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Abstract

Several mechanisms increase the QoS level of mo-
bile networks thanks to an underlying mobility prediction
method (i.e. a means to predict a mobile’s next access
router). This paper aims at studying how the accuracy of
the prediction method can influence the network QoS in the
particular context of call admission control. It shows that
(a) the mobiles behaviour must be adapted according to the
prediction scheme accuracy in order to achieve good per-
formance and (b) the admission algorithm can be modified
to increase its fairness and to give mobiles an incentive to
do such an adaptation.

1. Introduction

The quick development of wireless networks brings new
challenges to the network community. In particular, it is
commonly admitted that those networks’ next generations
should provide new kinds of multimedia services requiring
a high QoS level.

Unfortunately, wireless networks introduce large delay
jitters, poor bandwidth and high error rates, making decent
QoS levels difficult to achieve; this is particulary true when
mobile nodes (MN) experience frequent handoffs causing
abrupt network conditions’ modifications. This is where
mobility prediction takes place.

Mobility prediction’s purpose is to obtain information re-
lated to the next access router(s) (AR) a mobile node will be
linked to. The underlying idea is that nothing but a proactive
method can allow efficient counter-measures against packet
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losses, packet reordering, authentication delays,...caused
by a handoff.

Defined in such a general way, one can easily understand
that a lot of methods are related to mobility prediction, giv-
ing very varied results in terms of precision and quality.

Admission control and prediction are directly related
since a frequent admission control requirement is to reserve
resources so as to improve the network’s future QoS; the
amount of resources to reserve at a given time thus depends
on the users upcoming behaviour.

This diversity leads to a situation where various (some-
times similar) admission control algorithms are simulated
with very different prediction schemes.

Estimating the added value brought by a more precise
prediction method is not an easy task; to which extent is
it interesting to implement a more reliable (and often more
complex) method? This paper aims at answering this ques-
tion in the particular context of call admission control. We
will see that this analysis leads to an improved admission
method aimed at improving both network performance and
fairness; this admission method can be implemented in a
simple or in a more complicated way, yielding results in ac-
cordance with the added complexity.

The remainder of this article is organized as follows. The
first parts explain what admission control is, how it is re-
lated to mobility prediction and how this prediction can be
modeled. Two admission methods are then defined. Sec-
tions 4, 5 and 6 give the results of simulations involving
those methods and show the effect of prediction accuracy.
Section 7 shows how an admission control scheme can be
modified to give mobiles an incentive to improve their pre-
dictions. The last section concludes this paper.
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Figure 1. This figure depicts a simple abstract model that modelizes the main characteristics of a

mobility prediction scheme.

2. Call Admission Control
and mobility prediction

2.1. Overview

Admission control is tightly linked to mobility predic-
tion, because reservations must be done in advance and at
the right moment. This prediction is usually done statisti-
cally: mobiles’ movement behaviours (e.g. mean cell trav-
elling time, most likely next AR(s)) and call habits are anal-
ysed and averaged, taking care of their possible variations
during the day and throughout the week.

Others use simple ([6]) or more advanced ([4, 11, 12,
13]) techniques to track the individual motion of each mo-
bile, hence getting an accurate idea of when and where each
of them will handoff. A natural way to tackle this issue is to
estimate each mobile’s position (e.g. [8]), but other methods
can be considered (e.g. [5]).

A mobile’s next cell can also be inferred from its typ-
ical travelled cells ; the prediction then amounts to guess

the next cell given the previous ones. This can be achieved
by various methods such as information theory ([2, 9]) or
Markov chains ([7]).

2.2. An abstract model

The following aims at showing how prediction’s perfor-
mance influences CAC’s effectiveness without restricting
ourselves to a specific prediction mechanism. It has been
chosen to model any mechanism with an abstract model de-
fined by a few parameters. It is depicted in figure 1.

With a few values, this simple model summarizes the
main information brought by a prediction algorithm. Those
parameters should have an intuitive meaning and act upon
the behaviour of the method using predicted events. At each
trigger, the prediction mechanism reports an identifier of
the next AR and the estimated delay before the next hand-
off (9 seconds). This last measurement is optional as some
schemes have not been designed to give this information.
The trigger-to-handoff delay is only estimated by the pre-
diction algorithm, so the difference between this estimation



and the real delay can be seen as realizations of a random
distribution; let o be the standard deviation of this distribu-
tion.

As one can see, this abstraction is only a rough sketch
and several real systems’ characteristics have been ignored,
mainly:

e At most one trigger can be emitted before a given
handoff;

e The prediction success ratio is fixed once for all; one
cannot model behaviours such as an increasing predic-
tion success ratio when the trigger is delayed.

e Each trigger only gives the most likely next AR (it
could guess the n next ARs, or several ARs with their
probability of being next);

e The only information given about the trigger-to-
handoff duration are its mean value and standard de-
viation. Nothing more is given about the duration dis-
tribution which hence will most probably be chosen
gaussian.

Let’s now study the effect of those parameters on a con-
crete CAC algorithm.

3. The PCR algorithm

This CAC algorithm has been introduced in [4] by
M.H. Chiu and M. Bassiouni; it is a typical CAC using mo-
biles’ movements guesses extensively. Its aim is to reduce
the handoff blocking probability in a cellular network by
means of reserved channels. It is briefly described below;
the interested reader can refer to [4] for more information.

Several mobiles are moving in a wireless network made
of cells having a fixed number of channels. All the cells are
assumed to have the same number of channels, and a given
mobile can only use one channel at a time. The effect of
soft handoffs, frequency borrowing or space diversity tech-
niques is not studied here. This implies that the proposed
CAC scheme quite well matches 2G GSM but should be re-
evaluated in order to be applied to 3G networks ([10, 3, 1]).

Each mobile position is monitored so as to extrapolate
its next cell, C'. If a mobile has an ongoing call, it reserves
a channel of C; if there is no free channel, the reservation
is pushed on a unbounded FIFO reservation queue (a reser-
vation is popped out every time a channel is freed until the
queue is empty). When a mobile wants to start a new call,
it has to find a free (unreserved) channel in its current cell,;
if there is none, the call is rejected. A mobile can of course
cancel a previous reservation if it finds out that it will be
useless (because of a sudden motion change or because its
current call has ended).

[4] proposes three different ways to deal with handoffs,
called PCR1, PRC2 and PCR3. We won’t study the
intermediate algorithm PCR2 here, but focus on extreme
cases, explained below. When a handoff occurs:

PCR1 If the call has a prior reservation, it is allocated.
Else, if there is a free channel, it is allocated.
Else, the call is dropped.

PCR3 If there is a reserved channel, it is allocated.

Else, if there is a free channel, it is allocated.
Else, the call is dropped.

As one can see, the difference is that channels can be
reserved either for a particular mobile (in that case, every
reservation holds a mobile identifier) or “anonymously”.
This algorithm can be studied using the abstract prediction
scheme introducted before. Note that as this scheme only
allows one prediction per handoff, the only way to notice
a wrong prediction is to wait for the actual handoff (and to
see if it occurs with the predicted cell). The PCR algorithm
and the way it has been mixed with the abstract prediction
scheme have been summarized in figure 2.

4. Simulations

We can now study how PCR behaves according to the pa-
rameters of the prediction scheme. The aim is to find what
characterizes a good predictive algorithm (in the CAC con-
text) and to what extent its performance can modify those
of PCR.

4.1. Simulations parameters

The simulations presented here closely mimic those of
[4]. Their setup is the following.

The terrain is composed of 30 circular cells laid-out as
a bee’s nest. The cells have a 1000m radius and overlap,
thus, introducing a “handoff hysteresis” (see figure 3). The
mobility model has been chosen so as to approximate the
motion of a mobile in a random direction'. Both this direc-
tion and the mobile speed is updated at each time step ac-
cording to a gaussian distribution. This model is precisely
described in [14] (each distribution has a unitary variance in
radian for the direction, in meters per second for the speed,
the mean speed is 18 m/s and the randomness factor a has
been fixed to 0.4; this yields a mean cell traveling time of
110s). Figure 3 shows how a typical path looks like.

Using several cells (instead of doing the experiments
with only one) allows to use reasonable cell traveling time
and channel holding time distributions, without relying on
approximations such as those presented in [15].

I'The mobility model used in [14] is not described precisely enough to
be implemented here; thus, another realistic one has been used.
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Figure 2. The PCR algorithm. This figure depicts the way PCR1 and PCR3 algorithms operate and
how they can interoperate with an abstract mobility prediction scheme.
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Figure 3. The simulation setup. This picture
gives an overview of the cells’ organization.
The dashed line shows a simulated mobile
motion.

Each simulation involves 4000 mobiles and lasts
12 hours.

The calls’ duration is exponentially distributed with a
mean of 3 minutes. New calls arrive according to a Poisson
process whose frequency is adapted so as to reach a target

cell load, defined as

Arrival rate to the cell x Average call duration
Number of channels per cell

Cell load =

Each cell has 18 channels. Each simulation is done with
a given cell load. Both PCR1 and PCR3 have been tested.

As stated before, the handoff prediction model is ab-
stracted using 3 parameters: J (the trigger-to-handoff dura-
tion), o (§’s standard deviation) and 7 (the prediction suc-
cess ratio); their effect is studied in the following. When a
missed prediction occurs, the predicted cell is chosen ran-
domly in the cells neighbouring the one where the mobile
will eventually go. The trigger-to-handoff duration is mod-
elled by a gaussian distribution with mean ¢ and variance
o?; the trigger is discarded if this duration is greater than
the mobile’s cell travelling time.

4.2. Simulations results

4.2.1 Handoff blocking ratio

The result of the simulations is given in the graphs com-
posing figure 4. A reservation is done as soon as a trigger is
emitted; the reservation duration is thus equal to the trigger-
to-handoff delay. The new call blocking rate is an important
factor that helps estimating a CAC scheme’s efficiencys; it is
studied in the next section.

All the plots draw handoff blocking percentages as a
function of the successful prediction ratio and the trigger-to-
handoff delay (here always exactly equal to d, thatis o = 0;
section 5 studies the effect of o). Prediction ratios as low as
0.2 have been studied; it is only a little bit higher than the
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Figure 4. Handoff blocking rate versus prediction parameters. The left column is related to the PCR1
algorithm, the right-hand one to PCR3; side by side plots share the same cell load. The meaning of
the grey zones is explained in section 4.2.2.



worst prediction scheme, which would take the next cell at
random among the neighbouring cells.

The zero § borderline case shows what happens when no
reservation takes place (since every reservation lasts a very
short amount of time); this explains why all the lines merge
when ¢ is small and gives a reference blocking ratio that
should not be exceeded (since in this case introducing CAC
is worse than doing nothing).

All the graphs related to the same algorithm share a com-
mon look. In all cases, a better prediction clearly gives a
better blocking ratio in return. The results obtained with a
50% cell load are not very significant: the blocking rates are
so low that they make reservations useless.

PCRI1 performance are maximized when the reservations
last about 5 seconds; long reservations can even give worse
results than no reservation at all. As expected, when the
prediction is more accurate, the reservations can last longer
(up to 10s) since there are less likely to block a channel in
a wrong cell. With this particular algorithm, the reserva-
tion duration is an important parameter that is discussed in
section 5.

The plots related to PCR3 have a very different shape.
For a given prediction ratio, the handoff blocking curve de-
creases with the reservation duration; one can thus see the
advantage brought by the fact that reservations are not asso-
ciated with a particular mobile anymore.

4.2.2 New call blocking ratio

Even if it is preferable not to allow a new call rather than
interrupting an ongoing one, one should not forget that there
is a tradeoff between those two blocking ratios.

Figure 5 shows a plot for a PCR1 cell loaded at 70% in
the same conditions as those explained in section 4. All the
points of the decreasing section of the curves are optimal:
there is no strict rule to choose one of them.

One can see that as the next cell prediction becomes
more accurate, reaching the curve’s minimum requires
higher a call blocking. A way to approach this minimum
while keeping the call ratio between reasonable bounds for
high values of 7 is to restrict the allowed value of the deriva-
tive. The figure’s grey zone holds the points where reducing
the handoff blocking by one percent costs less than three
percents in call blocking. This zone has also been drawn on
the first column of figure 4.2.2.

In the curves depicted in figure 4.2.2 for PCR3, another
strategy has been used. It has been chosen to color the plots
according to the call blocking value. The curves’ intersec-
tion points with those colored zones show how the handoff
blocking varies with respect to the next cell prediction ac-
curacy for a constant call blocking value.

Handoff Blocking (%)

5. Timing
5.1. The ideal timing

One could try to take advantage of the local minimum
shown in the plots related to PCR1 (figure 4).

In the context presented here, reserving 1" seconds on av-
erage amounts to wait 6 — 7" seconds after each trigger, yet
this suppose that the error on § is symmetric and has a mean
of zero. In what follows, we will suppose that the distribu-
tion of this error is gaussian and has a standard deviation
given by o.

This method can’t of course be applied to prediction
schemes that don’t estimate a § value associated with each
trigger.

To verify the effectiveness of this idea, we can use sim-
ulations similar to those presented in section 4. Figure 6
shows how the handoff blocking ratio changes with respect
to the prediction ratio 7 and the prediction accuracy o. In
this figure, the mobiles reserve a channel during N(7', o)
seconds? before the handoff; negative values are discarded
(no prediction trigger is emitted). The other parameters are
the same as those used in section 4, the cell load has been
fixed to 70% and the chosen optimum is the minimum of
the corresponding plot in figure 4 (and is thus a function of
).

2N(T, o) is a random variable from a gaussian distribution with a mean
equal to 7" and a standard deviation equal to o.

0 | | | 1 |
10 15 20 25 30 35 40
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Figure 5. Handoff versus call blocking rate in
a cell loaded at 70%, using PCR1. The grey
zone shows points where the absolute value
of the derivative is higher than 1/3: gaining
1% in handoff blocking costs less than 3% in
call blocking. The points at the border of this
zone could thus be considered as optimal.



One can verify that the values obtained when o equals 0
are the same as those appearing in figure 4.

5.2. Tradeoff

The resulting plot shows the effect of a rough handoff
time estimation. As one could have guessed, the next cell
prediction is the main goal in order to achieve good block-
ing ratios; however, figure 6 shows that this assumption is
not always true for low values of 7.

For example, to improve the blocking ratio by 1%, a pre-
diction scheme characterized by (7, o) parameters equal to
(.6,5) can reach (.6,1) or (.7,5). For most schemes, this
makes a serious difference and one of those points will be
easier to achieve than the other.
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Figure 6. The effect of = and o on PCR1 per-
formance. This plot is similar to those given
in figure 4, where the reservation delay is
always 5 seconds plus a random, gaussian
value characterized by a standard deviation
of o seconds.

6. Optimal duration as a function of network
parameters

We have seen that PCR1 has an optimal reservation dura-
tion once the mobiles movement behaviour has been fixed.
One could wonder how to choose a reservation duration
given a certain wireless network’s mobiles characteristics.

If one considers the mobiles’ calling behaviour (i.e. the
calls frequency and duration, which determine the cell load)
and prediction parameters as fixed, the only way a mobile
can modify the handoff blocking probability is by changing
its movement pattern. In this context, the mean duration
between the handoffs is certainly the most important factor.
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Figure 7. Optimal reservation duration as a
function of the mean cell traveling time with
different cell loads and next cell prediction
ratios. The prediction parameter o is equal to
zero.

Figure 7 thus plots the optimal reservation duration as
a function of the mobiles’ mean cell traveling time. The
simulations that yielded those results are similar to those
presented in section 4, but with various mobile speeds.

As expected, the optimal duration decreases with the
traveling time. This is a direct consequence of the higher
handoff frequency: without shorter reservations, the reser-
vation queue would exceed its optimal length.

It is not surprising to see that the various curves’ slope
grows together with the next cell prediction accuracy be-
cause (a) the higher the value of 7, the longer the optimal
duration (for a fixed mobile speed) and (b) when the speed
is high, durations are shorter and their absolute difference
tends to get thinner.

7. Merit-based Admission Control

The results presented in the previous section lead to a
natural idea: it would be desirable to modify the CAC
scheme in order to favour mobiles which are trying to re-
serve channels at a proper time (i.e. minimizing the handoff
blocking of the whole system).



Cell load

Method 60 % 70% 80%
PCR1 | 2.1% 8% 17.1%
Merit (simple) | 2.0% (7.8%) 7.1% (12.8%) 16.7% (2.3%)

Merit (probabilistic)

1.9% (9.2%)

6.7% (19.6%) 15.2% (12.6%)

Table 1. Handoff blocking obtained with and without the different merit based admission control.

PCRI1 can be modified as follows to achieve this goal;
when a mobile m performs a handoff:

1. If it has a reserved channel, it is allocated;
2. If there is a free channel, it is allocated;

3. If the mobile has a pending reservation (i.e. in the
reservation queue), it applies a fairness test (discussed
below) which tries to find a less meriting reservation
r’. If it succeeds, the channel associated with 7’ is al-
located to m and 1’ is pushed back at the beginning of
the queue (r’ will be the next reservation to be popped
out of the queue since it was already associated with a
channel).

4. Else, the handoff is blocked.

Thus, the idea is that if a mobile m has a pending reser-
vation when it performs its handoff, it should be allowed to
borrow the effective (i.e. associated with a channel) reserva-
tion of another mobile m/ if the reservation behaviour of m
is more likely to reduce the overall blocking ratio than m’’s.
A first, simple fairness test is thus one that favours mobiles
near the optimal reservation duration 7" pointed out in sec-
tion 5.1. Let ¢ be the duration® of the pending reservation
r of the mobile performing a handoff and ¢’ the duration of
an effective reservation r’ that could be borrowed.

Simple test
This test allows to borrow 7’ if [T — | < |T" — ¢'|; this
simply means that a reservation can be borrowed if it
is further apart the optimal time (i.e. reservations close
to 1" will be left untouched).

The modified algorithm has three strong points.

First, it adds some fairness to the system; very long reser-
vations are not profitable anymore, since the longer, the
more likely they are to be replaced by a shorter, more sen-
sible one thanks to the fairness test. One could say that this
scheme favours mobiles meriting it, i.e. those that try to get
a fair amount of the network’s resources.

Second, since a reservation that lasts for about 7" time
units is rewarded, the overall handoff blocking ratio de-
creases.

3The duration of a reservation is defined as the amount of time between
the reservation creation and the mobile handoff.

Third, the modification has a minimal impact on the new
call blocking ratio. Indeed, the above procedure’s third item
does not add any new reservation, but borrows a channel to
allow a handoff which would otherwise have been blocked.
It could prevent a new call to take place, but allows a hand-
off to occur instead: this is exactly the spirit of the admis-
sion control we want to define.

Figure 8 plots the results of a simulation of this algo-
rithm. Mobiles have been divided into four classes with dif-
ferent mean reservation durations: 5, 10, 20 and 30 seconds
(gaussian distributed with a standard deviation of 1 second,
the distribution is thus a gaussian mixture); they are expe-
riencing cell loads of 60, 70 and 80%. Each class has the
same number of mobiles and all of them use a 7 factor equal
to 0.7. Since the simulation parameters have been chosen
equal to those taken in section 4, the ideal reservation dura-
tion 7" has been fixed to 8, 10 or 15 seconds (depending on
the cell load and according to the results plotted in figure 4).

This figure shows the results achieved by another fair-
ness test:

Probabilistic test
Given the distribution of reservation durations d,
one can compute the expected distance to T of 7’
knowing that it is at least ¢'. The test is thus
|T —t| < E[|lx — T], where z is the random variable
associated with reservation durations (thus greater than
t:
o0
Bzl -7 = L fOETIde
[ d(z) da

Notice that this requires the knowledge of the distri-
bution d, which imposes monitoring mobiles’ reserva-
tions durations.

Both fairness tests have a common drawback: mobiles
doing reservations at the right moment still could have their
reservations borrowed; they only are favoured statistically.

Choosing a different anchor timing could still add fair-
ness to the system; here, fairness and performance are or-
thogonal issues.

The simulation’s results emphasize that PCR1 is not fair:
mobiles reserving channels for a longer period of time ex-
perience a better service at the expense of the global hand-
off blocking ratio. On the other hand, the results of merit-
based methods are divided up homogeneously. In particular,
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Figure 8. This simulation shows the handoff blocking ratios experienced by four classes of mobiles
under a 60, 70 and 80% cell load. They are characterized by different mean reservation durations
(from 5 to 30 seconds), otherwise the simulation parameters are the same as those described in
section 4. The chosen value of 7" are consistent with the results shown in figure 4.

classes characterized by low and high § parameters system-
atically see their blocking decrease or increase, respectively.

The advantage of the more complicated, probabilistic
test is revealed by table 1. It clearly shows that it performs
better in terms of handoff blocking.

The figures in parentheses give the relative difference
with PCR1. The simple test doesn’t take care of the fact
that reservation lasting for about 7" time units are likely to
last during a much longer amount of time. This behaviour is
particularly harmful to mobile classes with small § values.

As expected, the call blocking is not that much affected
by the merit-based schemes; relatively to PCR1, the sim-
ple test increases it by about 2% while the probabilistic one
increases it by about 4%.

The difference between the two merit tests is brought to
the fore by figure 9. The first plot shows the reservation time
estimated by the probabilistic (equation 1) and the simple
test (which approximates E, > [|[x—T'|] ~ [t'—T'|). Several
reservation duration densities d(-) have been considered:

e the gaussian mixture used in the simulation above (i.e.
4 gaussian distributions centered on 5, 10, 20 and 30
seconds with an extended deviation of 1 second);

e uniform densities over [0, M] with M = 10, 20 or 30
seconds.

The optimal time is 7=10s.

This plot helps to see which effective reservations can
be borrowed: a mobile that has a pending reservation that
lasted ¢ seconds can borrow an effective reservation that has
already lasted ¢’ seconds if the curve ordinate at abscissa ¢’
is greater than |t — T|.

The second plot draws the difference between the curves
relative to the probabilistic test and the curve relative to the
simple test. The positive portion of the curves shows when

borrowing an effective reservation is easier with the proba-
bilistic test (i.e. borrowing is allowed for a longer interval
centered on 1").

The simple test is clearly over-pessimistic when most
reservations last less than the optimal time, and over-
pessimistic when dealing with long reservations. This fact
explains the different behaviour of the merit tests. Consider-
ing the distribution related to the simulation above, one can
observe that a mobile performing a handoff with a pending
reservation that lasted ¢ seconds —with +£1 < ¢t < £20, i.e.
a difference to the optimal time less than about 9s— can
borrow any other effective reservation using the probabilis-
tic estimation, but cannot borrow those that lasted between
t and 20 — ¢ seconds with the simple test. Being centered
on the optimal time, the 10s class does not experience this
difference (for those mobiles, the [t, 27 — t] range is small).
The 5s class is, on the contrary, badly off: its mobiles can-
not borrow reservations in the 5 to 15 seconds range (this is
important since most reservations last more than 5 seconds,
and explains the high blocking ratio experienced by this
class in the simulations). Longer reservations experience
less problems, since the probabilistic curve come closer to
the simple test’s and less mobiles are likely to be involved
in long reservations.

8. Conclusion

It is usually admitted that motion prediction can enhance
the quality of service provided by wireless networks. This
paper discusses how the accuracy of the prediction acts on
the level of service in the particular case of cell access con-
trol.

It has been shown that, with certain access control pro-
tocols, reservations must be done at the proper time; this
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Figure 9. Comparision between the proba-
bilistic and simple tests. The curves of the
first plot draw the reservation duration esti-
mations for two reservation duration distri-
bution types; the first is the gaussian mixture
used in the simulation above, the second a
uniform distribution over an interval of 10, 20
or 30 seconds. The optimal time is 7'=10s.

ensure that the handoff blocking ratio is minimized and that
channels are not reserved for too long. Being able to do a
reservation at the proper time implies some conditions on
the prediction mechanism, which have been quantified us-
ing simulations based on an abstract prediction model.

This naturally leads to a modified access control scheme
that penalizes early and late reservations. This has two con-
sequences: the network fairness is improved (selfish mo-
biles are discouraged) and the overall handoff blocking is
minimized. This has been confirmed by simulations.

In the future, the impact of movement prediction’s ac-
curacy on other protocols should be studied. The analysis
of existing prediction schemes could allow the setup of an
abstract model more accurate than the one presented here.
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