Design and implementation of a low cost modular
Sensor

Augusto Ciuffoletti Member, IEEE,

Abstract—On the financial side, a key factor for the success
of a smart-city initiative is the low cost of the sensors. On the
technical side, the units need to be flexible enough to cover
different roles, and to be reconfigurable for a distinct target. The
capability to interact with an already deployed infrastructure,
like a preexistent web-server, is a favorable feature from both
the financial and technical point of view.

In this paper we exploit an overlooked feature of the ESP8266
WiFi chip, i.e. the AT commands interpreter, to implement a
sensor/actuator that meets the above specifications. To test our
design, we implement a library that provides a transparent
wrapper for AT commands.

Using a prototype consisting of a board hosting an ESP01
coupled with an Arduino Nano, of which the cost is around
10 Euros, we evaluate the static properties and the operational
stability.

Index Terms—Internet of Things, occCl, REST, WebSocket,
Edge Computing.

I. INTRODUCTION

The design and prototype deployment of complex IoT
infrastructures, like in a smart-city project, require the avail-
ability of flexible, low cost devices that, while being adaptable
to various scenarios, preserve a common architecture that
reduces the cost, and ensures reuse of hardware and software
components [10]. While it is a common sense statement that
a modular design helps to go in that direction, we observe
that IoT devices, especially those dedicated to prototyping,
are often designed as monolythic as possible. For instance,
the network device is often bundled with the Microcontroller
Unit (MCU) in a way that makes difficult to exploit the com-
putational capabilities of the network device, thus relieving the
MCU from the management of complex networking tasks.

To go in the direction of a modular design, a fundamental
issue is the presence of an interface, the API, between the
modules: this element must give access to the capabilities
of the involved modules, while being sufficiently abstract to
simplify the interaction.

In this paper we focus on a serial WiFi transceiver board,
the ESPO1, that is sold with such an API already flashed in
the on-board memory. This piece of software is open-source,
and can be entirely replaced or extended. As a matter of fact,
its presence is often overlooked, and designers usually prefer
to re-flash the unit. We want to show how the ESPO1, the
cost of which amounts to a few Euros, is a building block for
the implementation of a powerful prototyping device, that is
obtained coupling it with a low cost MCU, like one of the

Augusto Ciuffoletti is with the University of Pisa - Dept. of Computer
Science

Arduino family, using AT commands. The cost of the whole
thing, excluding sensors and actuators, is estimated less than
10 euros, with prices on the retail market. This allows medium
scale deployments at costs that are acceptable for a small
community. Design modularity ensures that the device remains
flexible, for instance allowing the replacement of the MCU or
extending the network device with new functionalities,

The first step on this way is the production of the interface
library. Using it, we show that the thing is sufficiently powerful
to reliably feed a Thingspeak channel using POST requests,
saving enough hardware resources for sensor/actuator control.
Notably, the management of a POST entails the processing of
both the header and the body of the HTTP response, which
is a moderate challenge given the limited capabilites of the
Arduino MCU.

The interest for a Restful thing is related to the features
of a HTTP-based infrastructure, included the availability of
software and hardware components that simplify its deploy-
ment. There are proposals to automate the deployment of IoT
infrastructures that are based on Restful capabilities of IoT
devices [1].

We evaluate the stability and reliability of our prototype
with a run of nearly two days: after that lapse the device is
stopped, and the number of lost feeds is evaluated .

II. ARCHITECTURE OF A IO0T DEVICE

The design of an IoT device is usually split into two distinct
components that are specialized to carry out two characteristic
activities: one interacts with the environment using sensors and
actuators, another provides the connection with the Internet.
The two components exchange data using a low level protocol
(e.g. SPI), and are often tightly coupled in the same board. For
instance, to limit the scope to the Arduino family, the recent
Arduino UNO Wifi (released in 2016) and the Arduino Fishino
(on the market since 2015) share a similar architecture, based
on a Atmel MCU and an ESP8266 WiFi controller. In that
sense the architecture mimics that of a conventional PC, with
the networking device embedded in the same chassis of the
motherboard.

The network API offered to the programmer slightly de-
pends on the physical carrier (be it cabled Ethernet or WiFi),
and a representative is the Arduino Ethernet library. The
functions offered by this library are a mixup of the three layers
of interest — link, network and transport — and come at the
price of a library that may have an heavy footprint, considering
that the available program space is in the range of the tens of
kilobytes. The library uses a low level protocol to exchange

data and control between the MCU and the networking device,
and is entirely opaque to the programmer.

However, network software is very sophisticated, and it is
convenient to move it to the specialized device, so that it does
not take space in the MCU RAM. In that way, it might be
optimized for the specific hardware by the producer itself.

Among the boards that provide WiFi networking, the Wiznet
WizFi family and the Expressif ESP8266 are two represen-
tatives of this approach. They both offer two distinguished
interfaces, one through the SPI protocol, which is based on
writing internal registers and bit patterns to run commands,
another through a serial link, which uses human readable
strings that mimic Hayes AT commands. Here we concentrate
on an ESP8266 based board, the ESPO1.

The ESP8266 AT commands interpreter is an open source
software, and it is freely available from the Espressif site.
It can be replaced with custom software using a simple
procedure, similar to flashing a sketch on the Arduino. In fact
the same Arduino IDE can be used to upload software on an
ESP8266 board.

As we see, the designer is faced with a relevant alternative:

o keep the AT interface, and complete the project program-
ming the MCU to interact with the ESP8266 using the
serial device;

o re-flash the ESP8266, and implement the whole project
on it.

The second option is the very popular, and libraries exist
that use the internal network device in a sketch that is native
for the ESP8266. This approach is appealing, but is open to
some issues:

o the device is in charge of two roles, networking and
environment, so that we lose the advantage of parallel
execution

o the generic WiFi interface implemented by one-fits-all
libraries does not give access to all the features of the
ESP8266 device (e.g., power saving features)

In return, if the application uses a library that implements an
interface similar to that of the legacy Ethernet shield, then the
application becomes portable to a different architecture (for
instance, MCU+Ethernet shield).

In contrast, if our project follows the first option and uses
the AT commands, its portability to a system with a different
networking device is complicated, since there is not an agreed
convention about AT commands: for instance, WizFi and
ESP8266 AT commands are not interchangeable. However, we
account for the following favorable aspects:

o we de-couple networking and operation activities

o all the features of the ESP8266 are reacheable

o the AT interface is maintained by the producer itself,

which gives high confidence on its quality

It turns out that the former approach, that trashes the AT
interpreter in favor of a legacy API, is considered as more
appealing: a quick tour in the Internet shows that the AT
interpreter is used mostly for demo and introductory purposes,
and seldom used in applications. The few libraries that make
use of the AT commands are opaque wrappers, that hide
the commands inside functions. For instance [8], but a more

complete library, also used at MIT for educational purposes,
is in [7].

In this paper we study a different approach, and implement a
transparent wrapper, that provides a single function that is able
to give access to most of the AT commands. The AT command
itself is passed as a char array, and the response from the
ESP board is returned in the same buffer. The library that
implements the interface, named atlib is publicly available on
a git repository [2]. Using it in a prototype device we check
the reliability and effectiveness of the ESP§266 API based on
AT commands.

III. OUTLINE OF THE ESPO1 BOARD AND OF THE AT
COMMANDS

The ESPO1 is a tiny board (0.5x1”) that mounts the
ESP8266 chip, an external Flash memory, a crystal and few
minor components. An array of 8 pins gives access to the
minimum required to use the AT interpreter and to reflash the
firmware. Its cost on retail is around 3 Euros.

According with version 2.1.0 of the reference document [4],
the AT commands are divided into three sections, depending
on the controlled functionality. Following the same schema,
we divide them into Basic, WiFi and TCP/IP.

o Basic commands are used to control the operation of
the networking device, with no reference to network
operation. For instance, among these commands we find
a reset function, UART control, power saving, GPIO
pins control, device inspection. This section counts 21
commands;

e WiFi commands are used to perform link layer op-
erations. Besides the association to an AP, there are
commands to control the DHCP function, to set and check
IP and MAC addresses, as well as Zeroconf protocol
features;

e TCP/IP commands are used to manage Client/Server
TCP and UDP, and also to retrieve date and time infor-
mation from SNTP servers, to control DNS servers, and
to generate ICMP pings.

All commands follow a query/response pattern, and share
some features. They all begin with the AT+ string followed by
the name of the function and a variable number of characters
for switches and parameters. The commands return a variable
number of text lines separated by a \r\n combination, with
the last line closed by an OK in case of successful termination
of the command. Otherwise, the line terminates with a ERROR
or FAIL string.

To send a chunk of bytes across a TCP connection, the
device is first prepared with an AT+CIPSEND command that
informs about the length of the data, and next the data is
directly sent through the serial link. When the ESPO1 detects
the termination of the transmission, it returns ready to receive
AT commands.

IV. THE atlib LIBRARY

The atlib library takes approximately one Kbyte of program
memory, and 200 bytes of dynamic memory; with reference
to the Nano Arduino board, they are respectively 4% and 8%

class ESP
{
public:
ESP (SoftwareSerial *mySerial, int baudrate);

void reset ();
int state();
int atflush();
int atcmd(

char cmd[], // the two-way buffer

int size, // the size of the buffer

int timeout);// operation timeout in seconds

int session(

char header[], // the two-way buffer for the header

int headersize, // the size of the buffer

char body|[], // the two-way buffer for the body

int bodysize, // the size of the body

int timeout); // operation timeout in seconds
private:

SoftwareSerial » _mySerial;
bi

TABLE I
DEFINITION OF THE ESP CLASS

of the corresponding resource. These figures do not take into
account the buffers needed to store the contents.

The library depends on the SoftwareSerial library. This
option, that limits the baudrate, is justified since we want
to keep the unique hardware UART available for debugging
and programming activities. This ensures that the board can
be effectively used for prototyping activity, as in our initial
statement. In addition, we want our software to be readily
portable to simpler devices, like AtTiny MCUs, that do not
have a builtin UART. We tested our design with a baudrate of
19200, corresponding to 2.3 Kbytes/sec, which is adequate to
low bandwidth actuators/sensors. However, it is a soft design
decision that can be easily modified.

The atlib library defines the ESP class, the wrapper for
the AT commands (see table I). The constructor takes as
arguments a reference to a SoftwareSerial object, and the
desired baudrate. Five methods are defined for an ESP object:
they are outlined in the next sections.

A. The atcmd transparent wrapper

The atcmd method is a transparent wrapper and takes as
parameters, a char buffer containing an AT command, its
size, and a timeout. The semantics of the method consist in
forwarding the command found in the buffer to the ESP device,
returning the device response in the same buffer. The method
blocks until one of the termination patterns (OK, ERROR or
FAIL) is received from the device, or when the timeout
expires.

The atcmd returns an integer, with a meaning summarized
in table II.

The buffer contains the full response, which is different for
each command and follows the syntax described in the manual.

B. The state and reset opaque wrappers

We introduce two separate opaque wrappers to reset and to
inspect the network device state.

1 successful termination (OK)

-1 | unsuccessful termination (ERROR or FAIL)
-2 | command timeout

-3 | buffer overflow

TABLE I
RETURN CODE OF THE state METHOD

station associated with AP
TCP connection created
TCP not connected

station not associated to AP

command timeout after 2 seconds (builtin)
TABLE III
RETURN CODE OF THE state METHOD

QN | B W

The response to the AT-CIPSTATUS command does not
end with one of the strings mentioned above, so we need a
specific parser. In addition it returns a code that is incompatible
with the at cmd return code. So we introduce a special state
method for it.

The state method does not have input parameters, and
returns an integer: see table III for its meaning.

The reset method wraps the AT+RST command, that
returns a response which is always terminated by an OK, but
is preceded by noise and a generic presentation. In this case
we prefer to trash the response, since it might saturate buffer
capacity. So the reset method has no parameters and does
not return a result, but has the side effect of cleaning the state
of the device.

C. The session request/response method

The session method manages a two way session with an
HTTP server on the other side. It is designed to simplify a
RESTful session, and its arguments are two buffers, one for
the header of an HTTP message, the other for the body, their
sizes, and a timeout.

The session method does not call AT commands on the
network device, but simply delivers the header and the body
of the HTTP request to the network device, that, in its turn, will
deliver them to the destination, separated but an empty line.
Next it waits for the response from the server: the response is
split into a header and a body, and each of them is truncated
to fit the dimension of the respective buffer.

The application is responsible for the compilation of the
header: the startline and the attributes must comply with the
HTTP protocol and with server expectation.

The return code of the session method has the meaning
described in table IV.

D. The flush cleanup method

The £1lush method is used to recover from a timeout: when
such an event occurs, part of the response may be received by
the serial device at a later time as part of the response to

0 ‘ successful termination
-2 | timeout

TABLE IV
RETURN CODE OF THE session METHOD

another command: this can easely disrupt a communication
protocol. The £lush reads all available bytes from the serial
input, and terminates after a two seconds timeout. All contents
are discarded.

E. Buffer management

The storage space is a scarce resource in a MCU, so we
leave to the developer of the application the final word about
where and how much memory to allocate.

Regarding how to allocate the memory, the user may decide
to allocate it in the global dynamic memory as a fixed size
characters array, or use space in the program memory and use
amalloc. In the latter case there is no risk of fragmentation,
since typically allocation occurs during the Setup operation
and there is no free. In fact, we have tested both solutions
with identical results.

The size of the buffers heavily depends on the application.
We have found that 100 bytes are enough for the AT com-
mands: as a design decision, the atcmd method terminates
with a un-recoverable error in case of buffer overflow. The size
of header and body buffers depends on the specific application.
We noticed that, to POST a new feed to the Thingspeak server
we need approximately 150 bytes in the header: besides the
startline, we need Host, Content-Type and Content-Length
fields to obtain a positive acknowledgment from the server.
The body may be limited to the bytes needed to describe the
feed, or a Thingspeak TalkBack operation.

Unlike the command buffer, the header and body buffers
can overflow, and exceeding bytes are silently discarded.

V. THE TARGET APPLICATION: A POST TO FEED A
THINGSPEAK CHANNEL

The repository of the atlib library contains some examples:
here we analyze the one that we consider as a significant
milestone, which is the implementation of a POST request.
Together with the GET, which is simpler since it does not
entail the production of a body, they are the minimal toolset
to interact with a HTTP RESTful API, as in the case of the
Thingspeak service (https://thingspeak.com).

The challenge consists in reducing the size of the program,
library and main, that are needed to manage the association
to the AP, to open a new connection with the server, send the
HTTP request and receive the HTTP response. Like program
memory, also the buffers used for data management go through
the limited memory of our target device, which amounts to
32Kbytes.

It turns out that the sketch that performs the POST using
the atlib library uses the 1Kbyte (11%) less than a GET using
the WiFi library (as reported in one of the examples of the
WiFi library), with the advantage that the arlib library takes
care of buffering the response and separating the header and
body into two distinct buffers, which is a significantly complex
operation.

Coming to the POST implementation, in figure V we see
the core of the sketch that implements the request/response
exchange. The first 9 lines in the code are for preparing the
content of the request. The body is prepared first, since we

// prepare query
sprintf (body, "api_key=%s&fieldl=%d", CHANNEL_KEY,v++);
sprintf (header, "POST_/update HTTP/1.1\r\n");
sprintf (header+strlen (header),
"Host:_%s\r\n",HOST) ;
sprintf (header+strlen (header),
"Content-Type:_application/x-www-form-urlencoded\r\n");
sprintf (header+strlen (header),
"Content-Length: _%d\r\n", strlen (body)) ;
// connect to server
do {
sprintf (cmd, "AT+CIPSTART=\"TCP\",\"%s\", $d", HOST, PORT) ;
espl.atcmd (cmd, CMDSIZE, 10);
} while (espl.state() != 3);
// prepare send operation
do {
sprintf (cmd, "AT+CIPSENDEX=%d",
strlen (header)+2+strlen (body)) ;
} while (espl.atcmd(cmd,CMDSIZE,5)<0);
// send query
espl.session (header, HEADERSIZE, body, BODYSIZE, 10) ;

TABLE V
CODE FRAGMENT FROM THE THINGSPEAK_POST EXAMPLE

need to include its length in the Content-Length field, and
next the header.

The lines that follow (11-14) are a loop that repeatedly
tries to open a new connection with the server using an
AT+CIPSTART command. When the connection is created,
the ESP device is configured to receive and forward a number
of bytes corresponding to the whole HTTP request: header,
body, and a separating empty line. This is obtained with a
AT+CIPSENDEX command, at lines 16-19. Finally the request
is piped through the serial interface.

A typical HTTP packet that feeds one or more field values
is 200 bytes long. At a baudrate of 19200 this corresponds
to roughy 0.1 seconds: depending on the application this
may be too much. In that case, the designer may use the
hardware UART for communication — and the SoftwareSerial
for debugging — and reduce the time to send the request of
ten times (approx 10 msecs). However programming the MCU
becomes more time consuming, since we need to disconnect
the ESPO1 from the RX/TX pins used for flashing.

Our test application envisions 200 Bytes for the header
buffer, and 100 Bytes for the body of the message. When the
call to the session method returns, the two buffers contain the
header and the body of the HTTP response, truncated to the
length of the buffers. In our case, in the header the response
startline is available, as well as the Content-Length field. The
body contains the cumulative number of values logged in the
channel. In case of a GET it may contain a selection of past
feeds, or the identifier of an action to perform (TalkBack
service).

A. An experiment

To have an idea of the stability of the sketch, we run it for
nearly two days, sending a new value every 30 seconds. The
value is an integer incremented each time by one, so that we
have been able to check software and network problems.

The hardware we used was the ESPOl1 coupled with an
Arduino Nano, all mounted on a breadboard. The schematic is
in figure 1. We also tried a similar schema using an Arduino

Mini Pro 3.3V, with similar results. In this latter case the
soldered prototype board was approx. 2x1”, including the
power stabilizer.

We stopped the counting device after 5000 rounds, i.e. 41
hours of continuous operation, and we counted 323 (6.5%)
”Bad Request” replies that result in a lost value. We considered
this value excessive, so we investigated about the reason.

The first hypotheses was a SoftwareSerial synchronization
problem. So we tried with different baudrates, but the loss
rate did not change significantly. Then we investigated the
time distribution of the events, and we found that they were
concentrated during the lapse between 3pm and 2am UTC (see
figure 2). Using an IP geolocation service we found that the
Thingspeak server was located in the Amazon AS in Ashburn
(VA-USA), in the EST timezone. Shifting the high-loss time
period into the server’s timezone (GMT-4 with DST) we found
that it corresponds to working hours (1lam-10pm), so we
considered that the high failure rate was due to the server
side infrastructure load, and not to a problem in our device.
During a low-loss interval of fifteen hours the loss rate drops
to 1.4%, and we consider this as a pessimistic failure rate for
our device.

We conclude that the sketch is stable, since it did not crash
during the test period, but it is exposed to the loss of some
feeds, in the order of a few percent points. Notably, the loss
rate can be easily lowered by introducing a retry strategy in
case of Bad Request response, but this is outside our scope.

VI. LIMITS OF THE AT COMMANDS

The experiments we carried out, and that are summarized
in the previous sections, allow to identify some weaknesses of
the AT commands, as they are today. We list them in order of
importance.

One relevant feature that is missing is security. It is clear
that any aspect of an information management system must be
designed with an eye to possible intrusions and threats, but the
AT commands do not offer (or, at least, there is no document
about) a way to open an SSL connection. The AT commands
reference document mentions such possibility (namely, there
is an option value dedicated to open an SSL connection, and
a command to allocate buffer space for SSL), but we did not
find an exhaustive documentation. A paper exists that describes
the use of an on-board library in order to implement secure
communication [3], but this is not in the scope of our design,
since we want to use AT commands on the serial device.

Another serious drawback of the AT interface is its footprint
in terms of the space used to store command strings. Consider
that each string denoted with the “double quotes” syntax takes
space as a data item, which raises the opportunity of an
optimized design of command labels. Instead, command labels
are clearly redundant, well beyond what is needed for their
mnemonic function. All of them start with an AT+ prefix,
which is therefore completely redundant. A prefix of two
or three letters identifies the group a command belongs to:
e.g., the CIP prefix indicates an TP related command, and is
common to nearly half of the available commands. Also in
this case we have redundancy and verbosity.

The AT commands do not provide a native support to
RESTful HTTP operations. With our experiments we have
shown that, using the available commands, it is possible to
implement a RESTful session, but at the cost of a significant
fraction of MCU memory. Given the growing popularity of
RESTHful interfaces among providers (and the good reasons for
this trend are found in the values of the REST paradigm [6])
it would be advisable that native AT commands were available
to carry out REST verbs, as suggested by our sketch.

Even more valuable would be the provision of native Web-
Socket tools through AT commands. The WebSocket standard
[5]is more and more popular since it allows the management
of a stream of data (not a request/response session) in the
familiar HTTP framework [9]. This eases the design of the
infrastructure that gathers data from a multitude of sensors,
and distributes control to actuators.

Therefore, while claiming that the AT serial interface has a
relevant role in the design of modular IoT devices, we point
out that it still misses some relevant features. Regarding SSL
and native HTTP one may argue that they can be promptly
implemented as extensions of the current AT interpreter: the
tools exist to carry out this operation with limited effort.

As for command syntax, this issue hits the cornerstone of
standardization. As of now, it wouldn’t be a big problem to
redesign the interface to have shorter labels. But, in case the
AT commands were massively used in many projects, such a
change might have disruptive effects.

If AT commands are considered a relevant tool, their design
should be reconsidered in view of their utilization in MCU
programs, and a common framework shoud be agreed to
go in the direction of a common interface that allows the
seamless replacement of a device with another, as mandated
by a modular design.

VII. CONCLUSIONS

When I started out the design of a low cost Restful thing,
I was prepared to find many projects on public repositories
like Github and Fritzing to help me in the task. When I
found that this was definitely not true, I decided to implement
from scratch what I had in mind. During the implementation
process, I noticed a number of relevant details in what I
was making, and I decided to prepare a conference paper.
The result is a DIY project with a research flavor, a hybrid
document that shows that something is changing in computer
science: the potential of a public repository needs to be
combined with accuracy and method of a scientific research.
I tried to put together all these aspects in this paper, and I am
grateful to the reviewers that appreciated my effort.

Starting from methodological aspects, one detail that I
have not found browsing projects in public repositories is the
decoupling of computational and networking activities. This
is usually considered commonsense, but I found that, among
IoT projects, the opposite attitude is more popular indeed. So
I decided to head forward a strictly modular architecture.

Communication between modules is consequential, but I
found that AT commands are seldom used for purposes beyond
simple educational TTY-driven exercises. I decided to focus on

D5

D4

IN 78XXO0UT
o b
- = ®
T~
g 2 g 1uF g
] RESET D13/5CK ™D Espg266CH D
] AREF D12/MISO RXD WiFi
WV\’ Module
D11/MOSI e 10kQ GP10. 0 f——
—l AD D10 e GPIO_2
] 11 [pLo] GPIO_16 frmmiems
— 12 D8 e 2
e A3 Arduino [B] — =
, Nano ; w
e (Rev3.0) B)

SoftwareSerial connection between an Arduino Nano and
an ESPO1 board

i Project Nano+ESPO1
5 Filename Nano+ESP01.fzz Rev 0.1
Date 211lug 2017 11:33:19 Sheet 1/1

fritzing

Fig. 1. Electronic schematics of the prototype used for the experiment. D2 and D3 on the Arduino are respectively RX and TX for SoftwareSerial

400

300+

200+

100+

00:00:00
00:00:90
00:00:21+
00:00:8T
00:00:00
00:00:90
00:00:2T+
00:00:8T
00:00:00

Fig. 2. Cumulated number of missing feeds during a two days period

this interface, and the results show that this allows the design
of a thing with a modular architecture.

Many projects that I have found do not take into account
that, once communication has been implemented, the residual
resources must be sufficient to implement possibly sophis-
ticated applications. I met two critical decision to take on
this respect that are superficially documented and compared
in the literature: the utilization of the UART, split between
development and communication, and the allocation of mem-
ory buffers, either static or dynamic. I found many superficial
discussions, and I finally opted for the less popular options.
The hardware UART is dedicated to development, which is a
relevant activity in a prototyping environment, and a software
emulation of the serial interface is used for communication:

since it is a controversial option, it is scientifically relevant
to define its limits. On the storage side, I discovered that
dynamic allocation is usually disencouraged for reliability
reasons, justified by programming difficulties. But, while it is
true that an malloc () is more difficult and error-prone than
a variable declaration, a dynamic allocation saves precious
memory that can be used for the application. So I opted for
the latter alternative.

Also the co-existence of two electronic standards, CMOS
for the ESPO1, TTL for the Arduino, is often matter of
confusion. For this reason I decided to make explicit the
electronic scheme, to document my option.

It is part of the scientific method to perform significant
experiments to verify the assumptions, to spot potential prob-
lems, and to identify directions for future investigation. After
a number of test applications, I decided to implement a
POST session, the cornerstone of a Restful thing. From this
experiment I came to two basic results: we know that it is
possible to manage a POST inside an Arduino leaving enough
resources for a reasonable application, and we we have an idea
of its performance and reliability.

Based on such results, I discuss the fundamental design
decision, consisting in the adoption of the AT interface: there
are a number of issues with it, discussed in Sect. VI, that
appear to be approachable and solvable with a moderate effort.

Coming to the practical results of my investigation, we have
the implementation of a library that provides a transparent
wrapper, that gives access to the AT commands through a C++
object. This library provides generic networking functions, and

can be reused and improved in other projects. This happens
thanks to the existence of software repositories that allow the
publication of open source projects.

I claim that one of the scenarios where this solution is
especially suitable is the design of devices and infrastructures
for the improvement of urban environments. It is a field where
a trial and error strategy is mandatory, implementing solutions
that the target community will accept, refuse, amend. In these
scenarios modularity, cost, and simplicity, the starting points
of my investigation, have a fundamental role: the administrator
wants to be able to change the solution without loosing
investments of public funds, to keep costs low since the
community is often small, and to use local limited competence
to develop the solutions.

As a final remark, I observe that another scenario that
exhibits similar features is hands-on education. Low cost, self
assembled devices like that described in this paper allow a
rich learning experience to a student in a related discipline.
Just another reason to extend the utilization of AT commands
beyond hallo world TTY exercises.

REFERENCES

[1] Augusto Ciuffoletti. OCCI-IOT: an API to deploy and operate an IoT
infrastructure. IEEE Internet of Things Journal, PP(99):1-1, 2017.

[2] Augusto Ciuffoletti. A wrapper for the at interface of the esp8266.

https://bitbucket.org/augusto_ciuffoletti/atlib.git, July 2017.

Espressif Systems IOT Team. ESP8266 SSL User Manual, v 1.4 edition,

2016.

[4] Espressif Systems IOT Team. ESP8266 AT Instruction Set, v 2.1.0
edition, 2017.

[5] I Fette and A. Melnikov. The WebSocket Protocol. RFC 6455 (Proposed
Standard), December 2011.

[6] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. ACM Trans. Internet Technol., 2(2):115-150, 2002.

[7] Shen Nong Min. Weeesp8266: Api documentation.
https://docs.iteadstudio.com/ITEADLIB_Arduino_WeeESP8266/index.html,
2016.

[8] Rasmus Ljungmann Pedersen. Arduino esp8266 easyconfig.
https://github.com/rasmuslp/ArduinoESP8266EasyConfig, 2014.

[9] M. Vujovi¢, M. Savi¢, D. Stefanovi¢, and 1. Pap. Usage of NGINX
and websocket in IoT. In 2015 23rd Telecommunications Forum Telfor
(TELFOR), pages 289-292, Nov 2015.

[10] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet
of things for smart cities. /EEE Internet of Things Journal, 1(1):22-32,
Feb 2014.

[3

=

