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Dijon, France

Email: jean-luc.baril@u-bourgogne.fr

Olivier Togni
LE2I, FRE CNRS 2005, Arts et Mtiers

Univ. Bourgogne Franche Comté.
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Abstract—We investigate the problem of computing Com-
pletely Independent Spanning Trees (CIST) under a prac-
tical approach. We aim to show that despite CISTs are
very challenging to exhibit in some networks, they present
a real interest in ad-hoc networks and can be computed to
enhance the network robustness. We propose an original ILP
formulation for CISTs and we show through simulation results
on representative network models that several CISTs can be
computed when the network density is sufficiently high. These
results tend to reinforce the interest of CISTs for various
network operations such as robustness, load-balancing, traffic
splitting, . . . As an important point, our results show that both
the density and the number of nodes have an impact on the
number of CISTs that can be found on ad-hoc networks.

Keywords-Completely Independent Spanning Tree, CIST,
Integer Linear Programming, Quasi-Unit Disk Graph

I. INTRODUCTION

Maintaining connectivity in communication networks is
an important challenge [1], especially in ad-hoc networks
due to the absence of centralized structure: nodes act as
routers to maintain the network connectivity, but are subject
to various effects (interference, radio channel effects, battery
limitations,. . . ) that can lead to spontaneous failures on links
and/or nodes. A lot of research investigated the problem of
maintaining network connectivity in radio networks under
several complementary approaches. The problem of node
connectivity was originally discussed by Cheng and Rober-
tazzi in 1989 [2]. In many node-to-node communication
protocols, network entities discuss with each others using a
spanning tree as backbone. Using a spanning tree to organize
communications ensures the existence of a path between
each pair of nodes while avoiding bridge loops and routing
loops. However this approach does not benefit from the
advantages of the mesh topologies (i.e. multi-paths), and
makes the whole network weak in the event of failures,

especially when occurring on inner nodes on the tree: in
such a situation, a new spanning tree requires to be computed
in a distributed manner, and point-to-point communications
remain unstable until the algorithm converges. One way of
performing fault-tolerant communication is to exploit the
disjoint paths that exist between pairs of nodes, and to use
several disjoints spanning trees. Thus, in case of node failure
the system can switch from one tree to another without
interruption. The use of multiple disjoint spanning trees finds
other applications beyond robustness, i.e. in load-balancing,
security, to separate network services,. . . . The problem of
constructing disjoint spanning trees is often motivated by
wireless ad-hoc networks [3], [4], because they are used
to create a virtual backbone or spine of a wireless ad-hoc
network.

Several notions aim to represent disjunction properties for
spanning trees in the literature: independent spanning trees
focus on searching for collections of spanning trees rooted
on the same root r, so that for each node x, the paths linking
x to r in each tree are pairwise internal-nodes disjoints. Two
paths are internal-nodes disjoint if they do not share common
vertices excepting the extremities of both paths. Note that
independent spanning trees are not always edge-disjoint. In
edge-disjoint spanning trees, each pair of trees does not
share any common edge but can share internal nodes. Many
studies have investigated the problem of determining the
maximum number of edge-disjoint spanning trees for various
topologies, and proposed algorithms for the construction of
disjoint spanning trees. In 2001, Completely Independent
Spanning Trees [5] (CIST) have been defined as a collection
of spanning trees, such that for each pair of nodes x and y,
the paths linking x to y in each tree are pairwise internal-
nodes and edge disjoint.

In this paper, we study Completely Independent Spanning



Trees. These trees have been very studied on theoretical
aspects. However from our knowledge, no work proposed
study of CIST from an operational approach, nor studied the
existence of CISTs in realistic networks. This may be due to
the strong structural constraints that topologies must satisfy
(i.e. vertex-connectivity and edge-connectivity are necessary
but insufficient conditions) in order to obtain a collection of
CISTs of significant size. We tend to show that despite these
strong topological constraints, it is possible to compute and
exploit several CISTs in ad-hoc networks if the node density
is sufficiently high.

This work is organized as follows: in Section II we briefly
present the notations we use. We present related works on
respectively disjoint, edge-disjoint, and completely disjoint
spanning trees in Section III. We propose in Section IV
an ILP formulation for the problem of computing a fixed
size collection of CISTs. Using this formulation, we show
in Section V that several CISTs can be found in ad-hoc
networks, and that the maximum number of CISTs increases
proportionally with the density of the network.

II. NOTATION

Throughout this paper, we use the following notation: we
model the network with a connected undirected simple graph
G = (V,E) with vertex set V and edge set E. An edge
e is an unordered pair of nodes {u, v}, u 6= v and u is
an extremity of e if and only if u ∈ e. Let the functional
notations V (G) and E(G) denote respectively the vertex set
and the edge set of G. We note by n = |V | the order of G
- that is to say its number of vertices -, and by m = |E|
its number of edges. For each node u ∈ V , we note NG(u)
the set of adjacent nodes (open neighbourhood) in G, and
JG(u) the set of incident edges {u, v}, for v ∈ NG(u). Let
dG(u) = |NG(u)| be the degree of u in G.

Let k ≥ 2 be an integer and T1, . . . , Tk be spanning
trees in a graph G. The spanning trees T1, . . . , Tk are edge-
disjoint if and only if ∪1≤`<`′≤kE(T`) ∩ E(T`′) = ∅. A
vertex u is said to be an inner vertex in a tree T if and
only if dT (u) ≥ 2, and a leaf if dT (u) = 1. We denote by
I(T ) the set of inner vertices of tree T . The spanning trees
T1, . . . , Tk are internally vertex-disjoint if I(T1), . . . , I(Tk)
are pairwise disjoint. Finally, the spanning trees T1, . . . , Tk
are completely independent spanning trees if they are both
pairwise edge-disjoint and internally vertex-disjoint.

We denote by CCIST (G) the cardinality of the largest
collection of CISTs that exists on G.

We denote by d(G) ∈ [0, 1] the density of the graph, i.e.
the ratio between the number of its edges and the number
of possible edges (the closer the density is to 1, the denser
the graph). Formally:

d(G) = 2m/(n(n− 1))

Finally, we note G[W ] with W ⊆ V the graph induced
by vertices from W : graph G[W ] has vertex set W and edge

set the edges from E whose both extremities are in W .

III. RELATED WORK

Disjoint spanning trees have been extensively studied for
decades and under different assumptions. Initially, works
concentrate on the study of edge-disjoint spanning trees,
that is, spanning trees that are pairwise only edge-disjoint.
The problem of determining the maximum number of edge-
disjoint spanning trees has been studied for various regular
topologies, including hypercubes [6], [7], twisted cubes
[8] cartesian product of cycles [9] and cartesian product
of two graphs [10]. One of the most famous results on
edge-disjoint spanning trees is the theorem of Tuttle-Nash-
Williams (independently proposed in [11], [12]), indicating
that there are k edge-disjoint spanning trees in any 2k-edge-
connected graph. In [13], Roskind and Tarjan presented an
algorithm with complexity O(n2 log(n)+n2k2) to compute
a k-size collection of edge-disjoint spanning trees.

Other related work focused on independent spanning
trees, implicitly rooted on a specific node. Independent
spanning trees have been studied in several topologies,
including chordal rings [14], de Bruijn and Kautz digraphs
[15], [16], and product graphs [17].

In addition, some works focus on internally vertex-disjoint
spanning trees. These trees are close to Completely Inde-
pendent Spanning Trees, except that an edge can belong to
two trees if it connects a leaf in each of them. Internally
vertex-disjoint spanning trees can be expressed in terms of
disjoint connected dominating sets. The maximum number
of disjoint connected dominating sets in a graph G is the
connected domatic number [18]. Hartnell and Rall have
proven that, except K4 (which has connected domatic num-
ber 4), the connected domatic number of planar graphs is
bounded by 3 [19].

In 2001, Hasunama introduced Completely Independent
Spanning Trees in [5]. The decision problem of determining
whether there are two Completely Independent Spanning
Trees in a graph G is NP-hard in general [20]. CISTs
have been studied on different classes of graphs, such as
underlying graphs of line graphs [5], maximal planar graphs
[20], cartesian product of two cycles [21] and complete
graphs, complete bipartite and tripartite graphs [22]. Inspired
by the Tutte-Nash-William theorem on the edge-disjoint
trees [11], [12], Hasunama conjectured in [20] that there
are k completely independent spanning trees in any 2k-
connected graph. The search for CISTs gained inceasing
interest in 2012 when Péterfalvi disproved the conjecture
[23] by proposing a construction of a k-connected graph
that does not contain 2 CISTs, for any k ≥ 0, thus showing
the problem was much more difficult than it seemed to be.
A similar work showed that even for 2k- connected and 2k-
regular graphs, the maximum number of CISTs is not always
k [24].



Recently, sufficient conditions have been determined to
ensure the existence of two completely independent span-
ning trees. These conditions are based on the sufficient con-
ditions for hamiltonicity: Dirac’s condition [25] and Ore’s
condition [26]. The Dirac’s condition has been generalized
to more than two trees [27]–[29] and has been independently
improved [28], [29] for two trees. Also, a recent paper has
studied the problem on an interesting class of graphs: the
class of k-trees, for which the authors have proven that there
exist at least dk/2e completely independent spanning trees
[30].

IV. ON THE NUMBER OF CISTS IN AD-HOC NETWORKS:
HYPOTHESIS, UPPER BOUNDS AND ILP FORMULATION

Determining the maximum number of CISTs in an ad-hoc
network is a difficult problem: from several results, including
the construction proposed by Péterfalvi [23], there are k-
connected graphs that do not contain two CISTs for any k ≥
2 even though the graph density tends to be asymptotically
1 (i.e. a clique graph Kn with an additional pending vertex).

However, we aim to show that despite the strong structural
constraints of CISTs and the negative results on some
topologies, ad-hoc networks does not suffer from severe re-
strictions preventing multiple CISTs to be found. Intuitively,
only border effects can have negative impact, but they can be
reduced when the network density increases. In this work,
we propose to verify this hypothesis through simulations.

First, we propose the following remark:

Remark 1: One way to consider searching for a k-size
collection of CISTs is to find a k-partition of the network
nodes {V1, . . . Vk} so that for every i ∈ {1, . . . k} and every
j ∈ {1, . . . k} − {i} :
• the induced graph G[Vi] is connected,
• let Ei,j be the edge set {{u, v} ∈ E| u ∈ Vi, v ∈ Vj}.

Then there exists two set E1
i,j and E2

i,j ⊆ Ei,j with
E1

i,j ∩E2
i,j = ∅, such that for each node u ∈ Vi there is

a node v ∈ Vj |{u, v} ∈ E1
i,j , and for each node v ∈ Vj

there is a node u ∈ Vi|{u, v} ∈ E2
i,j .

In addition, we have a trivial upper bound for CCIST (G).
It is admitted that

CCIST (G) ≤ min(κ(G), λ(G)) (1)

where κ(G) is the vertex connectivity of G, and λ(G) its
edge-connectivity. Both (κ(G), λ(G)) can be computed in a
polynomial time. Eq. 1 will be used as upper bound when
calculating CCIST (G) in Fig. 2-7.

We require some tools to compute CCIST (G) in different
networks. Given a network graph G = (V,E) and a positive
integer k, we propose an ILP formulation for computing
a collection of k CISTs which minimizes the number of
internal nodes among all trees if a k-size collection exists,
and fails otherwise. As k is an input, we can use a dichotomy

approach and run several times the ILP with different values
of k to find the largest number of CISTs.

We define the following variables and constraints ∀u ∈
V,∀e ∈ E, and every integer t with 1 ≤ t ≤ k:

variables

• we introduce two sets of binary variables xtu and xte to
describe respectively the internal nodes and the edges
of spanning tree t.

xtu =

{
1 if u is an internal node in tree t
0 otherwise

xte =

{
1 if e is an edge in tree t
0 otherwise

• To ensure the connectivity of component induced by
the selected edges in the same tree t, we use a flow
technique: we use variables xt(u,v), {u, v} ∈ E to
describe the flow in transit on e = {u, v} from u to
v.

xt(u,v) =

{
flow transiting from node u to it neigh-
bor v for tree t

objective
We aim to minimize the number of internal nodes required

in any tree. This criterion has a significant influence on
the resulting trees, which makes it possible to increase the
number of leaves of a tree, decrease the average length of the
paths between the nodes and reduce the number of critical
points on the network.

min
1≤t≤k

∑
v∈V

xtv (2)

Note that in this work, the minimization objective is
optional, because we focus more on the existence of k CISTs
than on the determination of the best trees in the space of
feasible solutions.

constraints
For every t with 1 ≤ t ≤ k we define the tree Tt

through its n − 1 edges, and a flow technique to ensure
the connectivity of graph induced by edges: in each tree t,
we set a (possibly identical) sink vertex st ∈ V . Each vertex
in V −{st} produces an unit of flow that must pass to st and
through edges of t only. To do this, we define the following
constraints:
• Each tree requires exactly n− 1 edges:

∀t,
∑
e∈E

xte = n− 1

• The flow unit produced by each node must reach the
vertex st while preserving the flow conservation law:

∀t, ∀u ∈ V − st,
∑

v∈NG(u)

xtv,u + 1 =
∑

v∈NG(u)

xtu,v (3)



∀t,
∑

u∈NG(st)

xtu,st = n− 1 (4)

• To get a correct flow delivery, we ensure that no flow
comes out from the sink:

∀t,
∑

u∈NG(st)

xt(st,u) = 0 (5)

• The flow only passes through the edges selected in tree
t:

∀t,∀{u, v} ∈ E, xt(u,v) + xt(v,u) ≤ n.x
t
(u,v) (6)

• Once each tree t is defined, we link the variables xtu
to xte. Vertex u is an internal node in t iif at least two
incident edges are selected:

∀t, ∀u ∈ V,∀e1 6= e2 ∈ JG(u), xte1 + xte2 − 1 ≤ xtu (7)

Finally, we add the constraints of not sharing the
internal nodes nor the edges between trees:

∀u ∈ V,
∑

1≤t≤k

xtu ≤ 1 (8)

∀e ∈ E,
∑

1≤t≤k

xte ≤ 1 (9)

Relaxation, and additional constraints
Note that xte1 and xte2 are binary values in Eq. 7, and that

we aim at minimizing the sum of xtv (Eq. 2). Then we can
relax the ILP by defining xtv as a continuous variable over
the interval [0, 1] while guaranteeing that the returned values
for variables xtv would be binary in the optimal solution.
Only variables xte remain binary.

We also add the following optional constraints, inspired
by Remark 1. In the simulation we have carried out, these
constraints improve the resolution time.
• Each node has a neighbor acting as internal node in

each tree:

∀t,∀u ∈ V,
∑

v∈NG(u)

xtv ≥ 1 (10)

• In addition, each node has an incident edge selected in
each tree:

∀t,∀u ∈ V,
∑

e∈JG(u)

xte ≥ 1 (11)

V. ON THE NUMBER OF CISTS IN AD-HOC NETWORKS

Recall that our main research hypothesis is that, in ad-
hoc networks, density has a significant influence on the
number of CISTs, and that collections of CISTs exists when
the local node density is large enough to avoid isolated or
pending vertices (degree 1). In this section, we generate ad-
hoc networks using a realistic model, and then determine by
simulation how many CISTs we can calculate on them.

A. Network model

We have simulated ad-hoc networks as follows: a model
widely used for ad-hoc networks is the Unit Disk Graph
model (UDG), defined as the intersection graph of a family
of the same radius disks in the Euclidean plane. This
model suffers from its simplicity because the nodes have an
identical radius (i.e. transmission range) r and are adjacent to
each others as soon as their respective distance is lower than
r. They do not take into account the presence of obstacles
and interferences, nor the heterogeneous nature of nodes.
Quasi-Unit Disk Graph is a graph model considerably closer
to reality [31]: two nodes are connected by an edge if their
distance is less than or equal to q, q being a parameter
between 0 and r. Furthermore, if the distance between two
nodes is greater than r, there is no edge between them. In
the range between q and r the nodes are connected with a
certain probability.

We used the Quasi-Unit Disk Graph for network simula-
tion. We consider a geographic area of 100×100 units. Given
a number of nodes and a range r ∈ [0, 100], we generate
random coordinates xi, yi ∈ [0, 100] for every node i so
that the network density is evenly distributed in the space.
We set q = 0.6r, and we link pair of nodes with probability
p = 1, if their distance d is less than q, or with probability
p = r−d

r if their distance is included between 0.6r and r.
Note that if we need to update the transmission range from

r ro r′ by keeping the same nodes positions, no probabilistic
edge is deleted when the transmission range increases, to
maintain cohesion of simulations.

B. simulation protocol

We present simulation results on the number of CISTs
computed when some network parameters vary.

We use IBM ILOG CPLEX Optimization Studio v12.6.3
for ILP resolution on a 8-core 3GHz server machine with
16 GB of RAM. We have restricted the search of a k-
size collection of CISTs to 2 hours of CPU time per value
k. Thus, the values presented in our simulation results are
either the maximum number of CISTs of the network, or the
best lower bound achieved so far. Even though the highest
collection can not be calculated within a reasonable time
for some dense graphs with many nodes, this lower bound
provides some valuable information about the relevance of
using CISTs in ad-hoc networks.

Fig. 1 shows an example of 3 CISTs obtained with our
ILP on a 45-nodes network, each represented with a different
color.

C. Impact of the transmission range

First we studied the evolution of the number of CISTs
when only the transmission range varies.

We placed 50 nodes uniformly, then we searched for (a
lower bound on) the number of CISTs and its upper bound,
for transmission range values r in [20, 25, 30, 35, 40, 45].



Figure 1: 3 colored CISTs on a 45-nodes network. Here
black edges are unused in any tree

We repeated the measurements for 10 different simulated
networks. Fig. 2 shows the average number of CISTs found
with a 95% confidence interval and the average upper bound
in a 50-nodes network per transmission range.
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Figure 2: average number of CISTs found and average upper
bound (min(κ(G), λ(G))) in a 50-nodes network

Table I presents a correspondence between the range
values presented on Fig. 2 and the average network density
(including standard deviation).

Transm. range 20 25 30 35 40 45
Average density 0.10 0.18 0.22 0.26 0.35 0.43
Std deviation 0.016 0.022 0.024 0.029 0.037 0.049

Table I: Average network density per transmission range for
a 50-nodes ad-hoc network

We reiterate the same process on 100-nodes networks
using the same transmission ranges. The aim is to observe
whether the growth of the number of CISTs is similar,
regardless of the number of nodes. Fig. 3 shows the average

number of CISTs found for 100-nodes networks with a 95%
confidence interval after 10 simulation rounds.
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Figure 3: average number of CISTs found and average upper
bound in a 100-nodes network

Table II presents a correspondence between the range
values shown in Fig. 3 and the average network density
(including standard deviation).

Transm. range 20 25 30 35 40 45
Average density 0.11 0.18 0.22 0.27 0.35 0.45
Std deviation 0.005 0.007 0.008 0.010 0.017 0.024

Table II: Average network density per transmission range for
a 100-nodes ad-hoc network

In a similar way, Fig. 4 and Table II presents the average
number of CISTs found for 150-nodes networks, and the
corresponding densities.
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Figure 4: average number of CISTs found, and average upper
bound in a 150-nodes network

Remark 2: For transmission range values less than 35
units, the calculated number of CISTs is optimal mostly
on networks on 50, 100 and 150 nodes: the ILP admits no
solution when we increase the number of CISTs by one.



Transm. range 20 25 30 35 40 45
Average density 0,10 0,17 0,21 0,25 0,33 0,42
Std deviation 0,004 0,005 0,005 0,009 0,012 0,013

Table III: Average network density per transmission range
for a 100-nodes ad-hoc network

However this optimality is not presented on Fig. 2 , 3, and
4, as bounds refer to values of Eq. 1 only.

D. Impact of the number of nodes

In a second part, we try to check whether the number of
nodes can influence CCIST (G) or not. We performed a new
set of simulations according to the following process: we
generated sets of random networks with different number of
nodes but equivalent density by adjusting the transmission
range, and computed the number of CISTs on them. We
execute 10 times the measurements. Fig. 5 show the variation
of the average number of CISTs on the number of nodes for
a density network between 0.9 and 0.12
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Figure 5: average number of CISTs found when the number
of nodes varies, for a network density between 0.9 and 0.12

We have realized this scenario for two other density
ranges, respectively medium density (between 0.15 and
0.18) presented on Fig 6, and high density ( between 0.25
and 0.28), presented on Fig. 7). Results are presented with
an interval confidence of 0.95%.

E. Simulation results and interpretation

The results presented in Fig. 2, 3, 4 , confirm the main
research hypothesis: the number of CISTs increases in ad-
hoc networks when the network density increases, making
CISTs an appropriate solution to improve the robustness of
these networks. In particular, the results indicate that there
is good hope of finding 3 CISTs for transmission range
greater than 35 units, regardless of the number of nodes. As
a positive result, we note that there is a very high probability
of finding at least 2 CISTs even for small densities on 50-
nodes networks. This definitively confirms the relevance of
CISTs in such networks.
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Figure 6: average number of CISTs found when the number
of nodes varies, for a network density between 0.15 and 0.18
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Figure 7: average number of CISTs found when the number
of nodes varies, for a network density between 0.25 and 0.28

More surprisingly, presented results, especially the sec-
ond set of conducted simulations (Fig 5, 6, and 7), tend
to show that density is not the only parameter that can
influence CCIST : for analogous densities, the number of
nodes seems to have a positive impact on the number of
CISTs: for example, there is good hope to find 4 CISTs
in 50-nodes networks when the transmission range reaches
40 units, while it can be reduced to 30 units in 150-nodes
networks. A high number of nodes even allows to get up
to 8 trees for high transmission ranges (Fig. 4). While we
have demonstrated a strong correlation between CCIST (G)
and d(G); this additional result suggests that there might
be another measurement that could benefit from a higher
correlation with CCIST (G) on ad-hoc networks.

For 50-nodes networks, the vertex and edge connectivity
is an interesting upper bound, showing that restrictions on
CISTs have a reduced impact on their number compared to
edge-disjoint spanning trees. However, this bound becomes
less relevant for high transmission ranges in 100 and 150-
nodes networks, and some effort must be made to propose
better calculable bounds in reasonable time.



VI. CONCLUSION AND PERSPECTIVE

Despite the high difficulty of finding CISTs, and some
negative theoretical results for dense networks, CISTs appear
to be an interesting choice in ad-hoc networks for improving
the robustness and other common network operations such
as load balancing.

Here we have focused our efforts on providing proof of
concepts of the relevance of CISTs in ad-hoc networks. Now
we are trying to extend our work from an operation research
perspective: our ILP can be improved to get better results in
less computation time. In particular, we intend to propose
an improved formulation using column generation [32] to
see the gain in term of computation time and to obtain new
results by studying other parameters on larger networks.

An interesting research perspective focuses on the gap
between the number of CISTs and the number of Edge-
Disjoint Spanning Trees: we plan to investigate whether
there is a strong relationship between the two structures,
and whether correlate them on particular networks.

However, CISTs remain very sensitive to minor local
issues or border effects that can induce, i.e. low-degree
nodes. These nodes greatly reduce the number of calculable
CISTs even if all the other nodes benefit from a high degree.
An interesting perspective would be to extend the definition
of CISTs by including a bounded number of nodes and/or
edges on which the combinatorial constraints can be relaxed.
A main interest would be to compute more almost CISTs,
while bounding the number of nodes that cannot satisfy the
constraints specific to CISTs. Another use would help the
network designer to find critical network points, to focus on
the node requiring extensive supervision, or to advise the
placement of additional nodes. Our ILP formulation can be
easily extended to accommodate such an improvement. An
additional study could focus on how the number of CISTs
increases when the number of relaxed nodes or edges varies.

Other perspective could lead to efficient heuristics for
calculating collections of CISTs, and to evaluate the results
obtained with respect to the optimum.
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