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Abstract—Notifications can be relevant but they can also
decrease productivity when delivered at the wrong point in
time. Smartphones are increasingly capable of detecting relevant
context information with the goal to decrease the number of these
badly timed interruptions. Accordingly, research on context-
aware notification management systems (CNMSs) on mobile
devices has received increasing attention recently, prototypes have
been built and empirically evaluated. However, there exists no
systematic overview of mobile CNMSs evaluating their efficacy.
The objectives of the current work are therefore to identify
relevant empirical studies that have assessed the efficacy of mobile
CNMSs and to discuss the findings with respect to future work.
A systematic literature review and meta-analysis was conducted
to address these objectives. Consistent with prior work, two
efficacy metrics were applied: response rate and response delay.
A keyword-based search strategy was used and resulted in 1’634
studies, out of which 8 were relevant for the topic. Findings
indicate that mobile CNMSs increase the response rate, while
there was only little evidence that they reduce response time,
too. Implications for researchers and practitioners are discussed
and future research is outlined that aims at further increasing
the efficacy of mobile CNMSs.

I. INTRODUCTION

The number of mobile devices is growing tremendously
[1], [2], and so is the number of notifications these devices
deliver to their users. In 2015, an individual received 100
notifications on average every day [3]. Notifications interrupt
individuals and decrease task performance [4], [5]. Conse-
quently, interruptions are associated with costs and are also
associated with frustration [6] and an individual’s feeling of
being constantly interrupted by his or her computer system [7].
While the number of notifications has increased, the attention
of an individual has remained constant.

Context-aware notification management systems (CNMSs)
have received increasing attention as a potential solution for
this problem. These systems infer the context (e.g. location
or surrounding) of the user to make an informed decision
on when to interrupt the user with a notification. Over the
last decade first prototypes and empirical studies have been
conducted [8], [9]. While Okoshi et al. [8] reviewed several
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papers and discussed CNMSs as a layer in-between notifi-
cation reception and delivery to the user, Turner et al. [9]
analyzed interruptibility (i.e. a users susceptibility to receive a
notification), data collection and prediction scenarios. Most of
the work, however, has been focusing on desktop notifications
and using external sensors. Horwitz et al. [10] and Fogarty
et al. [11] conducted some of the earliest work in this field
and find that simple simulated sensors (i.e. door open / closed,
talk, telephone usage etc.) provide enough information to infer
interruptibility [11]. Lilsys [12] and BusyBody [13] were
more advanced systems implementing on-the-fly detection
of interruptibility using third party sensors and computers,
respectively. The sensors they used range from motion, sound
(both external and stationary sensors) and time to location,
meeting status (in a meeting or not) and computer activity (e.g.
switching of applications). Subsequently, Igbal et al. [14], [15]
developed OASIS, a system using application switching on
desktop computers to trigger notifications. All these systems
focus on detecting naturally occurring breakpoints (i.e. break-
points in the daily schedule of a user, e.g. ending a phone call),
by either sensing task breakpoints (i.e. a break within a task) or
task boundaries (i.e. the start and stop of a task) as opportune
times to send out notifications. With the increasing adoption of
mobile devices, desktop computers were not the only source
of interruptions anymore, therefore mobile CNMS received
increasing attention. The first step from desktop computers to
mobile devices are body worn sensor networks, investigated by
Ho et al. [16]. They find that notifications delivered at activity
breakpoints are better received. Modern mobile devices, with
smartphones in particular, provide a unique set of sensors,
which can be used to infer the context of the user to time
notifications more informed, as the device is mostly very
close to the user. Notable work comes for example from
Mathur et al. [17], who studied smartphone interruptibility
with EEG sensors to extract which sensor information from the
smartphone is relevant. They then trained different algorithms
and machine learning models and found that personalized
models are only marginally better than models trained on a



large population.

However and to the best of our knowledge, there exists no
systematic overview of CNMSs that has evaluated the efficacy
of CNMS on mobile devices using only device sensors. The
objectives of the current work are therefore (1) to identify
relevant empirical studies that have assessed the efficacy of
mobile CNMS and (2) to discuss the findings with respect to
future work. In order to address these goals, we conducted a
systematic literature review and meta-analysis. Consistent with
prior work [18], [19], several efficacy metrics were applied.
Particularly, response rate, i.e. the number of notifications a
user has processed divided by the total number of notifications
sent out [18], and response delay, i.e. the time between a
notification has been sent and was processed by the user [19],
were used as objective efficacy metrics.

Next, we describe our systematic literature review including
the search strategy, study selection procedure, and details about
the meta analysis and risk bias assessment. Then, the results
are presented and discussed. We finally outline future research
opportunities that should be taken into account to further
increase the efficacy of mobile CNMS.

II. METHOD

We followed the established guidelines for systematic lit-
erature reviews as outlined by Okoli et al. [20] and Webster
et al. [21] to make the search process of the current work
transparent. We first outline how we defined the keywords
and found the relevant databases. Thereafter, we describe how
the relevant articles were identified. Finally, we describe the
methods that were applied to conduct our results analyses.

A. Search strategy

We first conducted a preliminary search on Google Scholar
for articles related to interruptibility. This unstructured search
resulted in a first overview of the field of interruptibility and
we learned that the papers of interest were predominantly tech-
nical in the field of CNMSs with some papers having a health
(e.g. [22], [19]) or psychological (e.g. [23]) background. Con-
sistent with prior work [24], we used the following databases
to conduct our search: ACM Digital Library, IEEE Explore,
ScienceDirect and ProQuest. To cover health related articles
we included the PubMed database. PubMed provides access
to MEDLINE with 16 million references one of the largest
and most widely used database in health related research [25].
We conducted our search in February 2017 and looked for
papers ranging back to 1994, which is considered as the year
the smartphone was invented [26]. Consistent with prior work
[27] we decided to use a keyword based search strategy to
efficiently screen a wide range of articles and journals. The
keywords are depicted in Table I. All keywords were derived
from papers we found in our early unstructured search. For
an article to be included in the results at least one keyword
from every set: Title, Abstract 1 and Abstract 2 had to be
included (see Table I). To decide on the relevancy of an article,
we screened the title and abstract for evidence regarding
the application of a CNMS as described in the introduction.

TABLE I
KEYWORD COMBINATIONS

Title (OR) Abstract 1 (OR) Abstract 2 (OR)
notification smartphone
interrupt ’smart phone’ notification
attention smartwatch interrupt
intelligent ’smart watch’ intelligent
’context-aware’ ’mobile phone’ breakpoint

’state of receptivity’
’state of vulnerability’
’state of opportunity’

*cellular phone’
phone
’mobile device’
"push notification’

“state of receptivity’
’state of vulnerability’
’state of opportunity’

After this pre-screening we applied the formalized inclusion
criteria described in the next section. We then conducted a
backward search on the papers passing this inclusion criteria
catalogue and applied the same procedure to the references of
the included papers.

B. Study selection

Following Okoli et al. [20] we developed a list of inclusion

criteria a paper has to fulfill to be considered as relevant. The
purpose of these criteria is to ensure relevancy with respect
to the research objectives. Before applying these inclusion
criteria to the identified studies we discussed them among
the authors to ensure a common understanding. We then
applied the criteria independently to the identified papers and
discussed any disagreement in the team of authors.
We included studies, who fulfilled the following criteria.
First, all studies were screened for some quality criteria (1)
English papers only. (2) Only peer-reviewed papers. (3) Only
RCTs and crossover designs. To infer causality, we excluded
observational studies and expert opinions. Second, all studies
were screened for relevance to the review (4) Only studies with
notifications on mobile devices, i.e. no desktop notifications.
(5) Only studies, who’s only source of data is coming from
the mobile device are included, i.e. no third party devices or
services. (6) Only studies evaluating a CNMS by automatically
inferring an opportune timing to send out notifications. (7)
Only studies, who reported efficacy metrics of the CNMS by
response delay and / or response rate. (8) Only working CNMS
prototypes and products. While there are many data gathering
and concept studies, we were interested in systems that have
an algorithm in place to detect and exploit interruptibility.

C. Meta analysis

Response rate and response delay returned dichotomous
data values (e.g. did the user respond or not) and continuous
data (e.g. delay in minutes), respectively. To compare dichoto-
mous data from different studies, we used the odds ratio
(OR), as suggested by the Cochrane Handbook for Systematic
Reviews of Interventions [28]. The OR was calculated with
the software RevMan 5.3 [29]. The analysis was done using
the Mantel-Haenszel method [30], [31] with random effects
[28]. This method has been shown to have better statistical
properties for a small number of studies [31], [28], which
is the case in our analysis. The random effects option will



give a more conservative result if heterogeneity is found, but
will give the same result as fixed effects if the data shows
no heterogeneity [28]. For continuous data we used Cohen’s
d as effect size, as suggested by [32]. To calculate d from
the different sources of information in the articles we used
www.psychometrica.de [33]. To compare the different studies
against each other we used the approach described by Thiese
et al. [34] to classify the study design.

D. Risk bias assessment

The risk of a potential bias in the publication was assessed
depending on the study design. For randomized controlled
trials (RCT) we assessed the risk as recommended by the
Cochrane Handbook for Systematic Reviews of Interventions
in Chapter 8 [35]. Specifically, their criteria catalogue can be
applied if the study of interest has a selection bias (i.e. system-
atic differences between the groups, which are compared [36]),
performance bias (i.e. systematic differences between groups
with regard to exposure to other factors that might affect
the outcome [36]), detection bias (i.e. differences between
groups in how outcomes are assessed [36]) or attrition bias
(i.e. bias due to the amount, nature or handling of missing
outcome data [36]). For crossover studies, i.e. studies with
multiple treatments per participant, we used Chapter 16 of
the handbook by [36] and the CONSORT N-of-1 guidelines
[37]. Specifically, we assessed the risk of a potential carry-
over effect (i.e. persistence of effects of one treatment into a
later period of treatment [37]), a period effect (i.e. a change
of outcome over time even in the absence of treatment [37]),
a sequence effect (i.e. systematic differences between groups
with predefined treatment sequences), not accounting for non-
independence of outcome data in analysis (i.e. not using some
form of a paired analysis) and a potential attrition bias.

III. RESULTS

In this section, we first report the general findings related
to our search strategy and describe the study characteristics
of the selected articles. We then provide an overview of the
study designs and potential biases in the studies. Finally, we
explain which sources of context information were used by the
mobile CNMSs and, most importantly, we report the results
of the efficacy metrics and their connection to the different
sources of context information.

A. Search strategy results

Our search process revealed a total of 1’634 articles. Out
of these, 135 articles passed the first title and abstract-based
pre-screening step and 9 articles the second screening step in
which the inclusion criteria were applied. During the backward
search we analyzed the references of these 9 articles as well,
but no further articles of interest were found. Furthermore, one
article dropped out for duplicate reporting of a study result
resulting in 8§ relevant articles.

B. Study characteristics

Table II provides a summary of the study characteristics
of all 8 articles of our systematic literature review. Age and
gender distributions of the study participants indicate a trend
towards males aged between 20 and 30. There are only two
studies [19], [18] including older participants (i.e. with a
mean age around 50) but four studies [7], [38], [39], [40]
with participants younger than 30. Also, there is a gender
imbalance, as only one study [41] established gender balance,
while all other studies had more men than women with the
gender ratio women to men going as low as 1 to 3 [7].

C. Risk of bias

Due to the lack of adequate reporting, risk of bias could not
be completely assessed for all included studies. For example,
we were unable to assess risk of bias in the included RCT
study [19] because the authors did not report a description
of the randomization process (i.e. how the randomization
sequence was generated) nor a comparison of baseline charac-
teristics between the different groups or how missing data was
handled in the analysis. For crossover studies, the balance with
regard to group assignment over time is essential to establish
causal inference [36]. Most studies randomized participants to
different notification strategies multiple times over the course
of the study. Randomization, if properly implemented, results
on average in a balanced design (i.e. a balanced order of
notification strategies), which is necessary to avoid confound-
ing of the effect of interest with the order of notification
strategies (carry-over effect) or changes in the outcome that
occur naturally over time (period effect). This works well when
a large number of participants are randomized or the order of
the notification strategies is altered often. Consequently, we
judged the risk of a period effect to be high in three [6], [7],
[39] out of seven studies. Only one study [38] implemented
an apriori balanced study design. In addition, studies rarely
reported how missing data was handled in the analysis and we
thus were not able to assess attrition bias in four studies [7],
[18], [19], [39]. Because the main outcome in most studies was
a stable behavioral variable (e.g. response time), we assumed
the risk for carry-over effects to be low in almost all studies.
The detailed risk of bias assessment is reported in Table III. In
two studies [40], [38] it was unclear which statistical analysis
was used. All in all, the results of our analysis have to be
interpreted with great caution since risk of bias in all included
studies was judged to be high or unclear.

D. Efficacy metrics

Results with regard to the efficacy metrics response rate and
response delay are described in the following subsections.
As outlined in Table II six studies (75%) reported results
on the response rate. Four studies (50%) contained enough
information to compute the odds ratio, as shown in Table IV.
The four analyzed studies show that there is a statistically
significant effect of mobile CNMSs improving the response
rate to notifications. The weighted odds ratio is 1.71 with
a 95% CI of [1.28, 2.28] and an I? of 75%, justifying the



TABLE II
SUMMARY OF ALL STUDIES IN THIS SYSTEMATIC REVIEW.

2 2
g g
oo (=9 ?
.. . 5 3 ]
Paper Participants Study Design Method Used (<7< ~ A
N Age % Women Efficacy Metrics
Morrison 2017 [19] 77  18-62 49% RCT Context-based timing X X
Obuchi 2016 [38] 30 18-26 36% Randomized crossover study Breakpoint based timing X X
Okoshi 2016 [39] 30 18-29 37% Randomized multiple crossover study Context-based timing X
Okoshi 2015 [7] 41  19-26 24% Randomized multiple crossover study Context-based timing X
Pielot 2015 [18] 16  16-51 N/A Non-randomized multiple crossover study  Boredom-triggered timing X
Pejovic 2014 [40] 10 22-26 40% Randomized multiple crossover study Context-based timing X
Fischer 2011 [41] 20  21-48 50% Non-randomized multiple crossover study  Timed after phone call or text message X X
Fischer 2010 [6] 11 N/A 27% Non-randomized multiple crossover study  User defined timing X
TABLE III and Pejovic et al. [40] d = .14 (¢(141.02) = 1.9, p = .06).

RISK OF BIAS FOR ALL STUDIES

Crossover N DR L CE PE SqgE  AB NiA
Fischer [6] 11 0% 10 + + N/A - y
Fischer [41] 20 0% 14 - N/A - y
Pejovic [40] 10 0% 30 - - N/A - ?
Okoshi [7] 41 0% 31 - + N/A ? y
Pielot [18] 16 0% 12 - - N/A ? y
Obuchi [38] 30 7% 4 - - - - ?
Okoshi [39] 30 10% 16 - + N/A ? y
RCT N DR L SB PB DB AB
Morrison [19] 77 0% 14 ? N/A - ?

y=yes, n=no, +=high, -=low, ?=unclear, N=Sample size, DR=Dropout rate,
L=Length [days], CE=Carry-over effect, PE=Period effect, SqE=Sequence
effect, AB=Attrition bias, NiA=Accounted for non-independence in analysis,
SB=Selection bias, PB=Performance bias, DB=Detection bias

random effects model. According to Chen et al. [42] an odds
ratio of 1.68, 3.47 and 6.71 correspond to a small, medium
or large effect, respectively. Consequently, an odds ratio of
1.71 equals a small effect. The fifth study [18], which did not
have enough data reported to be included in our calculation,
supports our finding with » = .51, which is equal to an odds
ratio of 8.64 [33], i.e. a large effect. The last study [6] reporting
a response rate did not find a statistically significant effect
(%(1) = .004, p = 1.0).

Three studies [39], [41], [40] reported sufficient information
to calculate Cohen’s d, while one study [38] reported a
descriptive trend. Finally, [19] reported all necessary results,
yet the direction of the effect was reported inconsistently,
which is why this study was omitted in this analysis. Fischer
et al. [41] achieved an effect size (Cohen’s d) for the response
delay, i.e. the difference in response delay between mobile
CNMS and non-CNMS, of d = .46 (F(2,1374.9) = 73.71,
p < .001), Okoshi et al. [39] d = .14 (Z = —3.19, p < .05)

Cohen et al. [43] suggest a small effect for .2 < d < .5,
a medium effect for .5 < d < .8 and a large effect for
d > .8. Consequently, one study [41] has a small statistically
significant effect, while the other two studies [39], [40] have a
negligible effect. Obuchi et al. [38], who reported a descriptive
result, found a trend towards a reduced response delay.

E. Sources of context information

A total of ten different sources of context information were
used to evaluate the interruptibility of the user, as shown in
Table V. Accelerometers were used to identify the movement
pattern of the user, sometimes in combination with physical
activity, a higher-level feature (e.g. to indicate whether a
user has stopped walking which defines a natural breakpoint).
Geographic location was usually inferred using GPS (e.g. to
infer whether an individual has arrived at home or at work),
however due to it’s high power consumption was sometimes
replaced with a less energy intense cell tower location method,
at the cost of reduced accuracy. Microphones were mostly used
to detect environment noise or people around the designated
user (e.g. to identify whether a person was involved in social
interactions). Bluetooth and WiFi were used to detect finer
grain location changes (e.g. changing rooms). User interface
(UI) events and communication relate to users’ interaction
with their phone. Where Ul events were more related to
interaction with the phone itself and communication more
to interaction with other people through their phone, i.e. a
call. Both of these features were used to detect naturally
occurring breakpoints, such as the termination of a phone
call or switching of applications on the smartphone. User
defined rules is a special case for context awareness, as the
user is asked beforehand to provide information about, when
he or she can be interrupted with notifications. However, we
decided to include it nonetheless, because the system later
automatically decides on the interruptibility. Time and others
refer to generally available information on the phone, such as
battery status, time of the day, day of the week or whether



TABLE IV
ODDS RATIO FOR THE RESPONSE RATE. EVENT REFERS TO THE NOTIFICATIONS THAT WERE ANSWERED, TOTAL TO THE TOTAL NUMBER OF
NOTIFICATIONS SENT. (SOURCE REVMAN [29])

Experimental Control Odds Ratio Odds Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
Okoshi 2015 290 364 647 1043 26.3% 2.40[1.81, 3.19] —
Morrison 2017 65 202 28 149 16.9% 2.05[1.24, 3.40] —_—
Fischer 2011 657 902 723 1100 30.5% 1.40[1.15, 1.70] ——
Obuchi 2016 231 397 192 381 26.3% 1.37 [1.03, 1.82] —
Total (95% CI) 1865 2673 100.0% 1.71 [1.28, 2.28] i
Total events 1243 1590
Heterogeneity: Tau? = 0.06; Chi? = 11.77, df = 3 (P = 0.008); I*> = 75% :0 > 035 é 5’

Test for overall effect: Z = 3.63 (P = 0.0003)

the phone is covered with something or not. These features
are less about breakpoint detection, but more about general
patterns of the users (i.e. no notifications during the night).

Table V summarizes the different sources of information used

Favours [control] Favours [experimental]

TABLE V
SOURCES OF INFORMATION USED TO INFER CONTEXT-AWARENESS IN THE
DIFFERENT STUDIES

Source of context information Effect size

by the mobile CNMSs of the included studies and compares £ 5 2 =z
them with their effiacy. Some sources were used more com- g _ . 5 E E ° % -
monly, such as location, accelerometer or time, while others § ‘é S § é E E “ § 5] § 2
are less common, like user defined breakpoints, microphone § ks E = E § K E g 2l 7 é z f:;
or Bluetooth. 3 = m 5 O o B B < 6|0 O
Comparing the different sources with the respective perfor-  [191 x X X 2.1

mance in the efficacy metrics response rate and response [38] X 1.4% x!
delay gives a more detailed view on which sources seem to [39] X 0.1%
have a good predictive power to infer interruptibility. Using (71 X X 2 4ok

a single source of information, such as the accelerometer 8] x «x X x X  x x | 8.6*

or communication pattern, provide a good starting point t0 401 X X x  x 0.1
improve the response rate [38] and [41]. Yet, using only user (41] . |4kt ( 5ekk
defined breakpoints did not prove to increase the response rate, 6] " Yy

as in [6]. However, adding more features, such as location

Others=additional phone information (e.g. battery status etc.), ' found a descriptive
trend towards a reduced response delay; significance levels: ns p > 0.05, * p <
0.05, ** p < 0.01, *** p < 0.001. p-values for the response rates based on [44].

or user interface events to the accelerometer features results
in a further increased response rate, as [19] and [7] did,

respectively. While we have too few data to compare commu-
nication patterns, we see that accelerometer based features can
be improved with time and location or user interface events.
Further increasing the number of different sources resulted
in another increase of the response rate. While [18] did
not include accelerometer data, they used WiFi, microphone,
communication and other features as distinguishing sources
and achieved the highest response rate.

Regarding response delay, we see that communication alone
is the best feature to use to minimize delay [41]. Using
more features without the communication feature results in
worse performance, as seen in [39] and [40]. While, there is
no information on the effect size for [38], they reported a
descriptive trend towards a reduced response delay using only
accelerometer features.

IV. DISCUSSION

In this systematic review and meta analysis we identified
eight relevant studies and assessed the efficacy of the corre-
sponding mobile CNMSs with respect to response rate and
response delay. We found that both gender and age of the
participants were not balanced. In particular older people were
less represented in these studies. For certain applications tar-
geting a specific population (e.g. digital health interventions),
this might be an issue. Also the small sample size in the
investigated studies is a major concern, as the statistical power
is reduced and consequently a true effect might be less likely
[45]. A vast range of sensors and sources of data streams has
been used to derive information about the context in which
individuals are likely to be interruptible. In particular, sensor
provided information (e.g. location based breakpoints) were
superior to user provided static input (e.g. designated times
for notifications). Consistently, Fischer et al. [6], who used
user defined breakpoints, were not able to find an effect of



mobile CNMSs on the response rate. It may be therefore not
an easy task for individuals to predict their interruptibility.
That is, while individuals might be correct about their general
availability, it might be impossible for them to predict the exact
point in time and context in which they will be interruptible.
The source of context information is a key component deter-
mining the efficacy of mobile CNMS. For response delay, no
major effect could be observed, as for most of the investigated
sensor combinations no effect was found. The major exception
is the sole use of communication patterns, they showed the
largest reduction of the response delay. This can be explained
with the fact, that the smartphone is still in the hand of the
user, but he or she stopped interacting with it. However, the
authors of the paper note that, while it was a good way
to reduce the response delay, the interruption for the user
was seen as being very intrusive, since most of the time an
immediate action is required after, for example, a phone call,
i.e. taking notes. This also explains why the effect on the
response rate was less impactful compared to other sources.
Here, increasing the number of features increased the response
rate. Accelerometer alone increased the response rate, yet the
efficacy was improved, when more features, such as location or
UI events were added. Adding UI events slightly outperformed
the addition of time and location in increasing the response
rate. Again because the user is interacting with the device
and consequently more likely to see and immediately respond
to a notification that is triggered. However, the best efficacy
was achieved, when several different sources were used. The
complexity of necessary insight into the users context serves as
an an explanation, why more features are needed to optimize
for the response rate, than to optimize for the response delay.
With respect to the different sources of context information
it is interesting to see what researchers have done, however,
of equal interest are the sources we did not find. We did not
find any study using the specific content of the notification
influencing the context it was sent in. For example a nutrition
related notification might be triggered before lunch, or while
shopping, yet no study used the content of the notification as a
source of information. Also none of the included studies used
personality traits as a discriminating feature for the classifica-
tion. There was one study [8] doing an analysis based on their
gathered data and separating users into sensitive and insensi-
tive users towards interruptibility (e.g. how positive or negative
the feedback of individuals was towards an interruption). One
study [40], which used online learning to personalize their
models and Mathur et al. [17] training their models on the
individual user’s data. However, only Pejovic et al. [40] tested
their system in the wild and no study has empirically evaluated
further personalizing their systems using personality traits (i.e.
the big five [46]). Instead of using the personality as a source
of information, one could also use the inferred context to block
all notifications in a certain environment, i.e. while driving. In
particular, smartphones are capable of achieving this task, as
they are mostly very close to the user. However, while we
found some research outlining the concept of such systems
[47], none of the included studies investigated this concept

empirically. Also none of these studies touched on the privacy
aspects of sharing and exploiting sensitive information for the
purpose of sensing interruptibility.

With respect to the efficacy metrics, the current review shows
that mobile CNMSs are able to increase the response rate
compared to non-CNMS settings. Thus, a context-sensitive
timing of notifications means that an individual is more
likely to respond, lowering the probability that he or she
forgets to respond. Against the background of our findings
regarding response delay, i.e. we found only little evidence
for mobile CNMSs reducing this efficacy metric, individuals
probably need time to respond to but not to read a notification.
Consequently, while the notification can theoretically be sent
at any time and the user might see it very quickly, the response
rate is negatively affected, if no mobile CNMS is used.

V. LIMITATIONS

No scientific work comes without limitations. We therefore
outline three shortcomings in the following paragraph. First,
we found a high risk or incomplete information for a bias
assessment for all studies, which is why we are not able to
interpret all efficacy metrics in a concise manner. Second,
essential information missing in the articles reduced the num-
ber of studies we were able to include for the meta-analysis,
further weakening our conclusions. And finally, not only the
total number of studies, but also the number of participants
in the individual studies were rather small and the gender
and age distribution were biased. That is, the samples used in
the studies were not representative with respect to a specific
target population, which restricts our ability to find and discuss
generalizable results.

VI. IMPLICATIONS AND FUTURE RESEARCH

Against the findings of the current work and the limitations
described above, we now discuss distinct areas, where we see
potential for future work that should be taken into account to
further increase the efficacy of mobile CNMSs. First, a call
for mobile content and context-aware notification management
systems (CCNMSs): As Okoshi et al. suggested in their litera-
ture review [8], most studies apply a layer structure, where the
interruptibility mechanism is independent of the application.
However, only few studies have analyzed what specific content
means for interruptibility. We see great potential of specific
targeted content in combination with a mobile CNMS on
the response delay and response rate. For example, in the
healthcare context, future research should test if adaptive
interventions triggered by mobile CNMSs are more effective
compared to a control condition with non-context-aware no-
tifications. Our findings suggest an increased response rate.
Consequently, we assume that the adherence to interventions is
also higher, making health related interventions more efficient
if mobile CNMSs are used.

Second, a call for mobile personalized CNMSs: While Mathura
et al. [17], Okoshi et al. [39] and Pejovic et al. [40] did some
first work on personalized CNMSs, we encourage more em-
pirical research testing them in the field. Furthermore, we en-



courage research into mobile CNMSs applying reinforcement
learning [48], [49], [50], as they provide great potential for
self-improving systems adjusting to the special and dynamic
circumstances of every user. Also behavioral questionnaires
were not applied so far as a feature to personalize mobile
CNMS (e.g. by evaluating the big five personality traits [51],
[46]).

Third, a call for safety optimized mobile CNMSs: Our analysis
has shown that different sources of context information can be
used to infer interruptibility and since notifications can be a
major source of distraction. We encourage research into using
this context information for active safety optimized mobile
CNMSs to prevent dangerous distractions in high concen-
tration situation (e.g. while driving). While there are some
concept studies of safety optimized mobile CNMS (e.g. [47])
and some efforts by large consumer electronics companies
(e.g [52]), no study, to the best of our knowledge, has yet
implemented and tested these systems empirically.

Fourth, a call for open mobile CNMSs data: Another opportu-
nity for research on improving the efficacy of mobile CNMSs
is to make sure that anonymized self-reports, behavioral data
and usage log data collected by mobile CNMS is made
freely available if individuals agree and provided there are
no ethical, legal or copyright aspects negatively affected.
For example, the Swiss National Science Foundation expects
from October 2017 onwards that “data generated by funded
projects will be publicly accessible in non-commercial, digital
databases” [53]. Consistently there exist already non-profit or-
ganizations, so called cooperatives in Switzerland, that provide
corresponding data repositories, such as www.midata.coop or
www.healthbank.coop. These services would allow researchers
to identify individual (e.g. demographics, personality traits),
behavioral (e.g. app usage characteristics), and contextual (e.g.
social situations) patterns among others that could be used to
further personalize the timing and content of mobile CNMSs
and thus, their efficacy.

We finally make a call for replication studies: We would like
to see future research testing the findings of the current work
by considering standardized efficacy metrics of mobile CNMS
in large-scale settings over an extended period of time with a
representative sample, in the form of RCTs and with complete
reporting. Only with this accumulated body of replication
studies it will be possible to identify and better understand
the driving factors that make mobile CNMSs effective.

VII. CONCLUSION

An increasing number of notifications is competing for the
attention of individuals resulting in interruptions with serious
consequences such as decreased task performance or stress.
Context-aware notification management systems (CNMSs)
have been therefore built to improve the timing of notifications.
Against this background, the current work is the first that has
evaluated the efficacy of mobile CNMSs with the help of a
systematic literature review and meta analysis. Indeed, our
findings indicate that mobile CNMSs are capable of increasing
the response rate to notifications. However, we found only little

evidence that response delay can be decreased, too. The most
efficient source of context information to reduce the response
delay was found to be communication patterns, as the user is
still interacting with the phone and is interruptible. To increase
the response rate, however, more complex combinations of
information sources were required, with the study having the
most sources, having the highest response rate. Moreover, the
studies reviewed in this work have either a high risk of bias
or do not contain the information required to draw general
conclusions. We have therefore outlined several implications
for future work to further increase the efficacy of mobile
CNMSs.
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