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Abstract—This article introduces SEER4US a secured routing
protocol designed for UAV swarm networks. SEER4US is the first
protocol providing integrity of routing messages and authentica-
tion of their sender with low energy consumption for battery
preservation. SEER4US prevents the UAV swarms from usual
routing attacks enabled when routing messages are modified or
replayed by nodes external to the swarm. SEER4US is an exten-
sion of the pro-active routing protocol OLSR designed for mobile
ad-hoc networks. SEER4US is also inspired from TESLA, a
protocol designed for stream signature allowing authentication of
stream messages sender. After specifying SEER4US, we evaluate
here the energy requirements of this protocol and we show that
the use of lightweight cryptography allows a significant energy
saving compared to traditional cryptographic schemes.

Index Terms—Network security, UAV swarm, energy efficiency,
ad hoc routing protocol

I. INTRODUCTION

Unmanned aerial vehicle (UAV) applications and develop-
ment have increased over the past few years as this technology
has become more accessible and less expensive. Its primarily
purpose is divided in two main sectors: transport and coverage.
Drones are used for the transport of goods, or people and serve
as interconnected air vehicles.

Coverage applications can take different aspects. Basically
UAV will move in an area and carry a payload that interacts
with the environment (monitoring for instance).

Nowadays, most applications rely on only one single device,
but it is natural to think that in the near future, swarms will be
able to cooperate to achieve a mission. A swarm will increase
reliability, as it is tolerant to individual failure. It will also
be faster in discovery mission by splitting workload among
several devices. We focus here on autonomous UAV, able to
dynamically change their behavior and adapt to unplanned
event. This is not a reality yet, but we already see swarm
that execute full-planned mission successfully. Some important
issues remain to be solved: secured communications, control
of the swarm, resilience to malicious behaviors.

On a single UAV scenario, communication is a keystone
to transmit commands and retrieve data from UAV sensors. It
is even more critical in swarm where cooperation and inter
messaging is fundamental. The communication between the
nodes of a swarm is based on a suitable routing algorithm.
The routing must allow each node to send messages to each
other, by successive hops between different neighbors.

A UAV swarm is a particular mobile ad-hoc networks where
nodes run independently but form a cooperative communi-
cation newtwork. Routing information in these networks is
a broadly explored domain. Many classes of routing proto-
col exists, most popular are reactive and proactive protocol
(AODV [16] and OLSR [7]). A UAV swarm shares com-
mon characteristics with VANET (vehicular ad hoc network),
sensors network or mobile phone network but also strongly
differs on specific points. The mobility model of UAV swarm
is in a 3D space, since they do not follow road or marked
path contrary to vehiculars. VANET routing protocols [4]
rely on specific characteristics of the vehicle i.e. positioning
system, infrastructure access, almost unlimited energy and
high computing capacities. On the contrary, any computation
on a UAV is a permanent trade off between volume, weight
and power consumption, with no infrastructure access.

It also differs from sensor networks that are mainly stable
networks where communication is made from the sensor to the
sink with more or less stable routes. In UAV networks, com-
munication is more critic thus latency and disconnection have
to be minimized. Mobility of nodes is also quite dissimilar.
And to finish, it differs from mobile phones network mainly
with the network infrastructure, cellular network are not part
of our assumption for UAV deployment.

UAV network have always one or two major differences
with other kind of MANET and cannot use off the shelf
technologies to achieve best effectiveness. Existing routing
protocols are not well suited but attack scenarii are. UAV
network is also subject to many known routing attacks: black
hole [2], wormhole [13], Sybil attacks [8] . . . Attacker’s goal is
to disturb or completely stop communication between specific
nodes of the network while remaining stealth. Such attacks
can lead to disconnection from the swarm, false environment
awareness, incorrect behavior. This can therefore be exploited
in conjunction with other attacks. For example to take control
of UAV, retrieve data from it, capture it or even just crash it. As
part of a swarm, a compromised node can threaten the others.
Security issues need to be addressed with minimal cost, to not
impact flight autonomy.

In this article, we aim to address current threats on routing in
UAV swarm. More precisely, we presents three contributions:

• SEER4US the first routing protocol dedicated to UAV
swarm ensuring integrity and authentication of routing
messages with low energy consumption.



• A measure of theoretical latency threshold we can achieve
with SEER4US.

• An evaluation of energy consumption of SEER4US pro-
tocol with present-day hardware

In the remainder, Section II discusses existing protocols
dealing with routing and security in mobile ad-hoc net-
works, Section III introduces two protocols namely OLSR
and TESLA [17] that inspired SEER4US. The core of our
protocol is detailed in Section IV, latency is deeply studied
in Section V, security properties are detailed in Section VI.
Finally, in Section VII we compare energy consumption with
other solutions.

II. RELATED WORKS

Our problem covers both routing and security issues in
mobile ad-hoc networks. Different approaches exist, covering
each side, but rarely both. Routing in UAV network has been
addressed on the literature.

In [20], authors focus on airborne network, comparing their
protocol to OLSR and AODV. They conduct their evaluation
on a defined scenario with four nodes that have circular
trajectory with fixed radius and speed. They focus on latency
and throughput. Their protocol assumes that flight plans of all
nodes are common knowledge.

In [18] they emulate two different scenarii: one with four
nodes, and one with 32, in both cases most of them are not
moving. They focus on increasing routing performance by
taking GPS position and movement of nodes.

In [6] they evaluate best routing protocols for another use
case. They used fixed path for UAV movement and simulate 40
nodes. They focus on latency and network overhead, moreover
they choose to have heterogeneous network composition: some
nodes will be dedicated for long range communications.

In [1], Adjih et al. proposed a secured proactive routing
protocol based on OLSR. It provides integrity, authentication
and timestamping of routing messages. It can use either
symmetric or asymmetric signature algorithms. They assume
that necessary keys are available on each node to perform
suitable verifications.

Very closely, in [21], Zapata proposed a secured reactive
routing protocol based on AODV. It provides integrity and
authentication of routing messages. It uses asymmetric signa-
ture and a key management scheme. On each hop, message
signature is verified and if valid the message is processed.

Ariadne protocol [11] is based on DSR a reactive routing
protocol. In order to provide integrity and authentication of
routing messages the protocol uses a signature mechanism.
The choice of this mechanism is left to end user among
private/public key, secret shared key and TESLA mechanism.
The setup of those keys needs a specific initialization and
during execution some nodes act as trusted key managers.

To our knowledge there is only one previous work that ex-
plore both routing and security on UAV network, the SUANET
project [14]. They propose a routing protocol based on AODV.
They use public key cryptography to provide confidentiality,
integrity and authentication of routing messages. They also

include packet leashes security mechanism. To conduct their
simulation they used scenarii with 4 nodes extracted from a
single UAV real traces. Energy consumption overhead is out
of scope of their studies.

III. BUILDING BLOCKS

SEER4US, is based on two existing protocols: a pro-active
ad hoc routing protocol (OLSR) and an authentication protocol
(TESLA) mainly dedicated to stream signature.

OLSR is a proactive routing protocol, developed to address
routing problem in mobile ad hoc network and other wireless
ad hoc networks [7]. When running OLSR, all nodes period-
ically exchange Hello message to advertise neighbours of
their presence. Hello messages sent by a node also contains
the list of the neighbours learned from previous received
Hello messages. Hello messages are one hop message,
they are broadcast but not retransmitted. The nodes are able
to construct a 2-hops view of the network topology thanks
to Hello messages,. To access the entire network, a node
elects some other nodes as Multi Point Relay (MPR). For a
given node the set of its MPR is the minimum set allowing
to reach all the two hops neighbors. MPR sends periodically
Topology Control (TC) messages. A TC message contains
information about the MPR initiator of the message and nodes
that elected it. When a MPR A receives a TC message from
one node B that has elected it as MPR, A forwards it to its one
hop neighbors. With TC and Hello messages all nodes are
able to construct the topology of entire network. As messages
are periodical, network topology is updated accordingly. With
OLSR, nodes are able to route message in ad hoc network,
assuming execution is correct. Unfortunately anybody can
inject malicious node in the network and perform incorrect
behavior. Those kinds of attack is made possible because
routing messages are not protected. They are received and
processed without any form of checking about integrity or
authentication. That means even a single malicious node can
block a large amount of traffic, forbidding communications
between nodes [2]. This lack of security has to be addressed
to deploy a reliable network.

TESLA [17] is a security scheme initially proposed in
the constrained context of continuous authentication of data
stream needing strong packet-loss robustness, high scalability,
and minimal overhead (as radio and TV Internet broadcasts,
and authenticated data distribution by satellite). TESLA relies
on hash function and global time. To use TESLA on a
message stream, a sender owns an arbitrary long hash chain.
Elements of hash chain will be used as keys in reverse order.
We use last chain element hn(S0) as first key K0. Any
message mi broadcasted by the source node is composed of
three elements: pi,Ki−1, HMAC(pi,Ki−1,Ki). pi is the data
payload contained in the packet. Ki−1 is the previous key
used in the chain, disclosed in mi. HMAC(pi,Ki−1,Ki), HMAC
(Keyed-hash message authentication code) of mi, using yet
undisclosed key Ki. To process mi through verification steps,
receivers have to know if it was received before sending of
mi+1 and then disclosure of Ki. To ensure this property,



keys revelation is scheduled and node are synchronized with
a bounded error. On mi reception, mi−1 verification will be
allowed and mi will be buffered, waiting for mi+1 recep-
tion in order to be verified. To verify mi, receivers check
that h(Ki) = Ki−1 with Ki disclosed in mi+1. This step
will ensure that mi belongs to message stream. Additionally
receivers will compute HMAC(pi,Ki−1,Ki) and compare it
with HMAC in mi. By assuming that h cannot be reversed only
the owner of the key chain can produce legitimate message
on time. Those message cannot be stealthy tampered due to
HMAC. That ensures integrity of message and authentication
of sender. The very first message needs an external method of
authentication or the prior transmission of K0.

OLSR alone can be used for UAV swarm but, according to
its latest definition [16], it is strongly recommended to add
mechanism to ensure message integrity and authentication.
Many attacks are, indeed, based on unsecure routing message:
replay attack [9], blackhole attack [2]. On the other hand,
TESLA alone allows authentication of sender of a data stream
but is not a routing protocol. It relies on hash function and
loose synchronization rather than heavy computational crypto-
graphic functions and bring two good properties we want: low
energy consumption and less computation. In the rest of this
article, we design SEER4US, a secure ad hoc routing protocol
providing authentication and integrity of routing messages,
based on OLSR and TESLA, well suited to UAV swarm due
to its low energy consumption (see section VII).

IV. SEER4US

SEER4US is designed for autonomous UAV swarm where
UAVs share a common knowledge initialized offline.

1) Common knowledge: We assume that all nodes share a
global clock: each node has its own local clock but maximum
deviation is supposed to be bounded by a fixed parameter
ε. In SEER4US, each node A of the swarm is equipped
with an arbitrary fixed-length key chain (KA

0 , . . . ,K
A
n ) where

the ending value KA
n is randomly chosen by each node and

KA
j−1 = h(KA

j ) where h is a one way hash function. The
set of all the starting values {KN

0 } (where N is in the set of
nodes) is part of the common knowledge of the swarm. Each
node will disclose the keys of its key chain according to a fre-
quency that is assumed to be known by all nodes in the swarm.
Starting form a arbitrary value k, it is easy to verify that k is
the an element of the chain by checking if hx(k) is equal to a
previously disclosed key for some value of x in {0, ..n}. One
or more key may be missing in the disclosed key chain. Each
node collects information about the network by exchanging
Hello and Topology Control (TC) messages with the
same purpose as in OLSR. Hello messages will be periodical
1-hop message and TC will be periodical message broadcasted
in the entire network through MPR mechanism. Hello will
contains addresses of neighbours nodes and TC addresses of
nodes choosing TC’s senders for MPR.

2) Messages formatting: In SEER4US, each message is
linked to its predecessor through the key chain of their sender,

in order to ensure the integrity of message and authenti-
cation of the sender. More precisely, both Hello and TC
messages contain two additional fields: a MAC field and
a key field. Thus, instead of sending a series of messages
{m1}, {m2}, . . . , {mi}, . . . of common Hello or TC mes-
sages, a node A will send:

{mA
1 } = (pA1 ,K

A
0 , HMAC(pA1 ,K

A
0 ,K

A
1 )),

{mA
2 } = (pA2 ,K

A
1 , HMAC(pA2 ,K

A
1 ,K

A
2 )),

. . . ,
{mA

i } = (pAi ,K
A
j−1, HMAC(pAi−1,K

A
j−1,K

A
j )),

. . . ,
3) Verification step: When a node B receives a series of

messages supposedly sent by A, he can, at each message
reception, check the integrity of previous message and that A
is indeed the sender of the message. On reception of a message
mA

i two verifications are performed: first that mA
i is received

on time according to KA
j disclose time and B internal clock.

Secondly that KA
j−1 belongs to the key chain of A, to verify

this property, B applies h on KA
j−1 until it can compare it

with the last revealed KA known, or ultimately KA
0 . If one of

the verification failed the message is discarded, otherwise the
message is stored awaiting for authentication and the revealed
key chain of A is updated.

On reception of a next message from A, mA
i+1, which

disclose KA
j further verification are performed. Firstly same

two verifications are done and will update A’s revealed key
chain. As mA

i+1 is sent after mA
i key revealed on it is the next

one or is the same as the key used to sign mA
i . So B is able to

retrieve KA
j by applying h on KA

j−1. With this new knowledge
B can computed if HMAC(dAi ,K

A
j ) is same as received or not

(for convenience we note dAi = pAi ,K
A
j−1). If it is the same

then mA
i is authenticated and pAi can be transmit to the routing

algorithm. If verification is incorrect then payload of mA
i is

discarded. Fig 1 displays few round of communication from
A to B. Where pAi is the payload of the routing message, KA

j

is the key used to sign mA
i and KA

j−1 is is the disclosed key.

A B

−
−
−
−
−
−
−

−
−
−
−
−
−
−

dA
i︷ ︸︸ ︷

pAi ,KA
j−1, HMAC(dAi ,KA

j )

pAi+1,KA
j , HMAC(dAi+1,KA

j+1)

pAi+2,KA
j+1, HMAC(dAi+2,KA

j+2)

Verification
mA

i

Verification
mA

i+1

Fig. 1. Messages Exchanges diagram

With this verification process we ensure integrity and au-
thentication of routing messages.

SEER4US scheme as previously exposed in Section IV uses
fixed frequencies for message sending. But in fact OLSR is
much more flexible and can overload frequency by sending



message sooner in case of topology updates. This feature better
copes in UAV swarm where low latency routing is critical and
topology update are potentially high. To include this reactivity,
we can use a faster key disclosure frequency in SEER4US.

Since a node has to wait upon key disclosure, the key
lifetime has to be long enough for message to be received,
a balance for key disclosure rate is needed. In the following,
we discuss the minimum value for key lifetime.
Hello messages will be send every ∆Hello and TC mes-

sages every ∆TC . Those periods do not form an exact schedule
nor are respected all the time. First because of common wire-
less link, packets can be delayed on sending, to avoid collision.
Second because when a node received a new Hello or TC
it can sooner advertise its others neighbours by immediately
sending a new message. Still, to avoid complete flooding, there
is a minimum time to wait before sending another message.

To comply with this dynamic rate we set minimum validity
time of key δ = ∆tt + ε + g as depicted in Figure 2. Where
∆tt is an upper bound of transmission time, ε an upper bound
of synchronization error and g an upper bound of jitter time.
Even in worst case, a message is valid at reception if it is sent
δ before its key expiration. The minimum time to wait before
sending another message has to be greater or equal to δ.

Keys used to sign the chain of message will not be neces-
sarily direct successor in the keys chain. So verification step
will repetitively apply h on the key to link it to a previous
disclosed one.

A

B

Mi−1 Mi Mi+2

Mi+1

KA
j−3 KA

j−2 KA
j−1 KA

j KA
j+1 KA

j+2 KA
j+3

g

∆tt
ε

δ

Fig. 2. Key disclosure

Base routing and signature are now in place but we aim
to deploy our protocol on a fast and high dynamic network.
Waiting for upcoming message introduce extra latency to
reduce.

V. ADDRESSING LATENCY

As authentication of a message implies to wait the next
one, extra latency is introduced by SEER4US. Being able
to communicate flawlessly is critical for an UAV, as without
communication it is more vulnerable, perform worst or even
being a danger for the swarm. Latency of routing message can
lead to partial disconnection when node will no longer being
able to communicate with others. To ensure that our protocol
is suitable for UAV swarm we aim to reduce this extra latency
to the minimal as described in the following Section.

In Figure 3, we see journey of a TCA
i from A to D.

On the first hop, B will authenticate TCA
i with TCA

i+1,
introducing one round of latency. On TCA

i+1 reception, if we

A

B

C

D

TR(i, 1) TR(i, 2) TR(i, 3) Verification of ↑
TCA

i

TCA
i TCA

i+1 TCA
i+2 TCA

i+4

Fig. 3. Latency over hop

neglect verification time, B will re emit TCA
i immediately

after verification. So C will received TCA
i with two rounds

of latency. Only TCA
i+2 (or later message) can allows C to

authenticate TCA
i . But TCA

i+2 will first pass trough B and so
have additional latency. C will only be able to authenticate
TCA

i with three rounds of latency. Finally, three-hop node
D will receive TCA

i from C but will wait until reception of
TCA

i+4 to authenticate it. TCA
i+4 will pass trough B and C

leading to a final seven round latency for TCA
i authentication.

Authentication latency seems to growth exponentially with
number of hops.

We discretize here the time to interval of equal length so
that there is one TC sent per unit of time. We define ∆ll, the
link latency, the time for a message to be received by another
node, 0 < ∆ll ≤ 1, as communication are not immediate but
shorter than message period. Let TR(i, n) time to receive TC
sent at i, that is emitted from n hops. Let TA(i, n) time to
authenticate TC sent at i, that is emitted from n hops. TC is
broadcast as soon as they are authenticated and we assume
validation time is negligible: TR(i, n) = TA(i, n − 1) + ∆ll.
TC is authenticated when a message sent after its reception
is received: TA(i, n) = TR(dTR(i, n)e, n). Easily we have:
TR(i, n) ≥ i + 2n−1 − 1 + n · ∆ll and TA(i, n) ≥ i + 2n −
1 + n ·∆ll.

So the farer a TC will be broadcast, the longer it will take
to authenticate it. The exponential growth of this latency does
not suit our short latency constraint.

To reduce latency we make every node re authenticate TC
message. By replacing message signature on each hop we
reduce authentication to one hop waiting. On Figure 4 we
can see the same scenario as on Figure 3 but with each node
applying is own signature before re emission.

Actually we have TA(i, n) = TR(dTR(i, n)e, 1). As all
messages will be authenticated with direct neighbors key
chain, that leads to TR(i, n) ≥ i+ n− 1 + n ·∆ll TA(i, n) ≥
i+ n+ n ·∆ll.

So now latency to authenticate and receive message grows
linearly with the size of the network.

Verification time can also be speed up by introducing a new
mechanism: Validation message. This new kind of mes-
sage will be sent after all message after δ time. Validation
message will not carry any routing information and their only
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Fig. 4. Latency over hop with re-signature

purpose is to allow receivers to authenticate message with
routing payload.

Fig 5 shows on the same timescale messages propagation
as in Fig 4, we can see that TC is propagated faster tanks to
Validation messages.

A

B

C

D

TCA
i TCA

i+1 TCA
i+2

Validation

TR(i, 2)

TR(i, 1) TR(i, 3)

↑ Verification
of TCA

i

Fig. 5. New message to speed up authentication

With this modification we reach the theoretical threshold
2 ∗ (δtt + g) + ε of minimum latency for one hop signature.
After every Hello or TC message a Validation message
is sent as soon as possible for validation process.

VI. SECURITY DISCUSSION

Our threat model supposed an attacker that can interact with
the transmission layer. It can effortlessly record all messages
sent by any node. It can also emit all messages it can forged
with its current knowledge and send them to any set of nodes
he wants. We assume that an attacker may be deployed on the
entire network. In its initial knowledge are nodes addresses.
The attacker is neither able to reverse the hash function nor
to forge a valid signature. We assume that one goal of the
attacker is to modify routing information while leaving stealth,
so jamming attack is out of scope of our study.

Before being process by routing routine we choose to buffer
all messages and wait for authentication. One policy can be
to directly use those routing information and make a proper
validation after. This behavior can lead to energy depletion
attack. One attacker can send a lot of incorrect messages to
force heavy and useless topology processing. Same choice can
be applied on TC broadcasting, we choose to wait to be sure

TC messages are correct before MPR spread them. An hybrid
policy approach may also be applied: at the beginning node
can process message immediately and check authentication
later but in case of error they switch in a vigilant mode in
which they buffer and wait for verification.

On reception two checks are performed before message
is buffered for authentication. First lifetime of the packet is
checked, if the key that is used to sign it is already disclosed
(or disclosed in a time inferior than the synchronization error
ε) the packet is discarded. Second the revealed key in the
packet is verified, by iteratively computing hash function on
it. The key must be part of a known key chain, otherwise the
packet is discarded. If the key is correct then packet is stored
for future authentication. The verified disclosed key may be
use to authenticate buffered packets from the same transmitter.

VII. EVALUATION

In order to evaluate our protocol we conduct a theoreti-
cal comparison with OLSR and SOLSR, a secured version
of OLSR, using RSA 2048 signature for routing messages
and SEER4US. These experiments highlight that SEER4US
protocol consume less energy for the same security properties
and same information exchanged.

Most evaluations on MANET protocols use either real data
or dynamic simulation, while others choose static config-
urations [12], [20]. Mobility models range from extremely
specific (one node move at a time) to common and consensual
model like random walk, random waypoint. Those two last
models have become quite popular in evaluation of MANET
protocols but for our use case, in which we want to simulate
behaviour of coordinated swarm, those models cannot render
coordination between nodes as explain in [10] and [5]. Other
model begin to emerge for this specific use case: in [3] they
render swarm mobility by combining tool for flight planning
and markov chain. In [5] by combining existing basic mobility
model they construct a more suitable mobility model for group
mobility. Unfortunately even if they are quite promising we
choose to do not use them yet: according to [3] there is no
consensual method to evaluate those models and measure if
they correctly render reality. For our first evaluation we choose
to stick to a simple setup: fixed position, we choose best
case option for all the evaluated protocols, ideal link layer,
no collision, ideal topology and so no movement.

We study 3 protocols: OLSRv1 as a baseline, SEER4US
and SOLSR. For this experiments, we used the recommended
configuration parameters from OLSR and TESLA. Adresses
are ipv4 on 4 bytes. We use SHA-256 hash function for both
key chain and hmac. We truncate hashes on message to reduce
its size to 10 bytes as recommended in [17]. TC period is 5s
and Hello period is 2s. Timestamp is on 4 bytes. SOLSR
uses RSA2048 with 256 bytes signature. We count energy
consumption on a ten seconds time frame.

There is four ways to spend energy: sending messages,
receiving messages, signing and verifying a message received.
We consider no energy consumption for OLSR on sign and
verify operation. We also do not take into account energy



spent to perform routing calculation like MPR set election,
route processing and so on, as such operation will be the
same on each protocol and do not introduce useful element
of comparison.

As our model is simple enough, we don’t need an external
simulation tool, we will add cost of every tasks performed by
all nodes successively over the time frame. All 49 nodes form
the best case topology for OLSR. For each of them we have
Sn, Rn the set of messages sent, received respectively. We
can construct and measure size of all message that will give us
the overhead. We re-use values published in [19] about energy
cost for sending and receiving. We took experimental values
from [15] for hash/signature consumption, by adding each
verify and signing operation for each protocol we can then
have energy consumption for both SEER4US and SOLSR.
For SEER4US, messages are signed at every hop but for RSA
signature only the first sender performs signature.

For SOLSR, another cost per message is the access to the
key for verification but we neglect this cost here since it highly
depends of the infrastructure.

OLSR SOLSR SEER4US
nb of message per second 5 5 10

total power consume (mW) 3184 11882 6104
Kbyte/s sent in average 3.500 13.791 6.952

Average Overhead (Kbytes/s) - 10.291 3.452

TABLE I
COMPARISON OF ENERGY CONSUMPTION IN SEER4US, OLSR, SOLSR

Results detailed in Table I give a hints on how cryptography
drastically increased energy consumption. So signatures come
at a cost, but we see that our protocol cost nearly twice less
than SOLSR still guaranteeing integrity and authentication. We
can also see that even if our protocol sends more messages due
to double sending mechanism, SEER4US still have a smaller
overhead than SOLSR compared to baseline.

VIII. CONCLUSION

We have presented SEER4US a proactive routing protocol
for UAV swarm based on OLSR and TESLA, that provides
integrity of routing message and authentication of senders.
We show in our evaluation that this protocol consumes less
energy and has significantly less overhead than SOLSR,
another proactive routing protocol. Future work will focus
on improving SEER4US by handling dynamic arrival and
departure of node in the network and cooperation with other
networks. At last, we will propose a proper mobility model
that we will use to measure throughput, latency or packet drop.
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