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Abstract—In this paper, we consider a two-user multiple access
fading channel under quality-of-service (QoS) constraints. We
initially formulate the transmission rates for both transmitters,
where the transmitters have arbitrarily distributed input signals.
We assume that the receiver performs successive decoding with a
certain order. Then, we establish the effective capacity region that
provides the maximum allowable sustainable arrival rate region
at the transmitters’ buffers under QoS guarantees. Assuming
limited transmission power budgets at the transmitters, we attain
the power allocation policies that maximize the effective capacity
region. As for the decoding order at the receiver, we characterize
the optimal decoding order regions in the plane of channel
fading parameters for given power allocation policies. In order
to accomplish the aforementioned objectives, we make use of
the relationship between the minimum mean square error and
the first derivative of the mutual information with respect to
the power allocation policies. Through numerical results, we
display the impact of input signal distributions on the effective
capacity region performance of this two-user multiple access
fading channel.

I. INTRODUCTION

With the growth in wireless networks, recent years wit-
nessed a large body of research on cooperative transmissions
[1]. The researchers in some of these studies concentrated on
multiple access transmission scenarios and investigated these
scenarios from an information-theoretic perspective [2]–[7].
For instance, the authors in [3] defined the ergodic capacity
region for multiple access fading channels and derived the
optimal resource allocation policies that maximize this region.
Similarly, addressing the optimal power allocation policies that
achieve any point on the capacity region boundary subject
to a sum-power constraint, Gupta et al. studied Gaussian
parallel (non-interacting) multiple access channels [4]. More-
over, taking the vector fading multiple access channels, the
authors examined the dynamic resource allocation policies as
an important means to increase the sum capacity in uplink
synchronous code-division multiple-access systems [7].

It is very well known that the use of discrete and finite
constellation diagrams is required for input signaling in many
practical systems. Different than the above studies where the
authors consider Gaussian input signaling, the authors in [8]
researched two-user Gaussian multiple access channels with
finite input constellations. Equivalently, the authors in [9]
considered parallel Gaussian channels with arbitrary inputs
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as well. They investigated the optimal power allocation that
maximizes the mutual information subject to an average power
constraint by exploiting the relationship between the mutual
information and the minimum mean-square error (MMSE),
which was established in [10]. Furthermore, the authors in
[11] explored the optimal power policies that minimize the
outage probability over block-fading channels with arbitrary
input distributions that were subject to both peak and average
power constraints. Power allocation policies for a two-way
relay channel with arbitrary inputs were studied in low and
high signal-to-noise ratio regimes. In another line of research,
the author studied the multiple access multiple-input multiple-
output channels, and showed the relationship between the
input-output mutual information and the MMSE [12].

In the meantime, since the current wireless systems require
data transmission with strict constraints on delay perfor-
mance, cross-layer design concerns have become of interest
to many system designers. Therefore, quality-of-service (QoS)
requirements regarding buffer overflow and delay have been
addressed in wireless communications studies regarding the
Data-Link and Physical layers. In that regard, effective capac-
ity was established as a measure to indicate the maximum
sustainable rate at a transmitter queue by a given service
(channel) process [13]. Consequently, effective capacity has
been investigated in several different transmission scenarios
[14]–[16]. More recently, Ozcan et al. studied the effective
capacity of point-to-point channels and derived the optimal
power allocation policies to maximize the system throughput
by employing arbitrary input distributions under average power
constraints.

In this paper, we focus on a two-user multiple access
transmission scenario in which transmitters apply arbitrarily
distributed input signaling under average power constraints
and QoS requirements that are imposed as buffer overflow
and delay probabilities. Our analysis can be easily expanded
to multiple access scenarios with more than two transmitters.
Our main contributions can be sorted as follows: Defining the
effective capacity region by employing the effective capacity
of each transmitter, we provide the optimal power allocation
policies under an average transmission power constraint. We
make use of the relationship between the mutual information
and the MMSE in obtaining the power allocation policies.
Furthermore, we attain the optimal decoding order that is
administered at the receiver regarding the interplay between
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the channel fading coefficients.

II. SYSTEM DESCRIPTION

A. Channel Model

We consider a multiple access channel scenario in which
two transmitters send data to one common receiver as seen
in Figure 1. We initially assume that the data arrive at both
transmitters from a source (or sources), and they are stored in
the transmitters’ data buffers before being conveyed into the
wireless channel. Then, each transmitter divides the available
data into data packets and performs the encoding, modulation
and transmission of each packet in frames of T seconds. If
a packet is received and decoded correctly by the receiver,
the receiver sends a positive acknowledgment (ACK) to the
corresponding transmitter (i.e., the transmitter that sends the
packet), and the transmitter removes the packet from its buffer.
Otherwise, the receiver sends a negative ACK (NACK) to
the corresponding transmitter, and the transmitter resends the
same packet. Thus, we impose certain QoS requirements in
each transmitter buffer in order to control the buffer violation
probabilities.

During the transmission in the channel, the input-output
relation at time instant t is given as

y(t) =
√
P1(t)h1(t)x1(t) +

√
P2(t)h2(t)x2(t) + w(t),

for t = 1, 2, · · · . Above, x1(t) and x2(t) are the channel inputs
at the corresponding transmitters (i.e., Transmitter 1 and 2,
respectively, in Fig. 1), and y(t) is the channel output at the
receiver. P1(t) and P2(t) are the instantaneous power alloca-
tion policies employed by Transmitter 1 and 2, respectively,
with the following average power constraint:

E{P1(t)}+ E{P2(t)} ≤ P , (1)

where P is finite. Moreover, w(t) denotes the zero-mean,
circularly symmetric, complex Gaussian random variable with
a unit variance, i.e., E{|w|2} = 1. The noise samples {w(t)}
are independent and identically distributed. Meanwhile, h1(t)
and h2(t) represent the fading coefficients between Transmit-
ter 1 and the receiver, and Transmitter 2 and the receiver,
respectively. The magnitude squares of the fading coefficients
are denoted by z1(t) = |h1(t)|2 and z2(t) = |h2(t)|2 with
finite averages, i.e., E{z1} < ∞ and E{z2} < ∞. We
consider a block-fading channel, and assume that the fading
coefficients stay constant for a frame duration of T seconds
and change independently from one frame to another. The
channel coefficients, h1 and h2, are perfectly known to the
receiver and both transmitters, and hence, each transmitter can
adapt its transmission power policy accordingly. We finally
note that the available transmission bandwidth is B Hz. In the
rest of the paper, we omit the time index t unless otherwise
needed for clarity.

B. Achievable Rates

We can express the instantaneous achievable rate between
the transmitters and the receiver by invoking the mutual
information between the inputs at the transmitters, i.e., x1,

x2, and the output at the receiver, i.e., y. Hence, given
that the instantaneous channel fading values, h1 and h2, are
available at the transmitters and the receiver, the instantaneous
achievable rate can be given as [17]

I(x1, x2; y) = E
{

log2

fy|x1,x2
(y|x1, x2)

fy(y)

}
, (2)

where fy(y) =
∑
x1,x2

p(x1, x2)fy|x1,x2
(y|x1, x2) is the

marginal probability density function (pdf) of the received
signal y and

fy|x1,x2
(y|x1, x2) =

1

π
e−|y−

√
α1Ph1x1−

√
α2Ph2x2|2 .

Above, we consider the normalized power allocation policies:
α1 = P1

P
and α2 = P2

P
.

We assume that the receiver performs successive interfer-
ence cancellation with a certain order (j,m) for j,m ∈ {1, 2}
and j 6= m. The decoding order depends on the channel
conditions, i.e., the magnitude squares of channel fading
coefficients, z1 and z2. In particular, the receiver initially
decodes xj while treating xm as noise, and then subtracts
xj from the received signal y and decodes xm. Let Z be
the region of the (z1, z2)-space where the decoding order
is (2,1). Then, Zc, which is the complement of Z , is the
region where the decoding order is (1,2). Now, we can express
the instantaneous transmission rates for each transmitter as
follows:

r1(z1, z2) =

{
I(x1; y1), Z,
I(x1; y), Zc,

(3)

and

r2(z1, z2) =

{
I(x2; y), Z,
I(x2; y2), Zc,

(4)

where
y1 =

√
α1Ph1x1 + w,

y2 =

√
α2Ph2x2 + w.

(5)

The decoding regions can be determined in such a way to
maximize the objective throughput. Furthermore, we have

I(xj ; yj) = E
{

log2

fyj |xj
(yj |xj)

fyj (yj)

}
,

where fyj (yj) =
∑
xj
p(xj)fyj |xj

(yj |xj) is the marginal pdf
of yj and

fyj |xj
(yj |xj) =

1

π
e−|yj−

√
αjPhjxj |2 .

C. Effective Capacity

Recall that the data packets are stored in the buffers of the
transmitters until they are reliably decoded by the receiver.
Thus, the delay and buffer overflow concerns are of interest
for system designers. Therefore, we concentrate on the data
arrival processes, i.e., a1 and a2 in Fig. 1, and we propose
the effective capacity that provides us the maximum constant



Fig. 1: Channel model. We consider a two-user multiple access channel in which two transmitters are communicating with a
single receiver. Each transmitter has a data buffer, and the receiver performs successive interference cancellation with a certain
order.

arrival rate that a given service (channel) process can support
in order to guarantee a desired statistical QoS specified with
the QoS exponent θ [13].

Now, let Q be the stationary queue length, then we can
define the decay rate of the tail distribution of the queue length
Q as

θ = − lim
q→∞

log Pr(Q ≥ q)
q

.

Therefore, for large qmax we can approximate the buffer
violation probability as Pr(Q ≥ qmax) ≈ e−θqmax . Based on
this relation, we can see that large θ indicates stricter QoS
constraints, while smaller θ implies looser constraints. For a
discrete-time, stationary and ergodic stochastic service process
r(t), the effective capacity is given by

− lim
t→∞

1

θt
loge E{e−θS(t)},

where S(t) =
∑t
τ=1 r(τ). Hence, the effective capacity

identifies the asymptotic decay rate of buffer occupancy, and
it can be considered as the dual of the effective bandwidth
[18].

In the aforementioned multiple access transmission sce-
nario, each transmitter has its own buffer to store the data,
and it has its own QoS requirements. Therefore, we denote
the decay rate of Transmitter 1 and Transmitter 2 by θ1 and
θ2, respectively. Noting that the transmission bandwidth is B
Hz, the block duration is T seconds, and the channel fad-
ing coefficients change independently from one transmission
frame to another, we can express the effective capacity of each
transmitter, i.e., the maximum sustainable data arrival rate at
Transmitter j, in bits/sec/Hz as

− 1

θjTB
loge E

{
e−θjTBrj(z1,z2)

}
j ∈ {1, 2}, (6)

where the expectation is taken over the (z1, z2)-space. Now,
invoking the definition given in [19], we express the effective
capacity region of the given multiple access transmission
scenario as follows:

CE(Θ) =
⋃
r1,r2

{
C(Θ) ≥ 0 :

Cj(θj) ≤ −
1

θjTB
loge E

{
e−θjTBrj(z1,z2)

}}
, (7)

where Θ = [θ1, θ2], and C(Θ) = [C1(θ1), C2(θ2)] is the
vector of the effective capacity values.

III. PERFORMANCE ANALYSIS

In this section, we focus on maximizing the effective capac-
ity region defined in (7) under the QoS guarantees required at
each transmitter and the average total power constraint defined
in (1). Noting that the effective capacity region is convex [20],
our objective turns out to be maximizing the boundary surface
of the region, which can be characterized by the following
optimization problem [3]:

max
Z,Zc

E{P1}+E{P2}≤P

λ1C1(θ1) + λ2C2(θ2), (8)

for λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1. In order to solve
this optimization problem, we first obtain the power allocation
policies in defined decoding regions Z and Zc, and then we
provide the optimal decoding regions.

A. Optimal Power Allocation

Here, we study the optimal power allocation policies that
solve the optimization problem in (8) in given decoding
regions Z and Zc. In the subsequent result, we provide
the following proposition that gives us the optimal power
allocation policies:



Proposition 1: The optimal normalized power allocation
policies, α1 and α2, that solve the optimization problem in
(8) are the solutions of the following equalities:

λ1
ψ1
e−θ1TBr1(z)

dr1(z)

dα1
+
λ2
ψ2
e−θ2TBr2(z)

dr2(z)

dα1
= ε, (9)

λ2
ψ2
e−θ2TBr2(z)

dr2(z)

dα2
= ε, (10)

for z = (z1, z2) ∈ Z , and

λ1
ψ1
e−θ1TBr1(z)

dr1(z)

dα1
= ε, (11)

λ1
ψ1
e−θ1TBr1(z)

dr1(z)

dα2
+
λ2
ψ2
e−θ2TBr2(z)

dr2(z)

dα2
= ε, (12)

for z ∈ Zc. Above, ψ1 = Ez
{
e−θ1TBr1(z)

}
, ψ2 =

Ez
{
e−θ2TBr2(z)

}
, and ε is the Lagrange multiplier of the

average power constraint in (1).

Proof: See Appendix A. �

Above, the derivatives of the transmission rates with respect
to the corresponding normalized power allocation policies are
given as

dr1(z)

dα1
=

{
dI(x1;y1)
dα1

, Z,
dI(x1;y)
dα1

, Zc,

dr2(z)

dα2
=

{
dI(x2;y)
dα2

, Z,
dI(x2;y2)
dα2

, Zc,

and
drm(z)

dαj
=
dI(xj ; y)

dαj
− dI(xj ; yj)

dαj

for m, j ∈ {1, 2} and m 6= j.

In the following theorem, we provide the derivatives of the
mutual information expressions with respect to the normalized
power allocation policies:

Theorem 1: Let, h1, h2, and P be given. In the multiple
access transmission scenario described in Section II, the first
derivative of the mutual information between xj and y with
respect to the power allocation policy, αj , is given by

dI(xj ; y)

dαj
= PzjMMSE(xj ; y)

+ P

√
αm
αj

Re (hjh
∗
mE {xjx∗m − x̂j(y)x̂∗m(y)}) , (13)

and similarly, the derivative of the mutual information between
xj and yj with respect to αj is given by

dI(xj ; yj)

dαj
= PzjMMSE(xj ; yj), (14)

for j,m ∈ {1, 2}, j 6= m, and (·)∗ is the complex conjugate
operation. In (13), the MMSE expression is given as

MMSE(xj ; y) = 1− 1

π

∫ ∣∣∑
xj
xjp(xj)fy|xj

(y|xj)
∣∣2

fy(y)
dy,

and the MMSE estimates of the channel inputs are

x̂j(y) =

∑
x xjp(x)fy|x(y|x)

fy(y)
.

Similarly, the MMSE expression in (14) is obtained by

MMSE(xj ; yj) = 1− 1

π

∫ ∣∣∑
xj
xjp(xj)fyj |xj

(yj |xj)
∣∣2

fyj (yj)
dyj ,

where y1 and y2 are as given in (5).
Proof: See Appendix B. �

As seen in (9)-(12), closed-form solutions for α1 and α2

cannot be obtained easily which is mainly due to the cross-
relation between α1 and α2. For instance, α1 is a function of
α2 as observed in (9) for z ∈ Z , whereas α2 is a function of
α1 as seen in (12) for z ∈ Zc. Therefore, we need to employ
numerical techniques which consist of iterative solutions.

In the following, we wrap up the above steps into an
iterative solution with two algorithms that can be used to
obtain the optimal power policies in given decoding regions.
In Algorithm 1, we obtain the optimal normalized power
allocation policies α1 and α2.

Algorithm 1
1: Given λ1, λ2, Z and Zc;
2: Initialize ψ1, ψ2;
3: while True do
4: Initialize ε;
5: Initialize α1;
6: while True do
7: if z ∈ Z then
8: For given α1, compute the optimal α2 by

solving (10) ;
9: For computed α2, compute the optimal α?1 by

solving (9) ;
10: else
11: For given α1, compute the optimal α2 by

solving (12) ;
12: For computed α2, compute the optimal α?1 by

solving (11) ;
13: end if
14: if |α1 − α?1| ≤ ε for small ε > 0 then
15: break;
16: else
17: Set α1 = α?1;
18: end if
19: end while
20: Check if the average power constraint in (1) is satisfied

with quality;
21: If not, update ε and return to Step 5
22: Compute ψ?1 = Ez

{
e−θ1nr1(z)

}
and ψ?2 =

Ez
{
e−θ2nr2(z)

}
23: if |ψ1 − ψ?1 | ≤ ε and |ψ2 − ψ?2 | ≤ ε then
24: break;
25: else
26: Set ψ1 = ψ?1 and ψ2 = ψ?2 ;
27: end if



28: end while
Given λj and ψj for j ∈ {1, 2}, it is shown in [21] that both

(10) and (11) has at most one solution. We can further show
that (9) has at most one solution for α1 when α2 is given, and
that (12) has at most one solution for α2 when α1 is given.
Then, we can guarantee that Steps 8, 9, 11 and 12 in Algorithm
1 will converge to a single unique solution. It is also clear that
(9) and (11) are monotonically decreasing functions of α1, and
(10) and (12) are monotonically decreasing functions of α2.
Hence, in region Z , we first obtain α2 by solving (10), and
then we find α1 by solving (9) after inserting α2 into (9).
Similarly, in region Zc, we first obtain α1 by solving (11),
and then we find α2 by solving (12) after inserting α1 into
(12). We can employ bisection search methods to obtain α1

and α2. In the above approach, when either α1 or α2 becomes
negative, we set it to zero.

B. Optimal Decoding Order

Following the optimal power allocation policies, we identify
the optimal decoding order regions. We initially note that when
there are no QoS requirements, i.e., θ1 = θ2 = 0, the effective
capacity region is reduced to be the ergodic capacity region.
The authors in [22] showed that the ergodic capacity region
is maximized when the symbol of the transmitter with the
strongest channel is decoded first. Principally, when zj > zm,
the symbol of Transmitter j is decoded first, and then the
symbol of Transmitter m is decoded. Furthermore, the authors
in [19] considered a special case and set θ1 = θ2 = θ
for θ > 0. Then, they derived the optimal decoding order
that maximizes the effective capacity region. However, their
result is based on the assumption of Gaussian input signaling.
Nevertheless, obtaining the optimal decoding order regions is
a difficult task when θ1 6= θ2 and arbitrary input distribution is
employed. In the following, we provide the optimal decoding
order regions given that the transmitters have the equal queue
decay rates, i.e., θ1 = θ2, and they employ arbitrary input
distributions.

Theorem 2: Let h1, h2, and P be given. Define z?2 for any
given z1 ≥ 0, such that the decoding order is (2,1) when
z2 > z?2 , and it is (1,2) otherwise for the given z1. In the
multiple access transmission scenario described in Section II,
with arbitrary input distributions and the normalized power
allocation policies at the transmitters, the optimal z?2 for any
given z1 value is the solution of the following equality:

I(x; y|z1, z?2) = I(x1; y1|z1) + I(x2; y2|z?2).

Proof: See Appendix C. �

IV. NUMERICAL RESULTS

In this section, we present the numerical results. Throughout
the paper, we set the available channel bandwidth to B = 100
Hz and the transmission duration block to T = 1 sec.. We
further assume that h1 and h2 are independent of each other
and set E{|h1|2} = E{|h2|2} = 1. Unless indicated otherwise,
we set the QoS exponents θ1 = θ2 = 0.01. We define the
signal-to-noise ratio with P

E{|w|2} = P where E{|w|2} = 1.

Fig. 2: Effective capacity region, C1(θ1) vs. C2(θ2), when
BPSK input signaling is employed for different values of P
and K.

We initially consider binary phase shift keying (BPSK) at
both transmitters, and we plot the effective capacity region
in Fig. 2. We have the results for different values of the
signal-to-noise ratio, P , and K. Recall that when K = 0,
the channel fading has a Rayleigh distribution, i.e., there
is not a strong line-of-sight propagation path between the
transmitters and the receiver. On the other hand, when K > 0,
there is a line-of-sight path between the transmitters and
the receiver, and the line-of-sight propagation path becomes
dominant with increasing K1. As expected, with increasing K,
the effective capacity region broadens. Moreover, we observe
the broadening of the effective capacity region with increasing
P more clearly.

Setting K = −6.88 dB, we plot the effective capacity region
for different P values and signal modulation methods such as
BPSK, quadrature amplitude modulation (QAM) and Gaussian
distributed signaling in Fig. 3. We can easily notice that Gaus-
sian input signaling has the best performance for both P = −5
dB and P = 0 dB, while BPSK has the lowest performance.
However, the performance gap is reduced with decreasing P .
Furthermore, we investigate the effect of the QoS exponent,
θ, on the effective capacity region in Fig. 4. Here, we set
P = 5 dB and K = −6.88 dB, and compare the effective
capacity region for different modulation techniques. As clearly
seen, increasing θ results in a decrease in the effective capacity
region since the system is subject to stricter QoS constraints.
We can further observe that the performance gaps among
the modulation techniques are smaller with increasing θ. We
finally display the effective capacity region for transmitters
having different modulation methods than each other in Fig.
5. We can clearly notice that the transmitter with an input

1K is the ratio of the power in the line-of-sight component to the total
power in the non-line-of-sight components in a channel. Therefore, the ratio
of the power in the line-of-sight component to the total channel power is
defined as ν = K

K+1
. It is shown in [23] that the empirical means of K are

-6.88 dB, 8.61 dB and 4.97 dB for urban, rural and suburban environments,
respectively, at 781 MHz.



Fig. 3: Effective capacity region, C1(θ1) vs. C2(θ2), consider-
ing different input signaling for K = −6.88 dB and different
values of P .

signal of higher modulation order can sustain higher effective
capacity.

V. CONCLUSION

In this paper, we have investigated the optimal power
allocation policies that maximize the effective capacity re-
gion of a two-user multiple access channel with arbitrarily
distributed input signals. We have formulated the relationship
between the MMSE and the first derivative of the mutual
information with respect to the power allocation policies.
We have provided an algorithm that determines the optimal
normalized power allocation policies. We have established the
optimal decision region boundaries for successive interference
cancellation at the receiver for given power allocation poli-
cies. Through numerical techniques, we have shown that the
line-of-sight propagation path can significantly improve the
effective capacity performance. We have further justified that
the Gaussian input signaling has better performance and that
the performance gap increases in higher signal-to-noise ratio
regime.

APPENDIX

A. Proof of Proposition 1

Let us rewrite (6) for Transmitter 1 as

C1(θ1) =
−1

θ1TB
loge

{
EZ{e−θ1TBI(x1;y1)}

+ EZc{e−θ1TBI(x1;y)}
}

=
−1

θ1TB
loge ψ1, (15)

Fig. 4: Effective capacity region, C1(θ1) vs. C2(θ2), consid-
ering different input signaling for K = −6.88 dB, P = 5 dB
and different values of θ = θ1 = θ2.

and for Transmitter 2 as

C2(θ2) =
−1

θ2TB
loge

{
EZ{e−θ2TBI(x2;y)}

+ EZc{e−θ2TBI(x2;y2)}
}

=
−1

θ2TB
loge ψ2. (16)

Since the objective function in (7) is convex and the constraint
(1) is linear with respect to α1 and α2, we can use the
Lagrangian method to solve the optimization problem (8). We
can form the Lagrangian as

B = λ1C1(θ1) + λ2C2(θ2)

− ε{Ez∈Z{α1 + α2}+ Ez∈Zc{α1 + α2} − 1},

where ε is the Lagrangian multiplier. Now, taking the deriva-
tives of B with respect to α1 and α2 and setting them to zero,
we obtain (9) and (12), respectively, when z ∈ Z , and (11)
and (10), respectively, when z ∈ Zc.

B. Proof of Theorem 1

Recall that α1 = P1

P
and α2 = P2

P
, and

f(y) =
∑
x

p(x)f(y|x), (17)

where x = (x1, x2). Since our analysis is performed in the
complex plane, we can express f(y|x) as

f(y|x) =
1

π
exp
{
−
(
yr −

√
P1c1r −

√
P2c2r

)2

−
(
yi −

√
P1c1i −

√
P2c2i

)2}
, (18)



Fig. 5: Effective capacity region, C1(θ1) vs. C2(θ2), consid-
ering mixed input signaling for K = −6.88 dB, P = 0 dB
and θ1 = θ2 = 0.01.

where y = yr+jyi, h1x1 = c1r+jc1i and h2x2 = c2r+jc2i.
The derivative of the pdf with respect to P1 is given as

df(y|x)

dP1
=
f(y|x)√
P1

(
c1r c1i

)(yr −√P1c1r −
√
P2c2r

yi −
√
P1c1i −

√
P2c2i

)
,

and
df(y|x)

dy
= ḟ(y|x) = −2f(y|x)

(
yr −

√
P1c1r −

√
P2c2r

yi −
√
P1c1i −

√
P2c2i

)
.

(19)
Hence, we have

df(y|x)

dP1
=
−1

2
√
P1

(
c1r c1i

)
ḟ(y|x). (20)

Now, we can express 2

dI(x1; y)

dP1
=
dI(x; y)

dP1
− dI(x2; y2)

dP1︸ ︷︷ ︸
=0

. (21)

Invoking the marginal pdf f(y|x) in (18), we can rewrite the
mutual information I(x; y) expressed in (2) as

I(x; y) = − log(πe)−
∫
f(y) log(f(y))dy.

Consequently, we can write (21) as

dI(x1; y)

dP1
=
dI(x; y)

dP1
= − d

dP1

∫
f(y) log(f(y))dy,

= −
∫

[1 + log(f(y))]
df(y)

dP1
dy. (22)

2This is based on the known relation I(x; y) = I(xj ; y) + I(xm; ym)
for j,m ∈ {1, 2} and j 6= m [24].

Substituting (17) and (20) in (22), we obtain

dI(x1; y)

dP1
=

1

2
√
P1

∑
x

p(x)
(
c1r c1i

) ∫
[1 + log(f(y))]ḟ(y|x)dy. (23)

Let m = [1 + log(f(y))] and dn = ḟ(y|x)dy, then the
integration in (23) can be evaluated using integration by part
such that

∫
mdn = mn

∫
ndm. By noting that mn = 0 as

y →∞, we can write (23) as

dI(x1; y)

dP1
=
−1

2
√
P1

∑
x

p(x)
(
c1r c1i

) ∫ f(y|x)

f(y)
ḟ(y|x)dy.

(24)
By plugging (19) in (24), we have

dI(x1; y)

dP1

=
1√
P1

∑
x

p(x)
(
a1r a1i

) ∫ f(y|x)

f(y)

∑
x

p(x)f(y|x)

×
(
yr −

√
P1a1r −

√
P2a2r

yi −
√
P1a1i −

√
P2a2i

)
dy,

=
1√
P1

∑
x

p(x)
(
a1r a1i

) ∫ f(y|x)

f(y)

∑
x

p(x)f(y|x)

(
yr
yi

)
dy

−
∑
x

p(x)
(
a1r a1i

) ∫ f(y|x)

f(y)

∑
x

p(x)f(y|x)

(
a1r
a1i

)
dy

−
√
P2√
P1

∑
x

p(x)
(
a1r a1i

)
×
∫
f(y|x)

f(y)

∑
x

p(x)f(y|x)

(
a2r
a2i

)
dy,

=
1√
P1

∑
x

p(x)
(
a1r a1i

) ∫
f(y|x)

(
yr
yi

)
dy

−
∫
f(y)

(
â1r â1i

)(â1r
â1i

)
dy

−
√
P2√
P1

∫
f(y)

(
â1r â1i

)(â2r
â2i

)
dy,

=
1√
P1

∑
x

p(x)
(
a1r a1i

)(√P1a1r +
√
P2a2r√

P1a1i +
√
P2a2i

)
− E

{
â21r + â21i

}
−
√
P2√
P1

E {â1râ2r + â1iâ2i} ,

= E
{
a21r + a21i

}
+

√
P2√
P1

E {a1ra2r + a1ia2i}

− E
{
â21r + â21i

}
−
√
P2√
P1

E {â1râ2r + â1iâ2i} ,

= |h1|2E
{
|x1|2

}
+

√
P2√
P1

Re (h1h
?
2E {x1x?2})

− |h1|2E
{
|x̂1|2

}
−
√
P2√
P1

Re (h1h
?
2E {x̂1x̂?2}) ,



= |h1|2MMSE(x1; y) +

√
P2√
P1

Re (h1h
?
2E {x1x?2 − x̂1x̂?2}) .

Now, by applying the chain rule d(·)
dα1

= P d(·)
dP1

, we have

dI(x1; y)

dα1
= Pz1MMSE(x1; y)

+ P

√
α2

α1
Re (h1h

?
2E {x1x?2 − x̂1x̂?2}) .

Note that when the data of Transmitter 2 is subtracted from the
received signal y, i.e, α2 = 0, the above equation is reduced
to

dI(x1; y1)

dα1
= Pz1MMSE(x1; y1).

In a similar way, we can show that

dI(x2; y)

dP2
= Pz2MMSE(x2; y)

+ P

√
α1

α2
Re (h2h

?
1E {x2x?1 − x̂2x̂?1}) .

and
dI(x2; y2)

dα2
= Pz2MMSE(x2; y2).

C. Proof of Theorem 2

We initially start by expressing the effective capacity of each
user in (15) and (16) in the integration form and with respect
to z?2 and θ1 = θ2 = θ as

C1(θ, z?2)

=
−1

θn
loge

(∫ ∞
0

∫ ∞
z?2

e−θnI(x1;y1|z1)pz(z)dz2dz1

+

∫ ∞
0

∫ z?2

0

e−θnI(x;y|z1,g(z1))eθnI(x2;y2|g(z1))pz(z)dz2dz1

)
,

and

C2(θ, z?2)

=
−1

θn
loge

(∫ ∞
0

∫ z?2

0

e−θnI(x2;y2|g(z1))pz(z)dz2dz1

+

∫ ∞
0

∫ ∞
z?2

e−θnI(x;y|z1,g(z1))eθnI(x1;y1|z1)pz(z)dz2dz1

)
,

where n = TB. Let B(ẑ2) = λ1C1(θ, ẑ2) + λ2C2(θ, ẑ2),
where ẑ2 = z?2 + eξ, z?2 is the optimal decoding function
that solve the optimization problem (8), e is a constant and ξ
represents an arbitrary deviation. Consequently, the following
condition should be satisfied [25]:

d

de
B(ẑ2)

∣∣∣∣
e=0

= 0. (25)

By noting that this condition holds for any ξ and that dẑ2de = ξ,
solving (25) results in the following:

e−θnI(x;y|z1,z
?
2 )

{
−λ1
ψ1

eθnI(x2;y2|z?2 ) +
λ2
ψ2
eθnI(x1;y1|z1)

}
=
λ2
ψ2
e−θnI(x2;y2|z?2 ) − λ1

ψ1
e−θnI(x1;y1|z1). (26)

Now, let us denote I12 = I(x; y|z1, z?2), I1 = I(x1; y1|z1)
and I2 = I(x2; y2|z?2). Consequently, we can express (26) as

e−θnI12
{
− ψ2λ1e

θnI2 + ψ1λ2e
θnI1

}
=

− ψ2λ1e
−θnI1 + ψ1λ2e

−θnI2 .
(27)

Let us further define A = e−θnI2 and D = e−θnI1 . Then,
(27) can be rewritten as

e−θnI12
{
−ψ2λ1
A

+
ψ1λ2
D

}
= −ψ2λ1D + ψ1λ2A,

which can be further simplified as

e−θnI12 = AD = e−θn{I1+I2}. (28)

Note that (28) implies that I12 = I1 + I2 which is equivalent
to having

I(x; y|z1, z?2) = I(x1; y1|z1) + I(x2; y2|z?2).
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