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Abstract—This paper deals with a network of interconnected
micro grids. The transient dynamics is modelled as an averaging
process involving dynamic agents in a network. An analysis of
the convergence of the consensus dynamics is provided using a
network model based approach and by exploiting the properties
of the corresponding graph-Laplacian matrix. Furthermore an
investigation of the transient dynamics is carried out for different
damping and inertial parameters and under different time-
varying topologies. Finally a simulation is performed based on
a model calibrated on an existing network in the UK under
parameter uncertainties.

I. INTRODUCTION

This paper provides an analysis of the transient dynamics

of a network of micro grids. A micro grid is modelled using

the swing dynamics and involving both damping and inertial

parameters. The interaction between micro grids is modelled

using the coupled oscillator paradigm and the resulting dynam-

ics is captured by a Laplacian matrix. The transient analysis

is extended to time-varying topologies to gain insight on the

role of connectivity.

A. Main Contributions

As first result, similarities between the transient stability

and consensus dynamics are emphasized under the assumption

of homogeneity between micro grids. This result also shows

how different damping coefficients affect the frequency and

the power flow consensus values. Stability analysis for the

heterogeneous case is performed by estimating the system’s

eigenvalues and through the analysis based on the Gershgorin

theorem and the Nyquist stability theorem. Simulations are

carried out using different topologies to gain insight on how

the connectivity of the network affects the time constant of the

transient response of the system. The analysis is then extended

to the case where the parameters of each micro grid are uncer-

tain and subject to change over time, thus providing a better

understanding of the resilience of the network. The present

work involves also the adaptation of a network topology to

real instances and the calibration of the nodes’ parameters

using data of the power capabilities of each micro grid.

B. Reviewed Literature

The role of the Laplacian in the swing dynamics and the

analogy with the Kuramoto coupled oscillator model is studied

in [1]. The model based on the swing dynamics and the link

with the Laplacian for small phase angles is discussed in [2].

Modelling design of a network of interconnected oscillators

and the influence of disturbances is studied in [3]. Transient

analysis on coupled oscillators and the relation between damp-

ing and inertial coefficients is investigated in [4]. The role of

the damping parameters in a network of electrical generators

is discussed in [5]. The examples of existing UK electrical

network topologies and parameters in this paper are obtained

from [6]. Parameter approximation for electrical networks and

their use in the swing equations is studied in [7] and references

therein.

This paper is organized as follows. In section II we state

the problem and introduce the model. In Section III we

present the main results. In Section IV we provide simulations.

Finally in Section V we provide conclusions and discuss future

directions.

II. PROBLEM STATEMENT AND MODEL

The model of a single micro grid i in a network involves

the dynamics of the power flow in the micro grid, denoted by

Pi which is given by,

Ṗi = Ti j( f j − fi), (1)

where fi is the frequency of grid i, f j is the frequency of grid

j and Ti j is the synchronizing coefficient which is obtained

as the inverse of the line impedance between grids i and j. If

micro grid i is connected to multiple other micro grids, then

the variable f j can also represent the average frequency over

the neighbour micro grids of micro grid i.

From the above equation it can be seen that the power

flow depends on the frequency error f j − fi. A physical

interpretation of this is that if the error is positive, namely

fi < f j then the power flows from grid j to grid i; on the

contrary if the error is negative, namely fi > f j then the

power flows from grid i to grid j. The model of micro grid i
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Fig. 1. System block representation of micro grid i.

also involves the dynamics for the frequency fi which is in

accordance with the following swing equation:

ḟi =−Di

Mi

fi +
1

Mi

Pi, (2)

where Di denotes the damping coefficient of micro grid i and

Mi is its inertial coefficient. Figure 1 shows the system block

representation of the dynamic system (1)-(2).

The state space representation of the system can be obtained

by introducing the state variables Pi = x
(i)
1 , fi = x

(i)
2 and taking

f j = x
( j)
2 as an external input. Model (1)-(2) can then be

rewritten in compact form as:

[
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A system of interconnected micro grids can be represented

using a graph G. Each node represents a micro grid and each

edge represents the power line that connects two micro grids;

the connectivity of each node is the degree of the node and

is denoted by di. In the unweighted and undirected case di is

equal to the number of edges that are incident to node i.

Using the model in (3) and extending it to the case of a

system of n micro grids we obtain the following state space

representation
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The block matrix that contains the synchronization param-

eters Ti j can be linked to the graph-Laplacian matrix, which

we define as

L :=







T11 · · · −T1n

. . .

−Tn1 · · · Tnn






, (5)

where its diagonal entries correspond to the sum of the weights

of the outgoing edges, while the off-diagonal entries are the

weights of the adjacency matrix A of the network. Let us recall

that the Laplacian of a graph is defined as

L = Dout −A, (6)

where Dout is a diagonal matrix whose elements are the out-

degree of the nodes.

The Laplacian matrix is then used to represent the system

dynamics in matrix form corresponding to (4) as follows

[

Ẋ1

Ẋ2

]

=

[
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)

][

X1

X2

]

, (7)

where Diag(Di
Mi
) denotes the diagonal matrix with main diago-

nal entries equal to the damping to inertia ratio and Diag( 1
Mi
)

is the diagonal matrix with main diagonal entries equal to the

inverse of the inertial constant Mi of each micro grid i. The

state variables X1 and X2 are the vectors of power flows Pi and

frequencies fi of each micro grid i for i = 1, . . . ,n.

For an unweighted, undirected network of heterogeneous

grids with inertial coefficients Mi and damping coefficients Di,

to find the eigenvalues of system (7), the roots of det(λ I−A)
must be obtained, where A is the matrix in (7). Rewriting

A as a block matrix composed by four square matrices, and

recalling that the determinant of a block matrix is obtained as:

det(

[

A B

C D

]

) = det(D)det(A−BD−1C), if D is invertible,

then we obtain
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(8)

Denoting Ψ := Diag(Di
Mi
) and Φ := Diag( 1

Mi
) the system

matrix A and (8) can be rewritten as:

A =

[

0 −L

Φ −Ψ

]

, (9)

det(λ I −A) = det(λ 2I +λΨ+ΦL). (10)

From Nyquist stability theory, all eigenvalues λi must be

located in the left half plane of the complex plane for the

system to be stable. The following results illustrate how an

estimation of the eigenvalues of system A can be obtained.

III. MAIN RESULTS

In this section we present the main results of the paper.

First assuming heterogeneity in the damping coefficient, an

estimation of the eigenvalues of system (7) is provided using

the Gershgorin circle theorem. Furthermore it is discussed

how the algebraic connectivity affects the system’s response.

Secondly, the eigenvalues are obtained for the case when the

damping to inertia ratio is unitary and the inertia is either

equal to the damping or equal to one. Thirdly, a procedure to

identify regions containing the eigenvalues of the system is

shown.



A. Influence of Damping

Let us start by noting that A contains an eigenvalue in

zero with multiplicity m which is obtained from the first m

rows. Assuming Di > 0 and Mi = M for all i and utilising

the Gershgorin circle theorem, we can obtain a disc ∆i which

encloses the position of the eigenvalue λi in the complex plane.

In this specific case, the disc ∆i is defined as

∆i(−
Di

M
,

1

M
) = {ξ : ξ ∈ C | | ξ +

Di

M
| ≤ R} , (11)

where

R = ∑
i6= j

|Qi j|=
1

M
. (12)

Every disc ∆i has a radius equal to R = 1
M

and is centered

in −Di
M

on the real axis in the complex plane. Let us recall that

the spectrum of A is the set of eigenvalues {λ1,λ2, . . . ,λm }.

Theorem 1: For the spectrum of matrix A we have

spec(A) ∈
⋃

i=1,...,m

∆i(−
Di

Mi

,
1

Mi

). (13)

For the sake of simplicity, let us assume that the nodes are

ordered decreasingly in the damping to inertia ratio, namely

−Dm

Mm

<−Dm−1

Mm−1
. . . <−D2

M2
<−D1

M1
. (14)

In other words the ratio −D1
M1

contains the smallest damping

coefficient.

Corollary 1.1: The system (7) is stable if

1−D1

M1
< 0. (15)

The above corollary establishes stability under the condition

that all discs are in the left half complex plane. This is

guaranteed once we obtain that the disc closest to the origin

is in the left half plane. The value
1−D1

M1
is the distance of that

disc from the origin in the left half plane. Let us define

λ 1 :=
1−D1

M1
, (16)

then the following corollary holds.

Corollary 1.2: The value λ 1 upper bounds the real part of

the second smallest eigenvalue:

ℜ(λ1)≤ λ 1. (17)

Since λ i is the second smallest eigenvalue, its rate of decay

is dominant for the system’s response. In other words, the

system’s response is exponentially bounded by λ 1 namely the

system converges to an equilibrium xeq as described by (18),

|x(t)− xeq| ≤ ϒmeλ 1t
, (18)

where ϒm is an opportune 1×m vector.

B. Influence of Inertia

In this section two cases are analysed. For the first one it

is assumed that Di
Mi

= 1, and Mi = 1 for all i so that Φ = Ψ =
I ∈ R

m. Then (10) can be rewritten as:

det(λ I −A) = det((λ 2I +λ )I +L)

= ∏
i

((λ 2I +λ )I +ηi), for i = 1, . . . ,m. (19)

In the above equation ηi denotes the ith eigenvalue of −L.

Taking the determinant in (19) equal to zero, the eigenvalues

of A, which we denote by λi are then obtained as

λi,i+1 =
−1±√

1+4ηi

2
, for i = 1, . . . ,m. (20)

From (20) and from the fact that by definition all ηi ≤ 0,

it can be deduced that ℜ(λi) is negative for all eigenvalues,

hence the network system is stable.

For the second case, it is assumed that Di
Mi

= 1 for all i, so

that Ψ = I ∈ R
m, (10) can now be rewritten as:
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of A, are then given by
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Since matrix Φ is diagonal, ΦL is obtained from the
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The scaling of the Laplacian shifts the Gershgorin discs of

the eigenvalues closer to the origin in the complex plane.

C. Clusterization

Condition (14) yields the inequality

1−Di

Mi

<
1−Di+1

Mi+1
, for any i ∈ {1, . . . ,m}, (24)

where the left hand side describes the minimum distance

of a point in ∆i from the origin, and the right hand side

is the maximum distance of any point in ∆i+1 from the

origin. Let us now explore the case where two or more discs

overlap (partially or completely). The union of the area of the

overlapped discs can be referred to as a cluster. For instance,

a cluster containing the first i discs is disjoint from the cluster

containing the last n−1 discs if

i
⋃

j=1

∆ j(−D j,1)∩
n
⋃

j=i

∆ j(−D j,1) = /0. (25)



The above condition means that the union of the first i

discs {∆1, . . . ,∆i} is disjoint from the union of last n− i discs

{∆i+1, . . . ,∆n}. The number of clusters is obtained using the

indicator function I, as follows

∑
i

I(
i
⋃

j=1

∆ j ∩
m
⋃

j=i

∆ j = /0). (26)

It is worth mentioning that when we have a sufficiently

small Mi, (2) can be approximated as Di fi = Pi from which

we obtain

Di ḟi = Ti j( f j − fi). (27)

System (7) reduces then to

diag(Di) ḟ =−L f , (28)

which implies

ḟ =−diag(
1

Di

)L f . (29)

The above has the form of a consensus system characterized

by a scaled Laplacian similar to the one in (23). Its Gershgorin

discs can be obtained in a similar fashion as discussed in

Section III-B.

IV. SIMULATIONS

In this section, real instances of power network topologies

are simulated. The first one covers the case when the network

is considered homogeneous, unweighted and undirected. The

second example enables the analysis of the systems dynamics

with a different network configuration and the influence of

the connectivity on the response. Finally the third set of

simulations were formulated to accommodate parameter uncer-

tainties, in which case the network is heterogeneous, weighted

and directed.

A. Graph Modelling from Existing Network

To support the theoretical analysis, simulations were done

using real data of the London City Road electrical power

network reported in [6]. Figure 2 illustrates the simplified one-

line diagram that contains the geographical location and names

of the generators and their respective load buses.

From the one-line diagram, a network topology graph was

obtained as displayed in Fig. 3 the graph was modelled as

unweighted and undirected as the influence between any two

nodes is bidirectional. The graph is composed by 10 nodes

and 13 edges.

The aim of the first set of simulations is to analyse the tran-

sient dynamics and investigate convergence of the frequency

and power of each micro grid to a desired reference. When

this occurs, we say that the network achieves synchronization.

In the present simulations, all micro grids are assimilated

to homogeneous oscillators. The respective parameters were

selected as follows: number of nodes n = 10, inertial constant

Ii = 1, synchronizing coefficient Ti j = 1, number of iterations

N = 6000, step size dt = 0.01 seconds. Different damping

constants Di = 1,5,10 are used for different runs. Also the

initial states of the frequency and power are obtained as

City Rd. CCity Rd. B

Beech St.Mansell St.Hoxton

Seacoal Ln.

Devonshire Sq.City Road

Canal St.

Finsbury

Fig. 2. One-line diagram of part of the London City Road Network [6].

Hoxton

Finsbury

Canal St.

Seacoal Ln.
Beech St.

City Rd

Mansell St.

Devonshire Sq.

City Rd. C

City Rd. B

Fig. 3. Graph topology analogous to the electrical network.

random values in the interval [0,1]. Frequency and power

variables are also reset every 20 seconds as a way to simulate

periodic disturbances. The resulting plots have been scaled

around 50 Hz and 30 MWh for the frequency and power flow

respectively to approximate realistic values.

Figure 4 shows the frequency response of each micro grid.

It can be seen that the response remains in the range between

[49.5,50.5] Hz and thus it does not exceed in magnitude the

desired frequency by more than 1 Hz.

Figure 5 displays the power flow of each micro grid across

time, in the same manner as the frequency, the values remain

in the range of [29.5,30.5] MWh.

In both plots the different values of the damping constant

are used from top to bottom. Observe that for larger values

the oscillations are reduced but the settling time increases.

B. Changing the Topology

The objective of these simulations is to show that the

previous results are scalable, and also to analyse the relation

between the connectivity of the network and the time constant

of the system. A different section of the London City Road

network was selected. The derived undirected unweighted

graph from its one-line diagram found in [6] is shown below.

It is worth mentioning that on average this topology has 2.75



Fig. 4. State of the micro grid frequency over time.

Fig. 5. State of the power flow in each micro grid over time.

connections per node, in contrast to the 2.5 of the previous

example.

Bankside B3

New Cross
Canal St.

Charing Cross

Bankside C

Newington House

Bankside F

Bankside D

Fig. 6. Derived graph for a different section of the Network

The network is considered unweighted and undirected. The

rest of the parameters are left unchanged. The plot of the

simulated frequency response can be seen in Figure 7.

Fig. 7. Frequency response in a different topology.

Comparing these results against the response from the first

set of simulations in Figure 4, it can be seen that under the

second topology the system converges about 2 seconds faster.

This is more evident in the plots where Di = 5. It is also

implied that a larger connectivity yields a smaller time constant

in the overall system. Furthermore, given that the nodes are

more connected, all the nodes’ frequencies converge to the

same value. This is in contrast with the first example where

at least one node does not converge to the consensus value

reached by the other nodes.

C. Parameter Varying and Heterogeneity

To accommodate heterogeneity, we now focus on the system

displayed in Fig. 3 where all nodes are characterized by

different parameters and the influence from node i to j differs

to the one from j to i. The following simulations display

the transient response when the synchronizing coefficient Ti j,

the damping coefficient Di and the inertial coefficient Mi are

different.

First, based on the information from UK Power Networks

in [6] and the network’s one-line diagram available there, a

weighted and directed graph has been derived as shown in

Fig. 8. This yields a Laplacian matrix, whose off-diagonal

entries correspond to the synchronizing coefficient Ti j of each

micro grid. The synchronizing coefficients have been selected

depending on the power in MVA that flows in and out of each

grid as described in the one-line diagram, i.e. if grid i outputs

60 MVA to grid j, during the simulation its Ti j will vary within

the range [59,61]. This range has been introduced with the aim

of taking into account uncertainties in the system.

The inertial coefficient Mi depends on the capacity Gi in

MVA of each micro grid (see Table I). The constant Hi is to

be assigned randomly from a range of values in [6,9], which

are obtained in accordance to data obtained for Westinghouse

from [7]. To calculate Mi, (30) is used, where fi is the nominal

frequency of the grid, which in this case it is chosen to be 50
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Fig. 8. Weighted directed graph of the London City Road network according
to [6].

Hz:

Mi =
GiHi

π fi

. (30)

TABLE I
LONDON CITY ROAD GRID POWER CAPABILITIES

Designated Number Name Capability Gi [MVA]

1 City Road 1440
2 Devonshire Square 180
3 Beech Street 180
4 Mansell Street 190
5 Hoxton 60
6 Finsbury Market 198
7 Canal Street 132
8 City Road C 202
9 Seacoal Lane 76

10 City Road B 120

Finally, for the damping constant Di a random value in

the interval [4.5Mi,5.5Mi] is assigned to each grid for the

simulation. To enable further analysis of the system’s dy-

namics, the parameters mentioned above change their value

randomly within their assigned range every 5 seconds during

the simulations. Also the states are reset every 20 seconds like

in previous simulations.

The plots below show the results of the simulation. Figures 9

and 10 show that the system still converges, but as expected,

for some nodes the difference in magnitude of their responses

is larger than in previous examples since an approximation to

the real values was used. The power flow response does not

fluctuate in magnitude and is always contained within 1 MWh

from the reference value. In the frequency response there is

a peak, which is motivated by a large connectivity of the

node of City Road representing a source for all its neighbours.

Hence this micro grid has to increase its frequency to provide

sufficient power to all other nodes in order to steer all their

responses from the initial state to the reference. Let us finally

mention that in this set of simulations, the final value for every

node is different. This is due to the heterogeneous nature of

the oscillators which cannot reach frequency synchronization

as long as the values are apart from each other within an

acceptable range.

Fig. 9. Frequency response for the directed, weighted and approximated
configuration.

Fig. 10. Power flow response for the directed, weighted and approximated
configuration.

V. CONCLUSION

We have studied the transient stability, discussed the scal-

ability of the model approach and provided an insight of the

resilience of a network of interconnected micro grids. The

findings have shed light on the capability of the micro grids to

remain synchronised despite the heterogeneous and uncertain

nature of the parameters characterizing the micro grids. Further

direction of this work involves the analysis of the impact

of stochastic disturbances due to renewable generation and

demand response under on-line dynamic pricing.
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