pr(max(γ1, γ2, .., γL) < λn|H0) . (27)

Accordingly, this translates to [35]

Pf,SLS = 1− [1− Pf ]
L
. (28)

Similarly, the unconditional probability of detection over the
AWGN channel is obtained by

Pd,SLS = 1−
L
∏

j=1

[

1−Qu(
√

2γj,
√

λn)
]

. (29)

Hence, averaging (29) over (6) yields the unconditional prob-
ability of detection under the SLS scheme,P̄ d,SLS, which is
given by

P̄d,SLS = 1−
L
∏

j=1

[1− Pd,MG] . (30)

To the best of the authors’ knowledge, the offered analytic
results have not been previously reported in the open technical
literature.

IV. N UMERICAL RESULTS AND DISCUSSIONS

As already mentioned, the derived expressions are applica-
ble to numerous generalized and composite fading channels,
such as NL, RL,K, KG, η − µ, κ − µ, Hoyt, and Rician
channels. In this section, we present corresponding analytical
and simulation results for the receiver operating characteristic
(ROC) with and without diversity over certain fading scenar-
ios. To this end, Fig. 1 depicts the analytical and simulated
average missed-detection probability,1−Pd, versus the false-
alarm probability for different fading conditions with no
diversity. It is clearly shown that the analytical and simulated
curves are in tight agreement thanks to the arbitrarily accurate
representation of the MG distribution. It is also shown that
the presentedη − µ scenario exhibits the best ROC, which is
expected since it represents a rather light fading scenariowith
η = 3.5 andµ = 15.

Fig. 2 depicts the analytical and simulated ROC curves
over several scenarios of the composite NL fading channel
with SLC diversity scheme withL = 2. As expected,
changing the multipath severity parameter,m, has more
prominent influence on the detection performance than
changing the shadowing parameter,ζ. For example, at
Pf = 0.48, increasingm from 3 to 4 resulted in the ratio,



f (3)
γΣ

|(ζi=ζj=ζk) =

C
∑

i=1

C
∑

j=1

αiαjαk

γ0βi+βj+βk

Γ(βi)Γ(βj)Γ(βk)

Γ(βi + βj + βk)
e
−

ζk
γ0

γ
γβi+βj+βk−1, (16)

f (3)
γΣ

|(ζi 6=ζj 6=ζk) =

C
∑

i=1

C
∑

j=1

C
∑

k=1

βj−1
∑

l=0

βk−1
∑

r=0

αiαjαk

γ0βk−r

(

βj − 1

l

)(

βk − 1

r

)

× (−1)βjΓ(l + βi)

(ζi − ζj)l+βiζ
r+βj−l
k

γβk−r−1

e
γ
γ0

(ζk+ζj)γ
(

bj + r − l,− ζkγ
γ0

)

−
C
∑

i=0

C
∑

j=0

C
∑

k=0

βj−1
∑

l=0

βi+l−1
∑

t=0

βk−1
∑

r=0

(−1)l+rαiαjαk

γ0βk−r

(

βj − 1

l

)(

βk − 1

r

)

× Γ(l + βi)(ζi − ζj)
t−l−βi

t!(ζi − ζj − ζk)r+t+βj−l
γβk−r−1e−

γ
γ0

(ζk+ζj)γ

(

bj + r + t− l,
γ(ζi − ζj − ζk)

γ0

)

. (17)

P
(2)

d,Σ|(ζi=ζj) =
C
∑

i=1

C
∑

j=1

αiαjΓ(βi)Γ(βj)

[

Γ(u, λ
2 )

ζ
βi+βj

j Γ(u)
+

βi+βj−1
∑

n=0

γ0
−n(λ2 )

u
1F1(n+ 1, u+ 1,

λ
2

1+
ζj

γ0

)

u!(ζj)βi+βj−n(1 +
ζj
γ0
)n+1 exp(λ2 )

]

, (23)

P
(2)

d,Σ|(ζi 6=ζj) =

C
∑

i=1

C
∑

j=1

βj−1
∑

l=0

(

βj − 1

l

)

(−1)lαiαjΓ(βi + l)

γ0βj−l(ζi − ζj)βi+l

×
[Γ(βj − l)Γ(u, λ2 )

(
ζj
γ0
)βj−lΓ(u)

+

βj−l−1
∑

n=0

(λ2 )
uΓ(βj − l)

u! (
ζj
γ0
)βj−l−n

1F1(n+ 1, u+ 1,
λ
2

1+
ζj
γ0

)

(1 +
ζj
γ0
)n+1 exp(λ2 )

]

−
C
∑

i=1

C
∑

j=1

βj−1
∑

l=0

βi+l−1
∑

t=0

(

βj − 1

l

)

(−1)lαiαjΓ(βi + l)

t!γ0βj−l+t(ζi − ζj)βi+l−t

×
[Γ(βj + t− l)Γ(u, λ2 )

( ζi
γ0
)βj+t−lΓ(u)

+

βj+t−l−1
∑

n=0

(λ2 )
uΓ(βj + t− l) 1F1(n+ 1, u+ 1,

λ
2

1+
ζi
γ0

)

u! ( ζi
γ0
)βj+t−l−n(1 + ζi

γ0
)n+1 exp(λ2 )

]

. (24)

1−Pd|m=4

1−Pd|m=3
= 4.47, while reducingζ from 4 to 1 improved

the ROC curve by only1−Pd|ζ=1dB

1−Pd|ζ=4dB
= 1.40. Fig. 3 depicts

the analytical and simulated ROC curves over one scenario
of the composite NL fading channel with SLS scheme with
varying L. Comparing Figs. 2 and 3 exhibits that SLC
performs better than SLS forL = 2; yet, the improvement
is not significant for this particular case. For instance, at
Pf,SLS = Pf,Σ = 0.48, the corresponding improvement
ratio was 1−Pd,Σ

1−Pd,SLS = 1.80. Also, one can observe how
effective is the spatial diversity in combating the severity of
the multipath fading and shadowing effects.

V. CONCLUSIONS

We proposed a unified framework for the performance
analysis of an energy detector in generalized and composite
MG-based fading channels. Novel analytical expressions for
the average detection probability have been derived for both

0 0.2 0.4 0.6 0.8 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

A
ve

ra
ge

 m
is

s−
de

te
ct

io
n 

pr
ob

ab
ili

ty

False−alarm probability

 

 

(η−µ) η=3.5, µ=15
(κ−µ) κ=1.0, µ=3.0
(Hoyt) q=0.5
(K

G
)  k=1.0, m=2.0

Simulation

Figure 1. Complementary ROC for various fading channels andno diversity,
with γ0 = 10dB, u = 2.
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Figure 2. Complementary ROC for composite NL fading scenarios and SLC
scheme, withL = 2, γ0 = 10dB, u = 2.
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Figure 3. Complementary ROC for selected NL fading scenarioand SLS
scheme, with varyingL andγ0 = 10 dB, u = 2.

the single-antenna case and the multiple-antenna case with
square-law combining and square-law selection schemes. The
derived expressions have been shown to be both generalized
in terms of fading characterization and algebraically versatile.
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