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Abstract—Channel state information (CSI) is essential for
efficient power and spectrum allocation policies. In cognitive
radio (CR) channels, although perfect CSI of the direct link
(between the secondary transmitter and the secondary receiver)
is a reasonable assumption at the secondary transmitter (ST),
however, perfect knowledge of its interfering links to the primary
receivers (PRs) is not. Power allocation and scheduling algorithms
are often based on perfect global CSI at the secondary transmitter
(ST). In this paper, we analyze the impact of channel estimation
errors on both the secondary and primary users. On the one
hand, the robustness of water-filling type of algorithms allowing
the secondary user (SU) to minimize its power consumption
under QoS and CR interference power constraints to channel
estimation errors in the SU interfering links is analyzed. On
the other hand, the impact of these estimation errors on the
PU interference constraints is also analyzed. To this aim, we
consider the worst case with respect to these estimation errors.
Our analysis shows that the water-filling algorithm provides
robustness in terms of power consumption and scheduling of the
SU given the realistic estimation error models especially when
the SU is overestimating the interfering power gains. We also
provide possible solutions to ensure that the created interference
is below the tolerated thresholds.

Index Terms—Cognitive Radio channel, imperfect channel
state information, estimation errors, worst case.

I. INTRODUCTION

Cognitive radio (CR) is a highly promising paradigm to pro-

vide possible solutions to the spectrum insufficiency problem

[1]. To achieve higher spectrum efficiency, the secondary users

(SUs) are allowed to share the frequency spectrum with the

primary users (PUs) as long as the total interference generated

by SUs is below the threshold that the PUs tolerate.

The resource allocation problem has been studied under the

assumption of a perfect knowledge of the Channel State Infor-

mation (CSI) [2]–[7]. However, it is not realistic to assume that

the SU has perfect CSI knowledge of its interfering links to

the PUs. Indeed, SU may obtain knowledge of its direct link

either when the channel reciprocity property is met and/or

by some feedback from its receiver. But the PRs cannot be

assumed to provide such feedback to the SU. In this context,

the problem of robust power allocation in CR systems has

been an area of active research [8]–[14]. The closest work

This work was done during the first author’s Ph.D at ETIS laboratory/ UMR
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France.

to ours is [10] in which the authors formulate the design

of the SU network, where the SUs compete with each other

over the resources made available by the PUs, by maximizing

their own information rates subject to the transmit power and

robust interference constraints in CR systems in either single-

input single-output (SISO) frequency-selective channels or

multiple-input multiple-output (MIMO) channels. Following

the philosophy of the worst-case robustness, the problem is

formulated by explicitly taking into account the estimation

errors of the interfering links SU-to-PU which translates into

modified maximum interference constraints that are robust in

the worst channel estimation errors. This problem is different

and no longer convex as compared with the perfect CSI case

in [4].

In this paper, our goal is different than the one in [10]. More

precisely, we investigate the impact of estimation errors on

the power allocation algorithm minimizing the overall power

consumption under QoS and CR interference power constraints

proposed in [5], [7] in the case of perfect CSI. The major

difference with [10] is that here we do not change the problem

formulation. In our analysis, the robustness issue is analysed

by considering the the worst case in terms of interfering

channel estimation errors at the secondary transmitter.

Our contributions are:

• Two different error models (simple and more realistic)

are investigated.

• A robustness analysis of the iterative water-filling algo-

rithm from the SU perspective is provided.

• The impact of these estimation errors at the ST level on

the interference caused to the PUs is also analyzed.

• Our analysis shows that the water-filling algorithm not

only provides robustness in terms of power consumption

but also in terms of scheduling of the SU given the

realistic estimation error models especially when the SU

is overestimating the interfering power gains.

The paper is organized as follows : In Section II, the system

model and estimation error assumptions are introduced. In

Section III, we describe the optimization problem and the

water-filling algorithm in the perfect CSI case. In Section

IV, we analyze robustness issues to estimation errors and we

conclude the paper in Section V.



II. SYSTEM AND ERROR MODEL

A. CR channel model

We focus on the CR channel model in Fig. 1 composed of

one secondary user and several (K ≥ 1) primary users [7].

Each primary/secondary user consists of a Primary/Secondary

Transmitter (PT/ST) and a Primary/Secondary Receiver

(PR/SR) respectively. Each device is equipped with only one

antenna. The transmission is performed over N orthogonal fre-

quency bands. The transmit power of the ST in the frequency

band n ∈ {1, . . . , N} is denoted by pn and the overall power

allocation profile is denoted by p = (p1, p2, . . . , pN ), p ∈ R
N
+ .

Fig. 1. System model in frequency sub-band n.

The received signal at the SR in band n can be written as:

yn =
√

pndnsn +
K∑

k=1

i(k)n + bn, (1)

where sn denotes the transmitted signal at the ST. The

instantaneous power gains of the ST-SR direct link and the

interfering ST-PR of the kth PU link are denoted by dn and

g
(k)
n respectively, k ∈ K , {1, . . . ,K}. All links are assumed

to be stationary, ergodic and independent from the noises. The

noise in band n, bn ∽ CN (0, σ2
n) is a zero-mean circularly

symmetric complex Gaussian variable and the interfering

signal from PT (k) is denoted by i
(k)
n ∽ CN (0, (τ

(k)
n )2). The

Gaussian assumptions are quite standard for efficient resource

allocation in CR channels related works [4], [7], [11]. In this

scenario, the Shannon achievable rate of the SU transmission

is given by:

R(p) =
N∑

n=1

log2(1 + cnpn) (2)

where cn is the Signal to Interference Noise Ratio (SINR)

of the direct link ST-SR and is given by cn = dn/(σ
2
n +∑K

k=1(τ
(k)
n )2) where

∑
k(τ

(k)
n )2 is the overall interference

power at the PR.

1The following notations are used in this paper: |.| denotes the absolute
value, E(.) denotes the statistical expectation, max(x, y) and min(x, y)
returns the maximum value and the minimum value of (x, y) respectively,
(.)+ means max(0, .), log2(.) denotes the logarithm binaire value , ln(.)
denotes the natural logarithm value, e = exp(1) is the base of natural
logarithm and ℜ(.) denotes the real part of a complex variable.

B. CSI at the ST level

In the sequel, we assume that the ST has only a perfect

knowledge of its own SINR cn in each band. However, the ST

does not know the exact power gain g
(k)
n coming from each

PR and knows the estimated one ĝ
(k)
n . We assume that the PRs

are sufficiently spaced, i.e., the power gains for all PRs in each

band (g
(1)
n , g

(2)
n , . . . , g

(K)
n ) are independent. Also, we assume

that the power gains at the kth PR in all orthogonal frequency

bands (g
(k)
1 , g

(k)
2 , . . . , g

(k)
N ) are independent from those of the

k′th PR, k 6= k′.
Based on the additive model error of the channel gain

proposed in [10] and [8], where the channel estimation error

perturbing the channel gain ǫ ∽ CN (0, σ2
ǫ ) is a zero-mean

circularly symmetric complex Gaussian variable, the estimated

channel is written as:

ĥ(k)
n = h(k)

n + ǫ(k)n (3)

Given that the power gain g
(k)
n = |h

(k)
n |2, we consider two

different error models perturbing the power gain in each band

for each PR:

• Realistic error model: in which we can write the

estimated power gain as follows:

ĝ(k)n = g(k)n + er(k)n , ∀n, ∀k (4)

where, this realistic error er
(k)
n = |ǫ

(k)
n |2 + 2ℜ(h

(k)
n ǫ

(k)
n )

has a mean E[er] = σ2
ǫ and a variance σ2

er = σ4
ǫ +

4g
(k)
n σ2

ǫ . In most cases of empirical rule, this realistic

error model er is located in the interval Ir depending

on its mean E[er] and its variance σ2
er such that Ir =[

E[er]− 3σ2
er;E[er] + 3σ2

er

]

• Simple error model: in which we assume independence

between the channel gain h
(k)
n and its error ǫ

(k)
n , i.e.,

2ℜ(h
(k)
n ǫ

(k)
n ) ≪ |ǫ

(k)
n |2, thus, the estimated power gain

can be written as follows:

ĝ(k)n = g(k)n + es(k)n , ∀n, ∀k (5)

where, this simple error es
(k)
n = |ǫ

(k)
n |2 is an ex-

ponentially distributed random variable which has a

mean E[es] = σ2
ǫ . In this exponential distribu-

tion, this simple error es is located in the interval

Is depending on its mean E[es] such that Is =
[0; ln(4)E[es] + 1.5 ln(3)E[es]] ≃

[
0; 3 σ2

ǫ

]
.

III. POWER MINIMIZATION PROBLEM WITH PERFECT CSI

For the sake of self-containment, we will consider the power

minimization problem at the SU level under minimum QoS

constraint and maximum interference constraints assuming

global perfect CSI at the ST.

A. The Optimization problem and the feasible set

Given a minimal QoS constraint at the ST and the presence

of the PRs, we describe the overall power minimization at

the ST level. Similarly to [2], [5], [7], three constraints are

considered in this optimization problem the QoS target rate
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constraint; peak and average interference constraints to protect

each PR from the interference caused by the ST.

1) Target rate constraint:

R(p) =
N∑

n=1

log2(1 + cnpn) ≥ Rmin, (6)

to achieve a minimum QoS for the ST transmission.

2) Average interference power shaping constraint:

N∑

n=1

g(k)n pn ≤ P
(k)

, ∀k ∈ K (7)

where P
(k)

is the maximum average interference level

that can be received at kth PR.

3) Peak interference power shaping constraints:

0 ≤ g(k)m pm ≤ P peak(k)
m , ∀ k ∈ K,m ∈ N (8)

where P
peak(k)
m is the maximum peak interference level

that can be received at kth PR in band m.

The objective function of minimizing the overall transmit

power is in coherence with the CR green communications

paradigm. However, the QoS constraint at the ST might impose

a minimal transmit power which in turn creates an interference

level that is not acceptable by the PR. Thus, the question here

is whether the QoS constraint and PR interference constraint

(which are opposing constraints) are feasible simultaneously

or not. We denote the feasible set by F such that:

F =





p ∈ R
N
+ | 0 ≤ g

(k)
m pm ≤ P

peak(k)
m , ∀k, ∀m,

N∑

n=1

log2(1 + cnpn) ≥ Rmin;

N∑

n=1

g(k)n pn ≤ P
(k)





The optimization problem is given as follows:




minimize
N∑

n=1

pn

subject to p ∈ F

(9)

When F is non void (see discussion in our work [7]), the

optimal power allocation policy is given by a water-filling

type of solution. This result follows from the fact that, the

problem in (9) is a convex optimization problem [15]. The

KKT optimality conditions are both necessary and sufficient

in this case. The optimal solution can be computed numerically

via a fixed point algorithm or by sub-gradient methods as in

[5].

B. Iterative Algorithm based on the estimation at the ST level

Based on the characterization in the previous subsection,

we present a special case of the iterative algorithm, which

has been proposed in [7] for the more general case of several

secondary users,essssw to compute the solution of the problem

(9). To compute the solution to the classical water-filling

problem [15] several works in the communications literature

(e.g., [16], [17] and references therein) have proposed a finite

and deterministic numerical procedure. However, in this prob-

lem, the presence of the PUs imposes additional average type

constraints (aside the classical minimum QoS constraint for the

secondary communication). These additional constraints are

the main reason for which the classical numerical approach

fails. Instead, we present the fixed-point iterative algorithm

that converges to one of the optimal solutions which was

proposed in [7] and which is similar but not equivalent to the

sub-gradient method in [5]. It turns out that the convergence

Algorithm 1: Iterative Water-filling Algorithm

1) Initialization of water-levels for the first iteration

β
(0)
k ∀ k ∈ K and λ(0)

2) i = 1
3) for iteration i do

for n ∈ N do

Calculate the power p
(i)
n which is given by:

p
(i)
n =


λ(i−1)

ln(2)

(
1 +

K∑

k=1

β
(i−1)
k g(k)n

)−
1

cn




P
peak

min
(n)

0

,

where P peak
min (n) = min

k
{P (peak(k)

n /g(k)n }

end

if
∑

n

g(k)n p(i)n < P
(k)

then

β
(i)
k = 0

else

if
∑

n

g(k)n p(i)n > P
(k)

then

for k ∈ K do

Update β
(i)
k such that: β

(i)
k =

β
(i−1)
k − τβ

(
∑

n

g(k)n p(i)n − P
(k)

)

end

else

β
(i)
k = β

(i−1)
k

end

end

Update λ(i) such that: λ(i) =

λ(i−1) − τλ

(
∑

n

log2(1 + cnp
(i)
n )−Rmin

)

i = i+ 1
end

4) Repeat 3) until convergence: ‖λ(i) − λ(i−1)‖ ≤ ǫλ

and max
k∈K

{
‖β

(i)
k − β

(i−1)
k ‖ − ǫβk

}
≤ 0

where ǫβk
and ǫλ are precision parameters.

point is an optimal solution to the general problem in (9)

provided that an optimal solution exists.

Proposition 1: Whenever Algorithm 1 converges, then the
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convergence point is an optimal point of the general minimiza-

tion problem.

The proof of this proposition is based on convex optimization

tools is discussed in details in [7]. The intuition is that, at the

convergence state, the iteration is satisfying the KKT condi-

tions which are both necessary and sufficient for optimality of

the convex optimization problem (9). We have validated the

convergence of the proposed algorithm via extensive Monte-

Carlo simulations. Also, our algorithm is very similar to the

sub-gradient method [5] based on dual Lagrange function, the

proof of convergence is similar too.

IV. ROBUSTNESS ANALYSIS

In this Section, we will consider the case of imperfect CSI

at the ST level, as described in Section II, in order to analyze

the robustness of our iterative water-filling algorithm for our

power allocation problem to the channel estimation errors.

A. Worst-Case Estimation Errors

In this subsection, we study the performance of Algorithm 1.

We assume a more realistic scenario in which the SU doesn’t

know the true power gain g
(k)
n but only an estimation. We

study the robustness based on the worst estimation error. Two

cases can be distinguished in function of the error: i) over-

estimation, and ii) under-estimation errors.

1) Over-estimation of a power gain: g
(k)
n < ĝ

(k)
n , implies

that the estimated feasible set F̂ is smaller than the true fea-

sible set F , i.e., F̂ ⊆ F . This means that the true interference

constraints at the PUs are always satisfied by the SU. Thus,

the major focus here is on the SU loss of performance. For

this reason, we consider the worst estimation errors that affect

the SU performance. This is the case in which all interfering

channels are overestimated at the maximum value. Under the

hypothesis in subsection II-B and considering that the variance

of the error ǫ
(k)
n in the channel gain is negligible compared to

the actual power gain i.e., σ2
ǫ ≪ g

(k)
n , our error models in the

worst case can be given as follows:

• Realistic error model: Using the realistic error model in

(4), we can write the worst case estimated power gain as

follows:

ĝ(k),Worse
n ≃ g(k)n + 12 g(k)n σ2

ǫ

where the maximum value of the realistic error multiplied

with the gain power is coming from the interval Ir in

which this error is located and assuming that σ2
ǫ ≪ g

(k)
n

such that we add E[er]+3σ2
er = σ2

ǫ+3 (σ4
ǫ+4 g

(k)
n σ2

ǫ ) ≃

12 g
(k)
n σ2

ǫ to the actual gain in the worst case.

• Simple error model: Using the simple error model in

(5), we can write the worst case estimated power gain as

follows:

ĝ(k),Worse
n ≃ g(k)n + 3 σ2

ǫ

where the maximum value of the simple error added to

the gain power is coming from the interval Is in which

this error is located and assuming that σ2
ǫ ≪ g

(k)
n such

that we add +3 σ2
ǫ to the actual gain in the worst case.

2) Under-estimation of a true power gain: g
(k)
n > ĝ

(k)
n , im-

plies an estimated feasible set F̂ larger than the actual feasible

set F , i.e., F ⊆ F̂ . This means that the performance of the

SU given this estimation error is improved. The major issue

is that the SU takes advantage of the less restrictive estimated

interference constraints. This in turn, creates interference to

the PUs which may be above the true tolerated values. Thus,

the focus is no longer on SU performance but on the extent

at which the SU may violate the true interference constraints

imposed by the PU. For this reason, we consider the estimation

errors that affect the most the interference created to the

PU. This is the case in which all interfering channels are

underestimated at the minimum value. Under the hypothesis

in subsection II-B and considering that σ2
ǫ ≪ g

(k)
n , our error

models in the worst case can be given as follows:

• Realistic error model: In the worst case the power gain

can be underestimated as follows:

ĝ(k),Worse
n ≃ g(k)n − 12 g(k)n σ2

ǫ

where the minimum value of the realistic error multiplied

with the gain power is coming from the minimum value in

the interval Ir and assuming that σ2
ǫ ≪ g

(k)
n such that we

add E[er]−3 σ2
er = σ2

ǫ−3 (σ4
ǫ+4 g

(k)
n σ2

ǫ ) ≃ −12 g
(k)
n σ2

ǫ

to the actual gain in the worst case.

• Simple error model: We have seen that, in this model,

we can not underestimate the power gain as the minimum

value added to the gain power coming from the minimum

value in the interval Is is null in the worst case, i.e.,

ĝ
(k),Worse
n ≃ g

(k)
n .

B. Numerical Simulations

In this Section, we analyze the impact of the channel

estimation errors on the aforementioned issues (on power

consumption at the SU and on the maximum interference

inflicted on the PUs) via numerical simulations. We illustrate

some of the most representative results by focusing on the

specific case where only two orthogonal frequency bands are

available N = 2. However, our analysis and observations carry

over the general case which will not be illustrated because

of space limitations and also higher dimensional feasible sets

which are harder or even impossible to visualise.

1) Over-estimation errors: We start by discussing the case

in which the channel power gain estimations are larger than

the actual power gains of the interfering links from SU to PUs.

In this case, the estimation errors have no impact on the PUs

and the interference constraints are guaranteed. Thus, we are

interested to evaluate the SU performance reduction caused by

the worst case errors in function of the error variance σ2
ǫ .

In Fig. 2 and Fig. 3, we illustrate the scenario N = 2
frequency bands and K = 3 primary users with the system

parameters1: Rmin = 4, c1 = 1.5, c2 = 2.4,
−→
P peak

1 = [5 6 7],
−→
P peak

2 = [5 5 7] and P
(k)

= 10, ĝ
(k)
1 = 1, ĝ

(k)
2 = 0.1, ∀k.

1 We denote by −→x the K dimensional vector containing all the quantities

x(k) in PU k ∈ K: −→x ,
[
x(1), . . . , x(K)

]
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Fig. 2. Overestimation assuming the simple error model.

In Fig. 2, we investigate the simplified error model. Notice

that the optimal power consumption (
∑

n p
∗
n) when there are

no estimation errors (i.e., σ2
ǫ = 0) is identical to the perfect

CSI case. When the error variance increases, we observe in

Fig. 2(a) that there is little difference with the perfect CSI case

regarding the optimal powers (p∗1, p
∗
2) and the optimal overall

power consumption. This means that, assuming the simplified

error model is realistic, the SU is robust to estimation errors

until a certain threshold on the error variance is attained. This

threshold can be explained by analysing Fig. 2(b). As the error

variance increases, the estimated feasible set becomes more

and more restricted (because of the increasingly restrictive

estimated interference constraints) until it becomes void.

In Fig. 3, we investigate the more realistic error model.

Fig. 3(a) shows that the behaviour of the optimal power

consumption (
∑

n p
∗
n) as function of the error variance is

no longer the same. As the error variance increases, the

SU performance at the optimal point is decreasing and its

power consumption is increasing. This means that, the SU

is less robust in terms of power consumption as opposed

to the simplified error model case. Similarly to the previous

case, there is a threshold on the error variance, above which

the estimated feasible set becomes void and the SU is not
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Fig. 3. Overestimation assuming the realistic error model.

scheduled in the system. The interesting thing to remark is

that this threshold is significantly higher in the realistic error

model than the previous one. This means that the SU is more

robust in terms of scheduling in this case.

Fig. 3(b) provides the elements to explain this observation. The

error model has a direct impact on the shape of the interference

constraints. In the simplified model, the estimated constraints

change by adding a constant parameter to the power gains (i.e.,

3σ2
ǫ ) which reduces the power constraints in a symmetric way

(see Fig. 2(b)) causing them to fall below the minimum rate

constraint faster than the realistic case. Indeed, in the realistic

case the added error is not constant but depends on the power

gain (i.e., 12σ2
ǫ g

(k)
n ), which causes the power constraints to

reduce in a proportional manner w.r.t. the gains making these

constraints to fall below the rate curve slower than the simple

case.

2) Under-estimation errors: If the SU under-estimates the

power gains of its interfering links to the PUs, then the

estimated feasible set is larger than the true feasible set and the

performance of the SU may even increase as a result of these

estimation errors. The robustness of the SU’s performance is

not the issue here. These errors allow the SU to under-estimate

their interference levels caused to the PUs which may result

5



in the violation of the true PU constraints. This is a major

issue in CR channels in which the primary consideration is

guaranteeing the maximum level of interference at the PUs.

First, we remark that for the simplified error model, the

added error is an exponentially distributed random variable,

and, thus, is always positive. In this case, there can never

be any under-estimation errors and the PUs interference con-

straints are always verified.
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Fig. 4. Under-estimation errors do not necessarily impact on the PUs.

We focus now, on the realistic error model. In Fig. 4, we

consider the same scenario as in Fig. 3. We focus on the

first PU and we plot the estimated peak and average inter-

ference caused by the SU at its optimal solution (computed

based on the worst case estimations) and the actual inflicted

interference. First, we remark that the optimal solution is

not influenced, in this scenario, by the estimation error (i.e.,∑
n g

(1)
n p∗n < P̄ (1) = 10). This can be explained by the first of

the four plots in Fig. 3(b) illustrating the feasible set and the

solution in the perfect CSI case. The solution lays inside of the

strict interior of the set defined by the interference constraints.

In such a case, it is easy to see that the solution does not

change by augmenting the set of interference constraints. This

means that, whenever the solution in the perfect CSI case is

not near the border of the interference constraints, the under-

estimation errors have no impact on the optimal solution.

Therefore, in such cases neither the SU nor the PUs will be

impacted by such errors.

In Fig. 5, we plot the estimated peak and average interfer-

ence caused by the SU at its optimal solution and the actual

inflicted interference, in the following scenario: N = 2, K = 1
(only one primary user), c = [10, 1] , g = [10, 0.1], P = 10,

P peak = [5, 5]. In such a case, in which a given sub-channel

provides a very good direct link to the SU (c1 >> c2) but also

has a critical interfering link to one of the PUs (g1 >> g2)

under-estimation errors are critical. We observe that, even for

very low error variance values, the actual interference caused

to the PU is well-above the tolerated limit: both the average

interference constraint and the peak interference constraint
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Fig. 5. Under-estimation errors have a crucial impact on the PUs interference

constraints.

in the first sub-band are violated by the SU because of

these under-estimation errors (i.e., g1p
∗
1 > P peak = 5 and∑

n gnp
∗
n > P̄ (1) = 10).

Several solutions are possible to cope with this issue. One

solution, proposed by [10], consists in incorporating these

errors in the problem formulation and entirely change the SU

power allocation algorithm. However, such approaches may

turn out to be too rigid and may censure the SU which will

not be allowed to transmit in most cases. A more simpler

solution, based on the analysis here above, is to check whether

the optimal power allocation in the perfect CSI case does not

lie near the border of the maximal interference constraints. If

so, then they transmit based on their estimation, otherwise they

are not allowed to transmit. Now the problem is that, of course,

the SU does not posses the perfect CSI knowledge. However,

if we assume that the SU knows the variance of the estimation

error (which is a rather reasonable assumption), then the SU

may compute the solution based on the worst case analysis in

Section IV-A using the following interfering link power gains:

g̃(k)n =
ĝ
(k)
n

1− 12σ2
ǫ

, ∀n, ∀k.

If this solution is not near the borders of the interference con-

straints, then the SU communicates based on his estimation,

otherwise, the interference constraints are considered critical

and the SU is no longer scheduled. Extensive simulations are

needed to further validate this point.

V. CONCLUSION

In this paper, we analyzed the impact of imperfect CSI

in a cognitive radio channel on the optimal power allocation

policy of the secondary user (SU) that minimizes its power

consumption under rate and maximal interference to the pri-

mary users (PUs) constraints. The worst cases in terms of

estimation errors were analyzed from both, the SU and PUs

perspective. When the SU is over-estimating its interfering

6



links to the PUs, the SU is censuring too much its transmission

and thus incurs a loss of performance, which depends on

the error model and the error variance. When the SU is

under-estimating its interfering links to the PUs, it is under-

estimating its transmission effects on the PUs, which may

result in interference constraint violations. A simple way to

account for this issue was proposed, which has the advantage

not to over-censure the SU transmission especially when the

SU is over-estimating the interfering power gains.
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