Bridging the Gap Between Java and Python in
Mobile Software Development to Enable MLOps

Rustem Dautov
SINTEF Digital
Oslo, Norway
rustem.dautov @sintef.no

Fotis Gonidis
Gnomon Informatics S.A.
Thessaloniki, Greece
f.gonidis @gnomon.com.gr

Abstract—The role of Machine Learning (ML) engineers in
mobile development has become increasingly important in recent
years, as more and more business-critical mobile applications
depend on AI components. Many development teams already
include dedicated ML engineers who aim to follow agile devel-
opment practices in their work, as part of the larger MLOps
concept. However, the availability of MLOps tools tailored specif-
ically towards mobile platforms is scarce, often due the limited
support for non-native programming languages such as Python,
as well as the unsuitability of native programming languages
such as Java and Kotlin to support ML-related programming
tasks. This paper aims to address this gap and describes a plug-in
architecture for developing, deploying and running data ingestion
and processing components written in Python on the Android
platform. With the possibility to pass a user-defined schema with
the data format and structure, the proposed architecture ensures
that time-series datasets are correctly interpreted by multiple
ML modules dealing with both data ingestion and processing, .
The proposed approach benefits from modularity, extensibility,
customisation, and separation of concerns, which enable ML
engineers to be fully involved in a mobile development lifecycle
following agile MLOps practices.

Index Terms—Internet of Things, Mobile Development, An-
droid, MLOps, DevOps, Machine Learning, Plug-in Architecture.

I. INTRODUCTION AND MOTIVATION

Smartphones are increasingly used as universal IoT gate-
ways in the context of vertical IoT communication. With the
growing computing and networking capabilities, they serve not
only to collect and transfer data, but also to run advanced
timely analytics locally. As Al components are integrated
into more and more business-critical applications, the role of
Machine Learning (ML) engineers in mobile development has
become of critical importance to build intelligent Al-driven
apps. Many mobile development teams have a clear separation
of roles within their projects. ML engineers focus on the
data lifecycle, including data ingestion and preparation, model
development and deployment, with periodical re-training and
re-deploying of the models to adjust for freshly labelled data,
data drift, user feedback, or changes in model inputs, caused
by evolving business requirements [1]. In parallel to this,

Spyridon Papatzelos
Gnomon Informatics S.A.
Thessaloniki, Greece
s.papatzelos @ gnomon.com.gr

Erik Johannes Husom
SINTEF Digital
Oslo, Norway
erik.husom @sintef.no

Nikolaos Malamas
Gnomon Informatics S.A.
Thessaloniki, Greece
n.malamas @gnomon.com.gr

mobile app developers focus on the lifecycle of the overall
application. Thanks to this separation of concerns, both parties
work well together to meet end-to-end performance, quality,
reliability, and user experience requirements. This situation is
underpinned by the following technological trends:

« Smartphones as universal IoT gateways: Vertical com-
munication is critical to many IoT-enabled domains driven
by the ubiquitous sensor technology (healthcare, automotive,
manufacturing, agritech, efc.) [2]. To support this, smartphones
allow connecting to the Internet without any proprietary hard-
ware, and thus reducing the costs and increasing the adoption
of the IoT technology for common smartphone users [3].

o Al on the edge: IoT time-series data is collected from
multiple sensors, often sampling at a very high frequency.
Transferring the resulting large datasets over a congested
network to the IoT cloud for remote processing is often
impractical. Another challenge, particularly in e-healthcare
scenarios [4], is user privacy, which restricts sending personal
data externally. Another common concern is the the increased
costs for cloud-based data storage and computation. As a
result, companies are motivated to push Al capabilities to the
edge to enable real-time actions in the field, i.e. as close to
the source of data as possible.

« Adoption of agile development practices: DevOps is a cul-
tural movement containing a set of practices that facilitate the
collaboration between development, testing, and IT operations
[5]. These practices are expected to bring a positive effect
on productivity, efficiency, client satisfaction, and eventually
on revenues. In parallel to this, the increased integration
of ML and AI in enterprise-level software has led to the
emergence of the so-called MLOps [6], [7] — an adaptation of
DevOps practices to the ML domain, that aims to deploy and
maintain ML models in production reliably and efficiently. To
achieve this, MLOps promotes automation at all steps of the
ML system lifecycle, including integration, testing, releasing,
deployment and infrastructure management.

These three converging trends are changing the mobile

software development paradigm and lead to an increased in-
volvement of dedicated ML engineers in the agile development
of mobile applications. To date, there are multiple frameworks
and development environments for rapid and user-friendly
mobile development (both for Android and iOS, as well
as cross-platform), facilitating agile development cycles and
shorter time to market. However, there is still a technological
gap in terms of tooling support for ML engineers when it
comes to mobile platforms. The use of Python, the de facto
programming language in data science, as well as its inte-
gration with the native code are still quite limited in Android
0S.! While it is in general possible to code stand-alone scripts
and run the Python interpreter, there is a pressing challenge of
integrating ML inference modules written in Python into larger
apps as part of business logic responsible for data analytics [6].

To address this limitation, this paper presents an extensible
architecture for rapid development of data analytics compo-
nents on the Android platform. The proposed architecture mo-
tivates for clear separation of concerns between app developers
and ML engineers, allowing the latter to build and manage data
processing modules independently from the main application
logic. Thanks to the prominent plug-in architectural pattern,
the proposed solution benefits from application logic extensi-
bility, flexibility, and customisation. This becomes especially
important in the context of DevOps and MLOps, which rely
on frequent releases of software updates.

Accordingly, the contribution of this paper is three-fold:
i) the formulation of the existing technological gap, which,
according to the best of our knowledge, has not been explored
neither by the academia nor the industry, ii) the conceptual
plug-in architecture for deploying and running Python modules
on the Android platform, and iii) a proof of concept imple-
mentation of the proposed architecture for fatigue detection
using time-series sensor data from wearable fitness trackers.

The rest of the paper is organised as follows. Section II
looks into the research context and the current state of practice,
and describes the research gap from an MLOps perspective.
Section III describes the conceptual architecture of the pro-
posed approach. Section IV presents the proof of concept,
demonstrating the feasibility of the proposed approach with a
real-life application scenario. Section V summarises the results
and outlines directions for further work.

II. RESEARCH CONTEXT AND PROBLEM FORMULATION

In recent years, the community has been actively developing
solutions for deploying and running ML models on resource-
constrained platforms (including smartphones), typically in-
vestigated under the umbrella term Edge AI [8], [9]. The
main focus has primarily been on finding the right balance
between available computing resources and the performance
of the ML models. There are several enterprise-level MLOps
tools that automate the lifecycle of AI/ML components on
mobile platforms. Two prominent examples are TensorFlow

'While the main focus of this paper is on Android OS, many of the
described issues and concepts are also applicable to iOS.

Lite and PyTorch Mobile,> which allow training, deploying
and running light-weight models on Android and iOS. The
available SDKs support several mobile-native languages, but
are tailored to smartphone-oriented scenarios, such as text,
image, audio and video recognition, meaning that support for
time-series sensor data processing is somewhat limited.

A. Use of Python in ML for time-series data analytics

The existing Android SDKs are not suitable for scenarios
where a smartphone acts as an IoT gateway, because when
dealing with time-series numeric data, an important task of
an ML engineer is to extract, process, define, clean, arrange
and then understand the data to develop intelligent algorithms.
Thanks to the rich support for all these tasks, Python has
become the de facto programming language used in ML. This
is due to its simplicity and readability, which allows ML
engineers to focus on the algorithms and results, rather than on
structuring code and keeping it manageable. This simplicity
also allows other people to review and improve the code.
Another advantage is that Python is also usually consistent
across projects and platforms, allowing to use the same few
mainstream modules (e.g. keras, tensorflow, pandas, scikit-
learn, numpy and several others?).

There have been developed multiple cross-platform tools
that allow running Python scripts almost anywhere, often
within a non-Python execution environment, such as, for
example, Android, which natively supports only Java and
Kotlin code. To be able to run Python, the community has
come up with several frameworks* that provide a bridge
between the native Android and the external Python code.
For example, QPython and Termux® offer a command line
interface and a simple text editor for typing and running stand-
alone Python code. The cross-platform frameworks BeeWare
and Kivy® can be used to package Python code as Android
apps with support for user interfaces and access to most
Android services and hardware interfaces. These existing tools
are good for quick prototyping of Python-only apps, but have
limited support for integration with native Java/Kotlin code,
especially in the context of enterprise-level projects that follow
DevOps practices. A notable exception in this context is the
Chaquopy library described in Section IV. Another possible
solution to a smooth Java-Python interaction [10] describes
an approach for building light-weight ML models, deploying
and running them on almost any platform, including Android.
Although the approach enables loosely-coupled interaction
between multiple software components, it depends on the
containerisation middleware, which is not usually present on
most users’ smartphones.

Limited Python support forces mobile developers to code in
native programming languages. Albeit compiled native code
in Java is known to demonstrate better performance compared

Zhttps://www.tensorflow.org/lite, https://pytorch.org/mobile
3https://www.upgrad.com/blog/top- python-libraries- for-machine-learning
“https://wiki.python.org/moin/Android

Shttps://termux.com, https://www.qpython.com

Shttps://kivy.org, https://beeware.org

to an interpreted code in Python [11], native languages are
not well-suited for ML-oriented tasks due to complexity and
rigidity, resulting in more time spent on code structuring and
management and leading to slower development pace. As a
result, the universal adoption of MLOps in mobile software
development to achieve agile and rapid integration of ML
features is hindered.

This paper aims to address these challenges by allowing ML
engineers to be fully involved in agile mobile development.
The main goal of this research effort is to bridge the gap
between Java-driven DevOps and Python-driven MLOps in
the context of mobile software development. Both disciplines
are mature enough on their own, with multiple commercially-
available products on the market. However, their parallel use
within a mobile development project by a diverse team of
Android developers and ML engineers is yet to be explored.

B. Characterising the Problem from an MLOps Perspective

Business requirements for local and timely data processing
on the mobile edge tend to continuously evolve, triggered
by, for example, updated user requirements or newly-added
hardware sensors. This naturally calls for a loosely-coupled
architecture, where frequently updated components handling
the actual data processing can be modified with minimum
disruption to the rest of the running system. From an MLOps
perspective, this overall challenge has the following aspects:

1) Modularity to enable separation of concerns: A modular
architecture will reduce complexity and allow developers to
deploy new features independently from each other. The
separation of concerns also assumes that ML engineers can
continue coding their components in a programming language
they are most proficient with.

2) Agile support for frequent updates: New features added
by team members should have minimum effect on the rest of
the running system, meaning that incremental code updates
are applied in a safe, isolated and non-blocking manner.

3) Understanding of the data on both ends: it is important
that the data ingested into the application on one end is
correctly and unambiguously interpreted and fed into an ML
model on the other end. Therefore, it is required to enable
end-to-end communication of the data format and structure.

III. PROPOSED APPROACH: PLUG-IN ARCHITECTURE

The described challenges have traditionally been addressed
by applying various software decomposition techniques, such
as the service-oriented architecture (SOA) [12] or component-
based software engineering [13]. Another prominent pattern,
particularly useful for loosely-coupled systems composed of
two main elements — i.e., a relatively stable core part and
multiple dynamically evolving extensions — is the plug-in
architecture. It relies on the principle of allowing adding
features as plug-ins to the core application, providing exten-
sibility, flexibility, customisation, and isolation of application
features. This way, the specific application logic of separate
software modules is separated from the core system. At
any given point, including run-time, plug-ins can be added,

removed, and changed with little or no effect on the rest of
the core system or other plug-in modules.

The core system is often defined as the general business
logic which provides the bare minimum for the application to
function. The specific implementations of that functionality are
up to individual plug-ins. The core also often contains common
utility functionality to be used by plug-ins as a way to reduce
duplicated and redundant code, and have one single source
of truth. Examples of such common functionality include
logging, database access, versioning, caching, security mech-
anisms and other standard re-usable software components.
Plug-ins are stand-alone, independent components that contain
specialised processing code and additional features, which
are meant to enhance or extend the core system to produce
additional capabilities. The core system declares extension
points, usually in the form of a well-defined API, that plug-ins
can hook into. The core also keeps track of loaded plug-ins
through some form of registry, which includes information
about available plug-ins and the protocols for accessing them.

< Unified Data Interchange
N

$ @ outhon > @ python

Java

Zila

Data Source l Data Analytics
o)) y!
Plug-in A = &, c Plug-in A
:g cu e ® g
g8 g8
Data Source g’ t Core (%] u: Data Analytics
Plug-in B E g System 2 3 Plug-in B
< S o=
- & =
Data Source () ‘Es' Data Analytics
Plug-in C [=] Plug-in C

Fig. 1. Conceptual architecture for data analytics on an Android gateway.

In the context of time-series data analytics, the envisioned
plug-in architecture (depicted in Fig. 1) should address the
following threefold functionality:

« Data Ingestion: this covers various heterogeneous sources
of data that will be handled in a mobile app. The core system
defines a data ingestion interface, which custom plug-ins are
expected to implement. On a smartphone gateway, these may
include, for example, streaming data from wearable devices or
built-in sensors, SQL results from the Android-native SQLite
DB, CSV data from a local file, etc.

« Data Processing: this covers the actual data analytics logic
applied to input data in the context of the given mobile app.
The core defines a data processing interface to be implemented
by custom plug-ins. Such custom data processing may range
from simple arithmetical operations to advanced ML using
deep learning techniques.

« Unified Data Interchange: while it is sometimes possible
to infer the data schema (attributes, types, column order, efc.)
from the data itself, it is still important to communicate this
explicitly [14]. Therefore, a key pre-requisite for correct data
processing is to ensure that input values provide by the data
ingestion plug-ins is properly ‘understood’ on the other end
by the data processing plug-ins.

IV. PROOF OF CONCEPT

The described plug-in architecture was implemented as the
Android Time-Series (AnTS) prototype framework,’ depicted
in Fig. 2. The implementation follows the functional and
non-functional requirements described earlier. As a proof of
concept demonstration, we will now explain how it is used for
loading and processing time-series sensor data, collected by a
wearable fitness tracker, while the Android smartphone acts
as an loT gateway.

A. Service Provider Interface for Plug-in Architecture

Service Provider Interface (SPI) was introduced in Java to
make applications more extensible, as it allows third parties to
enhance specific parts of a main product without modifying the
core application. It naturally implements the modular plug-in
architecture, including the support for dynamic discovery and
loading of plug-in modules at run-time. There are three main
elements underpinning the SPI mechanism:

« Service: in terms of the plug-in terminology, it is a well-
defined interface that allows the core system to interact with
plug-ins.

« Service Provider: it is a specific implementation of a
Service, which hooks into the extension points provided by
the core system. Each Service Provider implementation is
placed on the application class path (typically as a JAR file)
to be discovered and loaded, both at compile- and run-time.
« Service Loader: it is the mechanism for discovering
and loading available plug-in implementations (i.e. Service
Providers). As a pre-requisite, each Service Provider needs
to be accompanied by a self-declaration file that associates it
to a specific Service. Service Loader also acts as the plug-
in registry by caching and keeping track of already loaded
Service implementations.

The core of the framework implements the plug-in loading
functionality using SPI’s ServiceLoader, which scans for
available Service implementations and keeps track of them at
run-time. The core also contains generic utility functionality
(e.g. SQLite broker, logging, JSON and XML parsers, efc.)
and defines API entry-points to be used by third-party apps
when imported as a JAR file.

B. Chaquopy for Bridging Java and Python

A promising library Chaquopy Python SDK3 allows di-
rectly invoking Python scripts from within Android-native
code, thus enabling co-operation between Java code and
Python scripts. Distributed as a JAR library, it can be inte-
grated using standard build automation tools such as Gradle
and Maven. This proves especially useful within a team of
Android developers coding in Java and ML engineers coding
in Python. Accordingly, in this work we used the Chaquopy
SDK to enable user-customised Python extensions responsible
for various ML-related data management tasks, on the sides
of both data ingestion and data processing.

"https://github.com/SINTEF-9012/ants
8https://chaquo.com/

Fatigue Detection App

l‘l
y\ud

JAR file -
v

atigueDetection|
Inference

GenericPython
Inference

 fitbit WebAp
Datal.oa

External API

i

Core

DeviceA|
< DataLoa Logging ‘ ‘ DB broker

8 SQLite
DatalLoa

LoadDataService interface

IJSON parser‘ ‘ XML parser ‘

OAuth 2.0 ‘ }JSON Schem%

ProcessDataService interface
processData(data: String, schema: String)

.-

Fig. 2. AnTS framework for fatigue detection using fitness trackers.

File
DatalLoa

String loadData(data: String, schema: String)

b

C. JSON Schema for Unified Data Interchange

In a relatively small development team, an ML engineer
has full understanding of the data and will solely implement
both data ingestion and data processing plug-ins. With more
people involved, it becomes a pressing concern to implement
a mechanism for communicating the data schema from data
sources to ML modules. To address this, we used JSON
Schema® — a modelling vocabulary for annotating and validat-
ing JSON documents.'? It provides clear human- and machine-
readable documentation and is widely used for all kinds of
automated validation of input JSON data. The use of this
standard formalism in our work has two main benefits. First,
it allows the data processing plug-ins to understand the input
data format. Second, it can also be used to automatically check
that input data is indeed correct and complies with the schema,
using standard software libraries. Standard validation checks
may include data type, format, range, uniqueness, presence,
cardinality and many others.

D. Running Example: Fatigue Detection Using Fitness Trackers

The proof of concept was validated in the context of a
fatigue detection mobile app. The app deploys and runs ML
models on an Android smartphone, which acts as an IoT
gateway for physiological data (e.g. sleep activity, physical
activity, and heart rate) collected by Fitbit fitness trackers.'!
Currently, there are two abstract Services exposed by the core
system, whereas the actual Service Provider implementations
are contained in the following plug-ins:

1) LoadDataService represents various sources of data to
be ingested into the analytics plug-ins. Apart from some other

%https://json-schema.org/

19T the context of this paper we primarily focus on the JSON format. It is
also possible to use similar standard tools for structuring and validating CSV
input data, albeit it is less challenging.

Data collection, feature engineering and model training, albeit fundamen-
tal parts of the overall implementation, go beyond the scope of this paper,
and below we only focus on the architectural aspects allowing deployment
and integration of ML features into the core mobile app.

auxiliary functionality, it declares the main method loadData()
to be implemented by any Service Provider inheriting this
class. Each implementation returns both the ingested data
and the corresponding data schema. For the purposes of the
fatigue detection scenario, the following Service Provider
implementations were developed:

« WebApiDatalLoader is responsible for fetching data from
Fitbit Web APL!? which offers multiple entry-points for
parameterised querying of collected biomarkers.

« DeviceApiDataloader provides real-time biomarker data
from Fitbit trackers.'? This plug-in has an importnat prac-
tical application when the symptoms of a growing fatigue
need to be detected in an autonomous offline manner.

« SQLiteDatalLoader is responsible for querying data from
Android’s native relational database SQLite. Being ex-
tremely light-weight, SQLite does not offer rich built-in
data types (e.g. Timestamp for time-series data), but is,
nevertheless, able to effectively store time-series data using
string timestamps — a simple, yet highly efficient solution.
Therefore, it was natural to use SQLite for storing and
further accessing locally-cached data.

« FileDatalLoader: this plug-in implementation is actively
used for testing purposes, when loading previously recorded
data from locally stored CSV and JSON files.

2) ProcessDataService defines an interface for various data
processing and analytics components. It declares the main
method processData(data: String, schema: String) to be
extended by child implementations. For the purposes of the
fatigue detection scenario, the following plug-in implementa-
tions were developed:'*

« FatigueDetectionInference: a collection of fatigue de-
tection inference modules were developed, varying in the
underlying ML algorithms (i.e. regression and classification)
and the input data (e.g. specific data features, the granular-
ity of time-series data, efc.). The plug-in implementations
themselves are coded in Java, whereas for invoking the time-
series data processing and the actual ML models we relied
on the Chaquopy SDK, enabling interplay between Java and
Python and loading of the required Python libraries (e.g.
tensorflow, pandas, numpy).

PythonInference: using the Java-Python bridging capabil-
ities of Chaquopy, we also implemented a general-purpose
ProcessDataService plug-in for running any Python code
out of the box. The ML engineer is only required to upload
the updated ML artefacts (i.e. Python script, trained model,
scalers) without touching the Java part of the plug-in. To
a certain extent, this can be seen as a second-level plug-in
architecture, where Python scripts are dropped on the plug-
in classpath, and then loaded and executed at run-time.

2https://dev.fitbit.com/build/reference/web-api/

13 A mock-up implementation was used because third-party mobile apps are
not allowed to directly access live data from a tracker without transferring it
first to the cloud.

14Please note that we group several similar implementations together for
text clarity and simplicity. In fact, for each ML model there is a separate
ProcessDataService implementation.

While we tested multiple algorithms and data features for
fatigue detection, the best correlation was observed with users’
physiological data related to heart rate, sleep and physical
activity. Accordingly, the ingested data is accompanied by a
corresponding JSON schema (a simplified version is depicted
in Listing 1), which defines it as an array of user objects
containing the static (i.e. age, weight, gender) and dynamic
(i.e. time-series Fitbit measurements: heart rate, sleep, and
physical activity) data. The data processing plug-ins are able to
parse the schema using standard tools to correctly handle and
validate the input data and run the fatigue detection inference.

Listing 1. A simplified JSON data schema for fatigue detection inference.

"type": "array",
"items": {
"type": "object",
"properties":
"userid": { "type":"int" },
"age": { "type": "int", minimum: 0 },
"weight": { "type":"number", "minimum":0 },
"gender": { "type":"string" },
"heart-rate": { <...> },
"sleep": { <...> },
"activity": { <...> }
}
"required": ["userid", "age", "weight", "gender", "
heart-rate", "sleep", "activity" |
},
"minItems": 1

}

E. ML Engineer’s Perspective

The target audience of the described approach is a team of
Java developers and ML engineers working together on an Al-
driven mobile app. Accordingly, one of the main challenges
was to actively involve ML engineers in the agile app de-
velopment process, allowing them to iterate on their Python
components independently from the Java developers (this
is outlined as non-functional requirements in Section II-B).
The described plug-in architecture enables this by developing
LoadDataService and ProcessDataService implementa-
tions and placing them on the project classpath along with a
declaration file pointing to a specific parent Service class. The
SPI mechanism will then make the provided implementations
available to the core system. This comes particularly handy
in an application system with continuously evolving business
requirements. For example, in the context of the described
fatigue detection scenario, an update to the data ingestion and
analytics components can be caused by the newly-introduced
support for a chest heart rate monitor. There will be an
emerging requirement for new biomarker data and inference
models, which can be added using the proposed approach.
In this context, creating a shared JSON schema defining the
structure and the format of the ingested data becomes an
important task. Depending on the application requirements,
the schema can be quite expressive and complex, supporting
various validation constraints. This becomes even more critical
when several ML engineers work on various data ingestion and
processing plug-ins, where there is a pressing need for unified
data representation across all involved modules.

TABLE I
BENEFITS AND SHORTCOMINGS

Benefits

Shortcomings

o Modularity: because plug-ins
are separate modules with well-
defined interfaces, it is easier to
quickly detect, isolate and fix
emerging issues.

o Extensibility: the application
can be dynamically extended to in-
clude new data ingestion and pro-
cessing features, even at run-time,
thanks to the dynamic discovery
and loading of plug-ins.

o Customisation: creating custom
versions of an application without
modifying the core system is very
important for ML-driven applica-
tions, which rely on iterative fine-
tuning and optimisation of data
sources and ML models.

o Separation of concerns and
parallel development: various app
features can be coded in parallel
as separate components, which al-
low ML engineers to be fully in-
volved in the agile development
cycle. Furthermore, by communi-
cating the format of ingested data,
several ML engineers can inde-
pendently work on their respective
modules in parallel.

o The core is the bottleneck and
the single point of failure: chang-
ing the core system might break or
alter the behaviour of the depen-
dent plug-ins. It requires thorough
design with support for backward-
compatibility in mind.

o Limited integration testing:
even if a plug-in is tested alone
or against the core system, some
issues may emerge only in com-
bination with some other plug-ins.
This slows down the testing pro-
cess, especially if multiple inde-
pendent parties develop their own
plug-ins in parallel.

o Reduced performance: it is re-
quired to carefully design the plug-
in loading logic, so that only rele-
vant and non-conflicting function-
ality is used at a time. On the other
hand, if properly implemented, this
can make the system more light-
weight and increase the perfor-
mance. It becomes especially im-
portant given that loading and exe-
cuting non-native code in Android
is usually associated with consider-
able performance downgrades [11].

V. DI1SCUSSION AND CONCLUSION

implementations, it is important to ensure that only correct
plug-ins are loaded at a time. We are addressing this challenge
by designing a classification taxonomy shared between the
core system and plug-ins. Using a combination of taxonomy
tags, it will be possible to uniquely annotate plug-ins and
resolve their suitability at run-time in a context-aware manner.
More complex constraint solving techniques [15], [16] will
also be explored.

ACKNOWLEDGEMENT

The research leading to these results has been supported by
a grant from Iceland, Liechtenstein and Norway through the
EEA Grants Greece 2014-2021, in the frame of the “Business
Innovation Greece” programme. This work was also partly
supported by the Research Council of Norway through the
BIA-IPN programme, project no. 309700.

REFERENCES

[1] M. A. Waller and S. E. Fawcett, “Data science, predictive analytics,
and big data: a revolution that will transform supply chain design and
management,” Journal of Business Logistics, vol. 34, no. 2, pp. 77-84,
2013.

[2] R. Dautov and S. Distefano, “Distributed data fusion for the Internet of
Things,” in International Conference on Parallel Computing Technolo-
gies, pp. 427-432, Springer, 2017.

[3] R. Dautov and S. Distefano, “Three-level hierarchical data fusion
through the IoT, edge, and cloud computing,” in Proceedings of the st
International Conference on Internet of Things and Machine Learning,
pp. 1-5, 2017.

[4] R. Dautov, S. Distefano, and R. Buyya, “Hierarchical data fusion for
smart healthcare,” Journal of Big Data, vol. 6, no. 1, pp. 1-23, 2019.

[5] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional, 2015.

[6] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-

The described research effort is part of an R&D project
dealing with remote patient monitoring and diagnosing, using
data collected from wearable fitness trackers. While it has its
own benefits and shortcomings, as summarised in Table I, the
main addressed challenge was to allow data scientists respon-
sible for ML modules to work on their part independently from
the core Android app. As the work matured, it became clear
that the addressed challenges are common across a wider range
of application scenarios, where time-series sensor data needs
to be locally processed on a mobile gateway in the presence
of frequently changing business logic.

As far as future work is concerned, an immediate next step
for us is to integrate our proposed solution with the existing
MLOps tools in order to cover the whole automated lifecycle,
i.e. from data collection, pre-processing and model training
to deployment and operation, repeated in an iterative manner.
This will also underpin the empirical evaluation, since one of
the main advantages of the presented approach is the practical
usability by ML engineers in the context of agile mobile
development. This is something that can only be validated in
real-life settings within a diverse team of mobile developers
and ML engineers.

The SPI mechanism already natively supports dynamic
plug-in discovery and loading. What is still missing is the
targeted selection of a specific plug-in among several available
alternatives. In the presence of multiple, often conflicting

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, 2015.

S. Mikinen, H. Skogstrom, E. Laaksonen, and T. Mikkonen, “Who
Needs MLOps: What Data Scientists Seek to Accomplish and How Can
MLOps Help?,” in 2021 IEEE/ACM 1st Workshop on Al Engineering-
Software Engineering for Al (WAIN), pp. 109-112, IEEE, 2021.

Y.-L. Lee, P.-K. Tsung, and M. Wu, “Techology trend of edge Al in
2018 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), pp. 1-2, IEEE, 2018.

Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 4, pp. 2167-2191, 2020.

M. Lootus, K. Thakore, S. Leroux, G. Trooskens, A. Sharma, and H. Ly,
“A VM/containerized approach for scaling tinyML applications,” arXiv
preprint arXiv:2202.05057, 2022.

L. Prechelt, “An empirical comparison of seven programming lan-
guages,” Computer, vol. 33, no. 10, pp. 23-29, 2000.

M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl,
M. Luo, and T. Newling, Patterns: service-oriented architecture and
web services. IBM Corporation, International Technical Support Orga-
nization, New York, 2004.

G. T. Heineman and W. T. Councill, “Component-based software engi-
neering,” Putting the pieces together, addison-westley, vol. 5, 2001.

E. Breck, N. Polyzotis, S. Roy, S. Whang, and M. Zinkevich, “Data
Validation for Machine Learning,” in MLSys, 2019.

H. Song, R. Dautov, N. Ferry, A. Solberg, and F. Fleurey, “Model-based
fleet deployment of edge computing applications,” in Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pp. 132—142, 2020.

R. Dautov, H. Song, and N. Ferry, “A light-weight approach to soft-
ware assignment at the edge,” in 2020 IEEE/ACM 13th International
Conference on Utility and Cloud Computing, pp. 380-385, IEEE, 2020.

