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Abstract—In this paper, we leverage the properties of non-
Euclidean Geometry to define the Geodesic distance (GD) on the
space of statistical manifolds. The Geodesic distance is a real
and intuitive similarity measure that is a good alternative to the
purely statistical and extensively used Kullback-Leibler diver-
gence (KLD). Despite the effectiveness of the GD, a closed-form
does not exist for many manifolds, since the geodesic equations
are hard to solve. This explains that the major studies have been
content to use numerical approximations. Nevertheless, most of
those do not take account of the manifold properties, which leads
to a loss of information and thus to low performances. We propose
an approximation of the Geodesic distance through a graph-based
method. This latter permits to well represent the structure of the
statistical manifold, and respects its geometrical properties. Our
main aim is to compare the graph-based approximation to the
state of the art approximations. Thus, the proposed approach
is evaluated for two statistical manifolds, namely the Weibull
manifold and the Gamma manifold, considering the Content-
Based Texture Retrieval application on different databases.

Index Terms—Geodesic distance, Statistical manifold, Texture
retrieval, Graph theory, Wavelet decomposition

I. INTRODUCTION

Statistical manifolds are geometric representations of
smooth families of probability density functions. A class of
probability density functions (Pdf) is characterized by a vector
θ that forms a coordinate system of continuous parameters and
has geometrical properties as a result of local compositions
of the distributions. So naturally, a manifold (S) that governs
these pdfs is a collection of points (representations of the pdfs)
with a coordinate system. This latter makes the one-to-one
mapping from S to Rn [1] [2].
Information geometry is a branch of differential geometry
that gives a geometrical perspective to the probabilistic theory
and statistics. The research on the geometrical properties of

probability distributions started with the work of Fisher [3]
and then was developed in the literature ( [1], [4] and [2]).
After that, information geometry has been utilized to study
the geometry of the statistical models as in [5] where the
geometry of the univariate normal model was used in image
classification. In [6], the Generalized Gaussian distribution
geometry was studied. Also, The study of G1

0 distributions
geometry was applied to region discrimination in [7]. The
information geometry was also used to learn finite mixture
models, such as the mixture of Gaussians [8] and the mixture
of multivariate Gaussians [9].
Among all (curvature, affine connection ,...), the similarity
measurement (SM) between probability distributions remains
the most prominent example of the advantage of the geometri-
cal understanding. It permits to derive a real distance, namely
the geodesic distance (GD) on top of the statistical manifold.
The GD is a natural distance that governs the statistical mani-
folds and is represented by the shortest path that exists between
two points on the manifold. In this context, there have been
numerous studies to investigate the GD among other metrics
such as in [10], [11] where Geert et al. proposed the Geodesic
Distance as a similarity measurement between the zero-mean
Multivariate Generalized Gaussian distributions (MGGD) in
the context of texture retrieval. In [12], the Cauchy-Schwarz
divergence was used to estimate the similarity between the
Mixtures of Generalized Gaussian distributions in the texture
retrieval context.
It is to note that the Kullback-Leibler divergence (KLD) is
the most popular in the context of texture and image retrieval.
KLD was used in numerous papers like in [13] where it was
combined with the Gamma distribution. In [14], the KLD
was used in combination with the Weibull distribution in the
same context of texture retrieval. However, the KLD is not978-1-7281-9015-0/20/$31.00 © 2020 IEEE
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considered a real distance on the probability space, because
it does not satisfy the triangular inequality and it is not
symmetric.
In this work, we use the GD as a similarity measurement insted
of the KLD, in order to integrate a geometric thinking in the
context of image retrieval and more generally in the context
of Multimedia Information retrieval.
We will compute the GD on the Gamma and the Weibull
manifolds. Both manifolds have been extensively studied, such
as in [15] , [2], [16] for the Gamma manifold, and [17], [18]
for the Weibull manifold.
Due to the cumbersomeness of the geodesic equations, there is
no closed-form but approximations of the GD in both cases.
We propose a new approximation , namely the graph-based
approximation to compute the GD, in order to provides more
precision to the retrieval process. Until the finish date of this
work, no endeavor to do so was made. Experiments on two
well-known texture datasets show that the GD through the
graph-based approximation achieves an obvious higher perfor-
mance compared with the classic Kullback-Leibler divergence.
The structure of this paper is as follows: In the next section, we
provide the geometrical properties of the Gamma & Weibull
manifolds. In section 3, we provide the graph-based approach
that we used to approximate the geodesic distance. In section
4, we present the experimental results of the texture retrieval
using the GD and the KLD, before concluding in section 5.

II. THE GEOMETRY OF STATISTICAL MANIFOLDS

A. The Gamma manifold

The Gamma manifold is defined by the parametric fam-
ily of the probability density function using the scale-shape
parametrization:

f(x;α, β) =
xβ−1

αβγ(β)
e−( xα ). (1)

where γ(.) is the standard Gamma function.
The Gamma parameters (α and β) can be estimated by
the maximum likelihood estimation (MLE), by solving this
equation:

θ̂ = arg max
θ

log

n∏
i=1

f(xi;α, β). (2)

Which leads to the following system of equations:

α̂ =
1

nβ̂

n∑
i=1

xi, (3)

log(β̂)− γ′(β̂)

γ(β̂)
= log(

1

n

n∑
i=1

xi)−
1

n

n∑
i=1

log(xi). (4)

The mean and the variance of the Gamma distribution, are
respectively given by:

E(X) = αβ, (5)

V ar(X) = βα2. (6)

In information geometry [1], a statistical model {pθ; θ ∈ Θ} ,
where Θ ⊂ Rr, can be provided with a Riemannian geometry,
that is determined by the Fisher information matrix [19]:

gij(θ) = E

{
∂ ln p(X|θ)

∂θi
∂ ln p(X|θ)

∂θj
| θ
}
. (7)

with (i, j = 1, 2, ..., r). This is calculated in the case of the
Gamma manifold by the following matrix [16]:

gij(θ) =

 β
α2 0

0
∂2 ln(Γ)

∂β
− 1

β

 .

For each α ∈ R, the α-connection is the torsion-free affine
with the components:

Γ
(α)
ij,k =

1− α
2

∂i∂j∂kϕ(θ). (8)

Where ϕ(θ) = log(Γ(β)) − β log(α) is the corresponding
potential function.

So in the case of Gamma manifold it becomes:

Γ
(α)
11,1 = − (1− α)β

α3
,

Γ
(α)
12,1 = Γ

(α)
12,2 =

(1− α)

2α2
,

Γ
(α)
22,2 =

(1− α)ψ
′′
(β)

2
.

(9)

B. The Weibull manifold

The Weibull manifold is also defined by the parametric
family of the probability density function using the scale-shape
parametrization:

f(x;λ, µ) =
µ

λ
(
x

λ
)µ−1e−( xλ )

µ

. (10)

where γ(.) is the standard Gamma function.
Using the MLE algorithm, parameters λ and µ are estimated
by solving the following system of equations:

λ̂µ =
1

n

n∑
i=1

xi
µ, (11)

µ̂−1 =

∑n
i=1 xi

µ ln(xi)∑n
i=1 xi

µ
− 1

n

n∑
i=1

ln(xi). (12)

The mean and the variance of the Weibull distribution, are
respectively given by:

E(X) = λγ(1 +
1

µ
), (13)

V ar(X) = λ2

[
Γ

(
1 +

2

µ

)
−

(
Γ

(
1 +

1

µ

)2
)]

. (14)

The Fisher information matrix in this case is defined by:



gij(θ) =


µ2

λ2

ξ − 1

λ
ξ − 1

λ

ξ2 − 2ξ + π2

6 + 1

µ2

 .

Where ξ is the Euler constant.
The α-connection exists, but it has long analytical expression,
so we just mention that the Weibull manifold has a constant
Christoffel symbols [17]:

Γ1
11 =

6(ξµ− µ− π2

6 )

π2λ
,Γ2

11 = − µ3

π2λ2
,

Γ1
21 = Γ1

12 =
6(ξ2 − 2ξ + π2

6 + 1)

π2µ
,

Γ2
21 = Γ2

12 =
6µ(1− ξ)
π2λ

,

Γ1
22 = −

6λ(1− ξ)(ξ2 − 2ξ + π2

6 + 1)

π2µ3
,

Γ2
22 = −

6(ξ2 − 2ξ + π2

6 + 1)

π2µ
.

(15)

III. APPROXIMATION OF THE GEODESIC DISTANCE USING
THE GRAPH-BASED APPROACH

A. The geodesic distance
In [20], Rao proposed the Rao-Geodesic distance for com-

puting similarity between distributions of a parametric family,
all of whose members satisfy certain conditions [21]. The
metric is based on a Riemannian geometry, and is described in
terms of the information matrix elements the family. In fact,
by considering that gij(θ) is strictly positive, for each θ ∈ Θ,
a Riemannian metric on Θ is defined by:

ds2(θ) =

r∑
i,j=1

gij(θ)dθ
idθj . (16)

Once this metric is introduced, given two probability measures
Pθ1 and Pθ2 which belong to the statistical manifold, the
geodesic distance between Pθ1 and Pθ2 is defined as the
Riemannian distance between δ(θ1, θ2) ∈ Θ, and is given by:

δ(θ1, θ2) =

∣∣∣∣∣
∫ t2

t1

 r∑
i,j=1

gij(θ)
dθi

dt

dθj

dt

 1
2

dt

∣∣∣∣∣ (17)

Particularly, among the curves between θ1 and θ1, we are
interested by the one that represents the minimum distance
between these two points. It is called the Geodesic, and it is
given as a solution to differential equations, called the geodesic
equations :

θ̈k(t) +
∑
i,j

Γkij [θ(t)]θ̇
i(t)θ̇j(t) = 0. (18)

where the Γkµυ are the Christoffel symbols of the second kind,
defined by:

Γkµυ =
1

2

∑
ρ

gkρ(
∂gυρ
∂θµ

+
∂gµρ
∂θυ

− ∂gµυ
∂θρ

). (19)

and gµυ denotes the components of the inverse metric.

B. The graph-based approach

In this work, the statistical manifolds are viewed as
weighted graphe. It results that the geodesic distance between
two points on the manifold is approximated by the shortest
path that exists between these two points on the graph. We
will use the Floyd-Warshall algorithm [22]. The goal of
this algorithm is to look for the shortest paths between all
pairs of vertices in a weighted graph, where weights can
be positive or negative. The complexity of this algorithm
when computing the shortest paths between any 2 vertices
is O(N3), and N is the number of vertices. In the context of
image retrieval, an additional step is joined to the SM step,
where the Floyd–Warshall algorithm is applied to the matrix
of distances (D) to compute the shortest paths between all
vertices (images). The input matrix (D) represents the distance
between the images existing in the dataset and is calculated
using the KLD. It results that all paths that connect the vertices
to each other in the weighted graph are initialized by their
KLD measure. Then, the GD is approximated by the shortest
path method.

IV. EXPERIMENTAL RESULTS

To assess the performance of the proposed approach and its
potential, we conduct series of experiments on two popular
databases considering the image retrieval application:

• Dataset1: The first dataset is a collection of 40 classes
from the Vistex database [23]. Each class contains 16
images of 512 x 512 pixels that results in a dataset of
640 images. (Figure. 1).

• Dataset2: The second dataset is the Brodatz [24] database
which contains 111 gray-level texture images (Figure. 2).
Each of those images is divided into 16 of 640 x 640 pixel
sub-images which results in a dataset of 1776 images.

Fig. 1. 30 texture images from the Vistex database.

The texture retrieval framework begins with the Feature
extraction (FE) step or in other terms, the construction of



Fig. 2. 12 texture images from the Brodatz database.

the manifold. It starts by converting all the color images that
exist in the dataset to grayscale images. Then each image is
decomposed into frequency subbands by the DTCWT wavelet
decomposition [25] using the Q-Shift (14,14) filters when
the decomposition levels are greater or equal than two, and
(13,19) near-orthogonal filters for level one. Afterward, we
will rely on the Gamma and Weibull distributions to model
the histogram of subbands coefficients and estimate their
parameters. The estimated parameters for all subbands will
construct the signature (point of the manifold) of a single
image.
The similarity measurement step, where a distance (here
the GD) is calculated between the points of the manifold,
especially between signatures of two images IQ (query image)
and IT (target image) as:

GD(IQ ‖ IT ) =

6k∑
j=1

GD((αQj , β
Q
j , λ

Q
j ,Σ

Q
j )

‖ (αTj , β
T
j , λ

T
j ,Σ

Q
j ))

. (20)

The retrieval accuracy is estimated by presenting every point
of the manifold as a query image, for which we retrieve the
most similar images. The acquired retrieval rates for all images
are averaged to compute the average retrieval rate (ARR) by
this formula:

ARR(K) =
1

NtNR

Nt∑
q=1

nq(K)
∣∣
K≥NR

. (21)

where Nt and NR represent the total number of images in the
dataset and the number of relevant images for each query. For
each query image q, nq(K) is the number of correctly retrieved
images among the K retrieved ones (i.e K best matches).
To measure the competitiveness of the proposed approaches
Gamma+GDFloyd and Weibull+GDFloyd, we compare them
with other literature methods. In this regard, we will investi-
gate the following approaches:

• Weibull+KLD [14]: It represents the histogram of the
wavelet coefficient subbands through the Weibull distri-
bution combined with a closed-form of the KLD,

• Gamma+KLD [13]: It models the wavelet coefficient
subbands using the Gamma distribution with closed-form
of KLD as a similarity measure,

• GGD+KLD [26]: In this method the wavelet coefficient
subbands are modeled using Generalized gaussian distri-
butions and it uses a closed-form expression of the KLD
during the SM step.

• Gamma+GDSKLD [27]: In this method, the wavelet
subbands are represented through the Gamma distribution
and the GD is approximated by the Symmetric KLD,

• Weibull+GDSKLD: Same as Gamma+GDSKLD,
wavelet subbands are modeled through the Weibull
distribution, and the GD is computed approximated by
the Symmetric KLD,

Table I shows the ARRs of the proposed methods in
comparison with the literature methods considering Dataset1
and Dataset2. It is to remark that the proposed approaches lead
to higher performances. It means that taking into consideration
the extra information given by the geometrical properties of
the statistical manifolds improves the retrieval rate. It also
confirms the effectiveness of the graph-based approximation
of the GD. This is mostly a result of the good representation
of the manifold by the graph approach. this latter preserves its
structure and geometrical properties.
The performance of our approach is also explained by the use
of the GD, which is a real distance compared to the KLD
which is not symmetric and does not satisfy the triangular
inequality.
Moreover, it is to note that more levels of DTCWT decompo-
sition improves the performance of the ARR. Be that as it may,
the underlying two decomposition levels represent by far most
of the representation power since the higher improvement is
accomplished from 1-Level to 2-Level. The third decomposi-
tion level gets little improvement when added together with
the underlying two levels. Moving towards another level is not
advantageous since it won’t improve results.
The difference in performances of all methods considering the
two datasets is explained by the number of images (640 vs
1776), and the heterogeneous nature of the images that makes
the retrieval harder in case of Dataset2.
Table II compares the proposed method to another GD ap-
proximation. In the latter case, the GD is approximated by
the square root of the double of the Symmetric KLD (SKLD),
since it is proved for distributions that lie infinitesimally close
on the probabilistic manifold [28]. We note that the graph-
based approach outperforms the SKLD based approximation.
This proofs the already made conclusion on Table I, and sup-
ports that the graph representation conserves the geometrical
properties of the manifold.
Figure. 3 shows the Recall/Precision curves obtained us-
ing all approaches on Dataset1, considering the third level
of decomposition of DTCWT. We note that the proposed



TABLE I
THE AVERAGE RETRIEVAL RATES (%) CONCERNING DATASET1 AND DATASET2 .

1-Level 2-Level 3-Level

Dataset1 Dataset2 Dataset1 Dataset2 Dataset1 Dataset2

Gamma+GDFloyd 75.76 64.92 81.70 73.18 84.62 75.74

Weibull+GDFloyd 76.16 65.11 81.98 73.04 85.16 75.63

Gamma+KLD [13] 71.43 61.74 77.02 69.82 80.77 73.11

Weibull+KLD [14] 71.38 61.93 77.31 69.71 81.01 73.01

GGD+KLD [26] 70.55 62.24 76.17 69.25 79.70 72.35

TABLE II
AVERAGE RETRIEVAL RATE (%) USING DIFFERENT APPROXIMATION

METHODS OF THE GEODESIC DISTANCE FOR THREE DTCWT SCALES, ON
THE DATASET1 AND DATASET2

Dataset1 Dataset2

Gamma+GDFloyd 84.62 75.74

Weibull+GDFloyd 85.16 75.63

Gamma+GDSKLD [27] 80.94 73.12

Weibull+GDSKLD [27] 81.64 72.60

Fig. 3. Recall/Precision curves obtained on Dataset1.

approaches (Gamma+GDFloyd and Weibull+GDFloyd) are
clearly outperforming the other literature methods all along
the curve. As aforesaid, this is due to the extra information
given by the geometrical properties of the statistical manifolds
and exploited through the GD, which improves the retrieval
rate.

Figure. 4 shows the retrieval precision as a function of
the number of retrieved images for Dataset1, considering the

Fig. 4. Retrieval effectiveness with respect to the number of top N matches
considered on theDataset1

third level of decomposition of DTCWT. We notice that when
considering 16 retrieved images, all the methods gives the
same performance as presented in Table I. Nevertheless, the
proposed approach shows better performance from the begin-
ning and stays in parallel with the other literature methods all
along the curve as the number becomes near to 100 retrieved
images. This gives additional proof of the effectiveness of
the proposed approaches and show the importance of using
the geometrical properties of the statistical manifolds and
the accuracy of the graph-based method in exploiting these
properties.

V. CONCLUSION

In this work, we proposed the intrinsic geodesic distance as
an accurate similarity measurement instead of the statistical
Kullback-Leibler divergence. Our main goal was to exploit
the properties of the statistical Gamma and Weibull manifolds
by using the GD through a graph-based method that preserves
most of the geometrical properties. We succeeded to propose
a graph-based method to approximate the GD in the case of



Gamma and Weibull manifolds, that outperforms the previous
GD approximations. The experimental results indicate that
the GD achieves higher performances than the Kullback-
Leibler divergence when using the graph-based approximation.
Moreover, the advantage with the GD remains important as
it fulfills the conditions of a real distance and permits to
make geometric interpretations on the studied manifold. Our
future works will be devoted to the geometric studies of other
manifolds with an application to color texture retrieval.
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