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Abstract—In a multiple-input-multiple-output (MIMO) com-
munication system, the multipath fading tends to vanish with
increasing number of radio links. This well-known channel
hardening phenomenon plays a central role in the design of
massive MIMO systems. It is quantified by the coefficient of
variation of the channel gain. The aim of this paper is to study
channel hardening using a physical channel model in which
the influences of propagation rays and antenna array topologies
are highlighted. Our analyses and closed form results extend
the hardening properties beyond the classical Rayleigh fading
models and offer further insights on the relationship with channel
characteristics.

Index Terms—channel hardening, physical model, MIMO

I. INTRODUCTION

Over the last decades, multi-antenna techniques have been
identified as key technologies to improve the throughput and
reliability of future communication systems. They offer a
potential massive improvement of spectral efficiency over clas-
sical SISO (single-input-single-output) systems proportionally
to the number of involved antennas. This promising gain has
been quantified in terms of capacity in the seminal work of
Telatar [1] and has recently been even more emphasized with
the newly introduced massive MIMO paradigm [2].

Moving from SISO to MIMO, the reliability of commu-
nication systems improves tremendously. On the one hand
in SISO, the signal is emitted from one single antenna and
captured at the receive antenna as a sum of constructive
or destructive echoes. This results in fading effects leading
to a potentially very unstable signal to noise ratio (SNR)
depending on the richness of the scattering environment. On
the other hand in a MIMO system, with appropriate precoding,
small-scale multipath fading is averaged over the multiple
transmit and receive antennas. This yields a strong reduction
of the received power fluctuations, hence the channel gain
becomes locally deterministic essentially driven by its large-
scale properties (namely path-loss and shadowing). This effect
referred to as channel hardening [3] has recently been given a
formal definition based on the channel power fluctuations [4].
Indeed, studies on the stability of the SNR are essential to the
practical design of MIMO systems, in particular on scheduling,
rate feedback, channel coding and modulation dimensioning
[2], [3], [5]. From the definition in [4], we propose in this
paper a comprehensive study on channel hardening through a
statistical analysis of received power variations derived from
the propagation characteristics of a generic ray-based spatial
channel model.
Related work. Channel hardening, measured as the channel
gain variance, has recently been studied from several points of

view. The authors in [6] and [7] used data from measurement
campaigns and extracted the variance of the received power.
A rigorous definition of channel hardening was then given
in the seminal work [4] based on the asymptotic behavior of
the channel gain for large antenna arrays. This definition was
applied to pinhole channels, i.i.d. correlated and uncorrelated
Rayleigh fading models [8].
Contributions. Complementary to this pioneer work, we
propose a non-asymptotic analysis of channel hardening, as
well as new derivations of the coefficient of variation of the
channel not limited to classically assumed Rayleigh fading
models. Indeed, channel hardening is analyzed herein using
a physically motivated ray-based channel model widely used
in wave propagation. Our approach is consistent with previous
studies [4], [6], but gives deeper insights on channel hardening.
Namely through the geometric description of the channel we
include in our model both rich and sparse scattering propaga-
tion conditions, thus extending channel hardening evaluation
beyond the classical Rayleigh fading approach. Furthermore
our expression allows for exhibiting the channel hardening
dependency on transmit and receive antenna array character-
istics: array types, number of antennas, inter-antenna spacing.

This paper is organized as follows. Both MIMO channel
gain and ray-based model are introduced in Section II. Chan-
nel hardening is defined and quantified in Section III. The
expression of channel hardening for the ray-based model is
derived in Section IV and analyzed in Section V where influ-
ences of antenna array topologies parameters and propagation
conditions are highlighted. The correlated Rayleigh channel
and ray-based model approaches and results are then compared
and we finally draw a conclusion in Section VI.
Notations. Upper case and lower case bold symbols are used
for matrices and vectors. z∗ denotes the conjugate of z. ~u
stands for a three-dimensional (3D) vector. 〈., .〉 and ~a · ~u
denote the inner product between two vectors of CN and 3D
vectors, respectively. [H]p,q is the element of matrix H at row
p and column q. ‖H‖F , ‖h‖ and ‖h‖p stand for the Frobenius
norm, the euclidean norm and the p-norm, respectively. HH

and HT denotes the conjugate transpose and the transpose
matrices. H̄ denote the normalized matrix H/||H||F . E {.}
and Var {.} denote the expectation and variance.

II. CHANNEL MODEL

We consider a narrowband MU-MIMO system (inter-
pretable as an OFDM subcarrier) with Nt antennas at the
transmitter (base station) and Nr antennas for each user.
Hk ∈ CNr×Nt is the MIMO channel matrix of user k,



whose entries [Hk]i,j are the complex gains of the SISO links
between transmit antenna j and receive antenna i. The capacity
of the MIMO channel of user k can be expressed as

Ck = log2

(∣∣∣∣∣INt +
ρkQ̄kH̄

H
k H̄k

INt +
∑
i6=k ρiQ̄iH̄H

k H̄k

∣∣∣∣∣
)

bps/Hz,

where ρk = Pk
N0
||Hk||2F with Q̄k ∈ CNt×Nt , Pk and N0

the input correlation matrix (precoding), emitted power and
noise power of user k. C is a monotonic function of the
optimal received SNR ρk [9], hence ‖Hk‖2F directly influences
the capacity of the MIMO channel, especially in the well
documented case where each user has one antenna. It is then
of high interest studying the spatial channel gain variations to
predict the stability of the capacity. In this paper, the variations
of the channel gain of a user k are studied in a very general
context. As a consequence, particularizing the study for a
specific user k in the system is not required and for simplicity
reasons we denote ‖H‖2F instead of ‖Hk‖2F the channel gain.
The results are equally valid for any user.

In the sequel, we will consider that the channel matrix H is
obtained from the following generic multi-path 3D ray-based
model considering planar wavefronts [10], [11], [8, p. 485]

H =
√
NtNr

P∑
p=1

cper(~urx,p)et(~utx,p)
H . (1)

Such channel consists of a sum of P physical paths where
cp is the complex gain of path p and ~utx,p (resp. ~urx,p) its
direction of departure - DoD - (resp. of arrival - DoA -). In (1)
et and er are the so-called steering vectors associated to the
transmit and receive arrays. They contain the path differences
of the plane wave from one antenna to another and are defined
as [11]

et(~utx,p) =
1√
Nt

[
e2jπ

~atx,1·~utx,p
λ , · · · , e2jπ

~atx,Nt
·~utx,p
λ

]T
,

(2)
and similarly for er(~urx,p). The steering vectors depend not
only on the DoD/DoA of the corresponding rays, but also on
the topology of the antenna arrays. The latter are defined by the
sets of vectors Atx = {~atx,j} and Arx = {~arx,j} representing
the positions of the antenna elements in each array given an
arbitrary reference.

Such channel model has already been widely used (espe-
cially in its 2D version) [10], [11], verified through measure-
ments [12] for millimeter waves and studied in the context of
channel estimation [13]. In contrast to Rayleigh channels, it
explicitly takes into account the propagation conditions and
the topology of the antenna arrays.

In the perspective of the following sections, let c =
[|c1|, · · · , |cP |]T denote the vector consisting of the amplitudes
of the rays. ‖c‖2 is the aggregated power from all rays, corre-
sponding to large-scale fading due to path-loss and shadowing.

III. CHANNEL HARDENING

A. Definition

Due to the multipath behavior of propagation channels,
classical SISO systems suffer from a strong fast fading phe-
nomenon at the scale of the wavelength resulting in strong
capacity fluctuations. MIMO systems average the fading phe-
nomenon over the antennas so that the channel gain varies
much more slowly. This effect is called channel hardening. In
this paper, the relative variation of the channel gain ‖H‖2F ,
called coefficient of variation (CV ) is evaluated to quantify
the channel hardening effect as previously introduced in [4],
[8]:

CV 2 =
Var

{
‖H‖2F

}
E {‖H‖2F }

2 =
E
{
‖H‖4F

}
− E

{
‖H‖2F

}2

E {‖H‖2F }
2 (3)

In (3) the statistical means are obtained upon the model which
govern the entries of ‖H‖2 given random positions of the
transmitter and the receiver, the lower the better. This measure
was previously applied to a Nt×1 correlated Rayleigh channel
model h ∼ CN (0,R) [4], [8, p. 231]. In that particular case,
(3) becomes

CV 2 =
E
{
|hHh|2

}
− Tr(R)2

Tr(R)2
=

Tr(R2)

Tr(R)2
, (4)

where the rightmost equality comes from the properties of
Gaussian vectors [8, Lemma B.14]. This result only depends
on the covariance matrix R, from which the influences of
antenna array topology and propagation conditions are not
explicitly identified. Moreover, small-scale and large-scale
phenomena are not easily separated either. In this paper, (3)
is studied using a physical channel model that leads to much
more interpretable results.

B. Interpretation and limit of correlated Rayleigh models

The previously given expression of channel hardening for
correlated Rayleigh fading channels is bounded by

1

NrNt
≤ CV 2

Rayleigh =
Tr(R2)

Tr(R)2
≤ 1

where the rightmost inequality is attained for rank(R) = 1
and the leftmost one for R = Id. With such model, the
measure of channel hardening is completely defined by the
distribution of the correlation matrix eigenvalues.

The unit rank case can for example be obtained when
the antenna spacing is reduced. It is indeed well-known that
antenna spacing below the half-wavelength leads to a reduced
rank correlation matrix thus decreases the channel hardening
effect. In contrast, the full rank situation corresponds to the
limit obtained for uncorrelated entries of matrix H, that is
when the number of rays becomes sufficiently large.

However millimeter waves propagation yields only a small
amount of clusters reducing the small-scale scattering effect.
For instance NYUSIM channel model realizations [14] usually
exhibits from one to six main time clusters and from one to
five spatial lobes. The correlated Rayleigh models assume an



asymptotically high number of rays. Hence it is not suitable
for MIMO channel hardening studies in a millimeter wave
context.

Studying channel hardening with a physical channel model
is necessary to provide more insights by separating antenna
array topologies and propagation characteristics.

C. Assumptions on the channel model

The multipath channel model described in Section II relies
on several parameters governed by some statistical laws. Our
aim is to provide an analytical analysis of CV while relying
on the weakest possible set of assumptions on the channel
model. Hence, we will consider that:

• For each ray, gain, DoD and DoA are independent.
• The phases arg(cp) ∼ U [0, 2π] are i.i.d.
• Both DoD ~utx,p and DoA ~urx,p are i.i.d. with distribu-

tions Dtx and Drx.

The first hypothesis is widely used and simply says that no
formal relation exists between the gain and the DoD/DoA of
each ray. The second one reasonably indicates that each prop-
agated path experiences independent phase rotation without
any predominant angle. The last one assumes that all the rays
come from independent directions, with the same distribution
(distributions Dtx at the emitter, Drx at the receiver).

It has indeed been observed through several measurement
campaigns that rays can be grouped into clusters [15], [16].
Considering the limited angular resolution of finite-size an-
tenna arrays, it is possible to approximate all rays of the same
cluster as a unique ray without harming a lot the channel
description accuracy [13]. It then makes sense to assume that
this last hypothesis is valid for the main DoDs and DoAs of
the clusters.

D. Simulations

A preliminary assessment of the coefficient of variation
is computed through Monte-Carlo simulations of (3) using
uniform linear arrays (ULA) with inter-antenna spacing of λ2 at
both the transmitter and receiver and taking a growing number
of antennas. A total of P ∈ {2, 4, 6, 8} paths were randomly
generated with Complex Gaussian gains cp ∼ CN (0, 1),
uniform DoDs ~utx,p ∼ US2 and DoAs ~urx,p ∼ US2 .

Simulation results of CV are reported in Fig. 1 as a function
of the number of antennas. It is observed that all curves
have a variable component and a constant component. Those
two components have opposite behaviors. The variable one
decreases faster in stronger scattering cases and vanishes for
high number of antennas. The constant one have the opposite
behavior and is higher for low scattering scenarios. One should
keep in mind that those simulations embraces a wide variety
of situations with various path-loss, shadowing and fading.
We will explicitly state later on that this constant component
is due to large-scale characteristics (path-loss and shadowing).
The goal of the next sections is to provide further interpretation
of such phenomenon by means of analytical derivations.
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Fig. 1. Simulated CV 2 for growing number of rays. Asymptotes are the
black dashed lines.

IV. DERIVATION OF CV 2

In this section, CV 2 is analytically analyzed from (3).
Expectation of the channel gain. From (1) and (2) the
channel gain ‖H‖2F = Tr(HHH) can be written as

‖H‖2F = NtNr
∑
p,p′

c∗pcp′γp,p′ ,

where the term γp,p′ is given by

γp,p′ = 〈er(~urx,p), er(~urx,p′)〉〈et(~utx,p), et(~utx,p′)〉∗.

Using the hypothesis arg(cp) ∼ U [0, 2π] i.i.d. introduced in
the channel model and γp,p = 1, the expectation of the channel
gain can further be expressed as

E
{
‖H‖2F

}
= NtNrE

{
‖c‖2

}
. (5)

Thus the average channel gain increases linearly with Nr and
Nt, which is consistent with the expected beamforming gain
Nt and the fact that the received power linearly depends on
Nr.
Coefficient of variation. The coefficient of variation CV is
derived using the previous hypotheses and (5). We introduce:{

E2(Atx,Dtx) = E
{
|〈et(~utx,p), et

∗(~utx,p′)〉|2
}

E2(Arx,Drx) = E
{
|〈er(~urx,p), er(~urx,p′)〉|2

} (6)

which depend on the topologies of the antenna arrays defined
by the sets of vectors previously defined Atx, Arx and on
the distributions of the DoDs and DoAs Dtx, Drx. These
quantities are the second moments of the inner products of
the transmit/receive steering vectors associated to two distinct
rays. They represent the correlation between two rays as
observed by the system. They can also be interpreted as the
average inability of the antenna arrays to discriminate two
rays given a specific topology and ray distribution. From such



definitions, and based on the derivations given in Appendix
A, CV 2 can be expressed as a sum of two terms,

CV 2 =E2(Atx,Dtx)E2(Arx,Drx)
E
{
‖c‖4 − ‖c‖44

}
E {‖c‖2}2

+
Var

{
‖c‖2

}
E {‖c‖2}2

.

(7)

Note that this result only relies on the assumptions intro-
duced in section II. The second term can be identified as
the contribution of the spatial large-scale phenomena since it
simply consists in the coefficient of variation of the previously
defined large-scale fading parameter ‖c‖2 of the channel.
To allow local channel behavior interpretation, conditioning
the statistical model by ‖c‖2 is required. It results in the
cancellation of the large-scale variations contribution of CV 2

which reduces to the first term identified as what is called
hereafter small-scale fading.

V. INTERPRETATIONS

A. Large-scale fading

The contribution of large-scale fading in CV 2 is basically
the coefficient of variation of the total aggregated power ‖c‖2
of the rays. To better emphasize its behavior, let us consider a
simple example with independent |cp|2 of mean µ and variance
σ2. The resulting large scale fading term is then

Var
{
‖c‖2

}
E {‖c‖2}2

=
1

P

(
σ

µ

)2

.

It clearly appears that more rays lead to reduced large-
scale variations. This stems from the fact that any shadowing
phenomenon is well averaged over P independent rays, hence
becoming almost deterministic in rich scattering environments.
This result explains the floor levels obtained for various P in
our previous simulations in Section III-D and is consistent with
the literature on correlated Rayleigh fading channels where
high rank correlation matrices provide a stronger channel
hardening effect than low rank ones [8] as previously discussed
in III-B.

B. Small-scale fading

The coefficient of variation particularized with the statistical
conditional model can easily be proven to be:

CV 2
‖c‖2 = E2(Atx,Dtx)E2(Arx,Drx)α2(c)

where α2(c) = 1−
Ec|‖c‖2

{
‖c‖44

}
‖c‖4

.
(8)

The small-scale fading contribution to CV 2 thus consists of
a product of the quantities defined in (6) that depend only on
the antenna array topologies (Atx/Arx) and ray distributions
(Dtx/Drx) multiplied by a propagation conditions factor α2(c)
that depends only on the statistics of the ray powers c.
Ray correlations: Array topologies. This paragraph focuses
on the influence of Atx on the quantity E2(Atx, Dtx) (the
study is done only at the emitter, the obtained results being
equally valid at the receiver). A uniform distribution of the

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
d/
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,
2)

ULA, Nt=16
UCA, Nt=16
UPA, Nt=16
asymptote

Fig. 2. Numerical evaluation of E(Atx,US2
) for various array types and

increasing antenna spacing ∆d. The values are normalized so the asymptote
is 1.

rays over the unit sphere is considered (Dtx = US2 ). Eq. (6)
yields

E2(Atx, Dtx) =
1

N2
t

E


∣∣∣∣∣
Nt∑
i=1

e2jπ
~atx,i·(~utx,p−~utx,p′ )

λ

∣∣∣∣∣
2
 .

A well-known situation is when the inner sum involves expo-
nentials of independent uniformly distributed phases and hence
corresponds to a random walk with Nt steps of unit length.
The above expectation then consists in the second moment of
a Rayleigh distribution and E2(Atx, Dtx) = 1

Nt
. A necessary

condition to such a case is to have (at least) a half wavelength
antenna spacing ∆d to ensure that phases are spread over
[0, 2π]. On the other hand, phase independences are expected
to occur for asymptotically large ∆d. It is however shown
hereafter that such assumption turns out to be valid for much
more reasonable value of ∆d.

Numerical evaluations of E2 are performed versus ∆d (Fig.
2), and versus Nt (Fig. 3). Uniformly distributed rays over
the 3D unit sphere (Dtx = Drx = US2 ) and Uniform
Linear, Circular and Planar Arrays (ULA, UCA and UPA) are
considered. As a reminder, the smaller E(Atx,Dtx) the better
the channel hardening. In Fig. 2, E2 reaches the asymptote
1/Nt for all array types with ∆d = λ

2 and remains almost
constant for larger ∆d. Fig. 3 shows that E2 merely follows
the 1/Nt law whatever the array type. We thus conclude that
the independent uniform phases situation discussed above is a
sufficient model for any array topology given that ∆d ≥ λ

2 . It
is therefore assumed in the sequel that,

E2(Atx,US2)≈1/Nt, E2(Arx,US2)≈1/Nr.

Ray correlation: Ray distributions. In a mobility scenario,
random translations and rotations might affect the receiver,
leading to the previously used uniform distribution of the
received rays over the unit sphere. However emitted rays at
the base station may have much more constrained distributions
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) for various antenna arrays at
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Fig. 4. On the leftmost side, uniform distribution of the rays on the unit
sphere US2

. On the rightmost side, constrained distribution of the rays with
solid angle U∆θ

(especially in the elevation plane). The formula 7 is also valid
for those cases but the E(Atx,Dtx) term shall be re-evaluated.

We study the ULA case with uniform AoD distribution with
constrained elevation in the interval [−∆θ/2,∆θ/2] illustrated
on Fig. 4. This distribution is denoted U∆θ. We have the
equality Uπ = US2 .

The behavior of E(Atx,U∆θ) for increasing number of
antennas is given by Fig 5. We can observe a clear degra-
dation when ∆θ decreases. This is coherent with literature on
channel hardening, constrained rays induce correlated channel
matrices, mitigating the channel hardening effect. This model
asymptotically leads to the pinhole channel that is known to
not harden [4]. Fig. 6 shows the effect of antenna spacing on
E(Atx,U∆θ). It can be observed on this figure that the channel
hardening loss due to restricted distribution of the rays by ∆θ
can be compensated by increasing antenna spacing above the
half-wavelength. The influence of ∆θ on channel hardening
is depicted by Fig. 7. A clear reduction of channel hardening
can be observed when θ decreases.
Propagation conditions. It is now interesting to point out that
the propagation factor α(c) introduced in (8) is bounded by

0 ≤ α2(c) ≤ 1− 1/P. (9)

Fig. 5. Numerical evaluation of E(Atx,U∆θ) for increasing ∆θ with fixed
half-wavelength antenna spacing. The lower, the better.

Fig. 6. Numerical evaluation of E(Atx,U∆θ) for increasing ∆θ with fixed
number of antennas Nt = 16. The lower, the better.

Fig. 7. Comparison between (7), simulated CV 2 and correlated Rayleigh,
the dashed, squared and dotted lines respectively. A 16 × 2 ULA setup is
considered. Uniform distribution of DoDs and DoAs with constrained DoDs
and complex Gaussian gains. The large-scale factor is normalized.
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Those bounds are deduced from the following inequality:

‖c‖42/P ≤ ‖c‖44 ≤ ‖c‖42. (10)

The right inequality comes from the convexity of the square
function. Equality is achieved when there is only one con-
tributing ray, i.e. no multipath occurs. In that case CV 2

‖c‖2 = 0
and the MIMO channel power is deterministic. The left part in
(10) is given by Hölder’s inequality. Equality is achieved when
there are P rays of equal power. Then, taking the expectation
on each member in (10) yields (9).

In contrast to the large-scale fading, more rays lead to more
small-scale fluctuations. It is indeed well known that a richer
scattering environment increases small-scale fading.
Comparison with the simulations. Based on the general
formula given in (7), on the interpretations and evaluations of
its terms, we can derive the expression of channel hardening
for the illustrating simulations of Section III-D:

CV 2
illustration =

1

NtNr
(1− 1/P ) + 1/P.

Simulation and approximated formula are compared in Fig. 8
in which small-scale and large-scale contributions are easily
evidenced, as intuitively expected from simulations of Fig. 1.

C. Comparison with Rayleigh channel models

In this section we compare our channel hardening expres-
sion conditioned by ‖c‖2 (local behavior) to the correlated
Rayleigh fading channel in both strong scattering and low
scattering situations.

In the high scattering regime, the correlated Rayleigh chan-
nels approach is known to perform well. Without any particular
constraint on the DoD and DoA, the correlation matrix is given
by R = Id (the well-known Rayleigh i.i.d. channel model).
Using this result with (4) yields

CV 2
iid =

1

NtNr
.

Using the realistic model in a rich scattering environment, the
propagation term α(c) of small-scale variations (8) reaches
the upper bound of (9). This yields the limit

CV 2 P→∞−−−−→ CV 2
iid (11)

which is coherent with the interpretation of the model. This
behavior can be observed on the lowest curve of Fig. 7.

However in the low scattering regime (considering P rays),
the Rayleigh modeling approach is not valid any more. The
sparse channel is not modeled properly and formula (4)
underestimates the channel hardening effect. Our approach
introduces a propagation factor α(c) that models the scattering
effect and the sparsity of the channel. According to results
given by the ray-based model Fig. (7), channel hardening is
increased in low scattering scenarios and reaches the correlated
Rayleigh hardening for P →∞, which is consistent with the
previous physical interpretation.

VI. CONCLUSION

In this paper, previous studies on channel hardening have
been extended using a physics-based model. We have sepa-
rated influences of antenna array topologies and propagation
characteristics on the channel hardening phenomenon. Large-
scale and small-scale contributions to channel variations have
been evidenced. Essentially, this paper provides a general
framework to study channel hardening using accurate prop-
agation models.

To illustrate the overall behavior of channel hardening, this
framework have been used with generic model parameters and
hypotheses. The scaling laws evidenced for simpler channel
models are conserved provided the antennas are spaced by at
least half a wavelength. The results are consistent with state
of the art and provide further insights on the influence of
array topology and propagation on channel hardening. The
proposed expression can easily be exploited with various
propagation environments and array topologies to provide a
more precise understanding of the phenomenon compared
to classical channel descriptions based on Rayleigh fading
models.
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APPENDIX A
COEFFICIENT OF VARIATION (7)

For the sake of simplicity, an intermediary matrix A is
introduced. It is defined by

[A]p,p′ =

{
2|γp,p′ | cos(φp,p′) if p 6= p′

1 if p = p′

with φp,p′ = arg(c∗pcp′γp,p′) the whole channel phase depen-
dence. ‖H‖2F can be written using a quadratic form with vector



c and matrix A, which can be decomposed into two terms I
(identity) and J

‖H‖2F
NtNr

= cTAc = cT c + cTJc

where J = A− I. E {J} = 0 so:

E
{
‖H‖4F

}
(NtNr)2

= E
{
‖c‖4

}
+ E

{
(cTJc)2

}
.

The ray independence properties yields the following weighted
sum of coupled ray powers

E
{

(cTJc)2
}

=
∑
p 6=p′

E
{
|cp |2|cp′ |2

}
E
{

[J]2p,p′
}
.

Considering i.i.d. rays, all the weights E
{

[J]2p,p′
}

are
identical. Using the weights notations introduced in (6) and
the definition of the 4-norm yields the second order moment
E
{
‖H‖4F

}
. With the expectation (5) we derive the result (7).
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