
An Interactive Transparent Protocol for Connection Oriented Mobility–
Performance Analysis with Voice Traffic

Raid Y. Zaghal, Sandeep Davu and Javed I. Khan
Networking and Media Communications Research Laboratories

Computer Science Dept., Kent State University
233 MSB, Kent, OH 44242

{rzaghal, javed, sdavo}@cs.kent.edu

Abstract

Loss-Free handoff in Mobile Networks is an

extensive research area. Mobile IP (MIP) provided a
solution to enable a mobile node to roam from one
location to another while maintaining its network
level connectivity. However, handoff latencies and
longer triangular routing paths in MIP can severely
degrade communication performance and in
particular cripple connection oriented protocols like
TCP. In this paper we propose an alternate approach
for robust mobility. The scheme is based on the
principle of 'Interactive Transparent Networking'
where all networking layers remain lightweight but
are engineered for interactivity. This would allow
principle intelligent actions to be performed at the
application layer. With protocol interactivity we
demonstrate a novel scheme that switches IP address
in the TCP/IP stack on both end-points and perform
loss-free rapid handoff. The scheme offers not only
loss-free handoff, but also offers several fundamental
system advantages; (i) it does not impose any changes
on original network protocols or their dynamics, and
(ii) it fully adheres to the end-to-end principle and do
not require intermediary nodes as in MIP. We have
achieved a real implementation of the scheme on
FreeBSD and tested the real system over Internet with
voice traffic. We show that this scheme can
dramatically reduce handoff latency and improve TCP
performance by offering shorter routes with loss-free
handoffs and smooth, low-jitter voice stream.

1. Introduction

In a typical wireless environment, if a mobile node
(MN) roams from one access point to another within

the same IP subnet; it only needs to perform link-layer
(L2) handoffs in order to maintain its wireless
connectivity. These L2 handoffs remain transparent to
the IP layer (L3). However, if the MN migrates to a
different IP network, its current IP address becomes
topologically invalid and it must reconfigure a new IP
address from the newly visited network –i.e. it must
also perform L3 handoff. In this latter case, L3
handoff should also remain transparent to upper
layers. For example, if the MN in figure 1 moves from
AP1 to AP2 –it is roaming within subnet1—it only
needs to perform L2 handoff. However, if it moves
from AP2 to AP3 it must perform L3 handoff and
configure a new IP from subnet2 since AP3 resides in
a different IP subnet.

If a MN performs handoff it acquires a new IP from
the new access point which renders all the existing
TCP/IP connections useless. Since classic IP was
originally designed without any mobility support, its
routing mechanism relies on IP address semantics to
deliver data to the correct destination.

Mobile IP (MIP) [14] provided a global solution to
this problem by introducing indirection through a set
of Mobility Agents. In MIP, each MN is identified by
an IP address assigned to it by its home network –
called home address—regardless of its current point of
attachment. MIP introduced three new entities,
namely the home agent, the foreign agent and the MN.
Whenever a MN performs L3 handoff, it must register
its current point of attachment with the home agent.
For every registered MN, the home agent intercepts all
incoming traffic from a given sender –usually referred
to as the corresponding node—and redirects it
through tunneling (packet encapsulation) to the MN’s
most recently registered location. As a sender, the MN
can bypass the home agent and transmit packets
directly to the corresponding node. This kind of traffic

flow is referred to in the literature as triangular
routing.

In MIP, foreign agents periodically broadcast
Agent Advertisements to detect MN movement. When
the MN decides to migrate to a new network, it
configures a new care-of-address, and then it registers
this address with the home agent. The home agent
updates its address binding cache and sends an ACK
to the MN. Communication between the two endpoints
cannot resume until registration is completed at the
home agent. This interruption affects transport level
performance –e.g. may cause TCP retransmission
timeouts—and may cause severe quality degradation
especially for time-sensitive (audio/video)
applications.

In this paper we propose IPMN (Interactive
Protocol for Mobile Networks) for network level
mobility support which diverts from the MIP
approach. The scheme is based on the new paradigm
of Interactive Transparent Networking [10] –which we
have investigated recently—and enables the
corresponding node to send packets directly to the MN
and therefore eliminates the need for a home agent
and triangular routing. The Interactive Transparent
Networking paradigm calls for meta-engineering of
existing protocol to add interactivity –protocol end-
point components are reengineered to create an
interactive version of a protocol with added handles
and API that facilitates event passing and access to its
internal states. The paradigm complies with the
following three principles of backward compatibility:

1) The interactive version of a protocol remains
functionally compatible with legacy non-interactive
versions.

2) The API is an extended set, and thus classical
applications remains fully usable with the interactive
versions of the end-point components.

3) Interactivity –if used—does not change the
network side dynamics of the original protocol and
thus the dynamics of the network.

The paper is organized as follows: in section 2 we
discuss MIP handoff latency and related work. In
section 3 we briefly present the Interactive
Transparent Networking paradigm. In section 4 we
discuss IPMN and in section 5 we present experiment
details and performance results. We give concluding
remarks in section 6.

2. Mobile IP Handoff Latency

Handoff in Mobile IP goes through a three-stage
life cycle (i) L2 handoff (e.g. IEEE802.11 handoff),

(ii) movement detection, and (iii) address registration.
Normally, the three stages do not overlap and should
occur in the same order. Therefore, the summation of
their latencies constitutes the total handoff latency. If
we can reduce the latency of any one of these stages –
or better, if we can eliminate a stage—we can improve
the total handoff latency.

The original MIP proposal maintained a clean
separation between link-layer (L2) and network layer
(L3), which affected performance adversely; whenever
L2 performs handoff, L3 is not notified. L3 then has to
resort to agent advertisements to discover movement
and initiate its own handoff procedure. Movement
detection algorithms that rely on Agent advertisements
are called advertisement based algorithms. These are
the Lazy Cell Switching (LCS) [14], and Eager Cell
Switching (ECS) [15]. In [4], Fikouras, et al,
introduced a hinted based movement detection
algorithm called Fast Hinted Cell Switching (FHCS)
which allowed L2 to send ‘triggers’ to L3 whenever a
handoff event is initiated. FHCS –which is consistent
with our event-based scheme—was able to
significantly reduce handoff latency by negating the
need for movement detection and agent selection.
Also, Researchers aimed at reducing registration
signaling delay by introducing a hierarchical structure
and therefore allowing regional registration and
reduced round trip delay. Among these are [2] who
introduced Micro-mobility by dividing the network in
a hierarchical structure and [7] who allowed the MN

Router Router

Backbone
Network

Corresponding
Node

Mobile Node

AP3

IP-Subnet 1 IP-Subnet 2

Figure 1. Only when a MN migrates from one IP
subnet to another it must perform L3 handoff.

AP4 AP1 AP2

to perform local registrations in the visited domain in
addition to home registration. [8] And [16] can be also
classified in the same category; the former suggested a
network infrastructure which covers a large
geographical area with L2 switches, and the latter
used proprietary control messages for MN location
management and routing within a regional area. Other
proposals took a different direction by suggesting a
deployment scheme of MIP based on existing
infrastructure. The RAT (Reverse Address
Translation) architecture [17] is based on the network
address translation (NAT) protocol. It uses a RAT
device to support IP mobility by providing packet re-
direction service between the correspondent node and
the MN.

The above proposed solutions though have
promised advantages over classical MIP,
unfortunately, they require new infrastructure and/or
considerable network level modifications. Thus, they
are yet to see real deployment.

3. Interactive Transparent Networking

During the past few years, we have been developing
a new paradigm called Interactive Transparent
Networking. It provides a framework for researchers to
deploy protocol solutions/modifications without
embedding custom codes within the network layer
itself. Instead, we propose using inter-layer
interactivity and state transparency to be able to
perform these solutions at the upper layers –e.g. at the
application layer. In this section we briefly define the
new paradigm; more information can be found in our

previous work in [10] and [11].
Within the interactive-transparent framework, we

provide means to allow programs in upper layers to
subscribe with protocols in lower layers to be notified
when certain events (state transitions) occur.
Subscribers can then pull up the required service state
information, perform the actual action by
programmable components running in the upper layer
–called Transientware modules—and then create
handles to push down the generated actions (state
modifications) into the target network layer. A
subscriber application should be interested in certain
events that might occur in the target protocol, and by
subscribing to events, the subscriber wishes to be
notified when any one of the events has occurred. In
figure 2 we show the general architecture of a TCP-
based interactive protocol. Upon opening the socket,
an adaptive application may bind a Transientware
module to a designated TCP event by subscribing with
the kernel. This is represented by arrows 1 and 2 in
figure 2. The binding is optional; if the application
chooses not to subscribe, the system defaults to the
silent mode identical to TCP classic. When the event
occurs in TCP, the kerenl sends a signal to the upper
layers (3a) and at the same time it saves the event
information (3b). A special handler catches the signal
and probes the kernel for the event type (4a, 4b), The
handler then invokes the appropriate Transientware
module to serve the event (5),. A Transientware
module can also use the probing API to access the
kerenl state (6a, 6b) or to pass some information to the
subscriber application itself (7).

4. Interactive Protocol For Mobile
Networks (IPMN)

4.1. The Scheme

We employed the Interactive Framework [11] to
design an alternative solution for the address binding,
registration, and tunneling in MIP. The basic idea of
our scheme is to enable the MN to obtain a new IP
from the future FA before handoff is performed,
replace the ‘source IP’ field in the TCP/IP stack of the
MN with the new IP, and relay the new IP to the fixed
host (FH). Once it receives the new IP, the FH
immediately switches to the new IP by replacing the
‘destination IP’ field in the TCP/IP stack with the new
IP. A best case scenario for this scheme would happen
if the MN can locate the new Access Router and
obtain a new IP address, e.g., through a DHCP server
before loosing connection with the current Access

Figure 2. TCP interactive extension and API.

6a

3b

3a

user space

1

7

TCP kernel

2

4a

Event
 Information

Connection
State

Application

Probing
API

Subscription
API

T-ware
 (2)

TCP
Connection system

K

ernel

5

Signal
Handler

4b 6b

T-ware
(1)

T-ware
 (n)

Event
Monitor

Socket
API

Router. Once it obtains its new IP
address, the MN proceeds with L3
handoff as follows:

1. Freeze the TCP connection by
advertising a zero window to the FH.

2. Perform actual L3 handoff by
replacing the IP fields in the TCP/IP
stack at both the MN and the FH with the
new IP address.

3. Wakeup TCP by advertising a
nonzero window to the FH.

Handoff pre-processing, i.e., locating a
future Access Router and obtaining a new
IP address, can also be done at the
application level prior to L2 handoff.
Fortunately, since we allow protocol
interactivity, we can configure L2 to send
an early signal the application layer about
an impeding handoff. This gives the
application layer a grace period to do all
the bookkeeping while it is still connected through the
current Access Router. Naturally, a simple application
level IP-lookup module should perform the task. We
can benefit from interactivity again by allowing this
IP-lookup module to probe L2 for the identity of the
next Access Router (e.g., its IP address). Then, this
module can contact the router and obtain its next IP
address via a DHCP attached scheme. A number of
previous works like [4], [17], and [21], have shown
excellent schemes that can support this methodology.
We can re-model these schemes –or some aspects of
them—with the interactive paradigm to implement the
handoff pre-processing illustrated above. Furthermore,
we believe that since the MN can obtain a new IP
before handoff, this pre-processing will not impact
handoff latency.

The purpose of this current implementation is to
experiment the basic idea of physically changing the
IP number at both end-points whenever the MN
configures a new IP address. Therefore, this version of
IPMN, only implements the three-step L3 handoff
procedure shown above. In the future, we plan to
augment IPMN to include the handoff pre-processing
as well.

4.2. The Architecture

IPMN tracks three events at the MN and one event
at the fixed host (FH). Figure 3 describes the
conceptual architecture of IPMN, and Table 1
describes the corresponding events and their handling
sequences at each endpoint. At the MN, when the link
layer detects signal fading and initiates L2 handoff

Mobile Node

Link Layer

Application
layer

Handler 3

TCP
 Event 3

Handler 1

Correspondent
Node

Application
layer

Handler 4

 Backbone
Network

Wireless
link

Base Station

WIN=0 (freeze)

New IP (for destination)
Handler 2

WIN > 0 (resume)

S
w

itch source IP

S
w

itch destination IP

IP
 Event 2

Event 1

Link Layer

TCP

Event 4

IP

Figure 3. IPMN architecture and event sequencing.

Table 1. IPMN events and handling

Node
Event
No. Layer Event tracked Action taken by event handler

1 LL L2 handoff has been initiated. Advertises a zero window to the Correspondent Node (CN). The freeze
mechanism of TCP will force the CN to stop transmission.

2 IP
A new IP has been assigned to
the Mobile Node (MN) from the
future Access Router.

Call the switch_ip() system call. This will replace the source IP filed in
the IP header of the MN with the new IP and will send a segment to the
CN with TCP option = SWITCH_IP to replace the destination IP field on
the CN.

M
obile N

ode

3 TCP The ‘SWITCH_IP’ segment has
been ACKed.

Advertises a non-zero window to the CN. This will unfreeze the
connection and enable the CN to resume transmission.

C
orr.

N
oded

4 TCP
A special TCP segment received
with TCP option=SWITCH_IP.

Strip the new IP number from the options part of the segment, then call
the switch_IP() system call which stores the new IP in the destination IP
field of the IP header overwriting the old IP number.

(event 1), it signals the subscribing application. When
the event is received at the application layer, a
Transientware module (handler 1) is activated
immediately; this module simply makes a simple
system call which lets TCP advertise a zero window to
the FH. This would normally cause the FH to stop
transmission. When the MN gets a new IP from the
future network (event 2), it activates (handler 2) which
transmits the future IP to the FH at TCP level through
a system call. The new IP is sent in a special TCP
segment with ‘option=SWITCH_IP’. At the FH,
When TCP recognizes this option (event 4) it activates
(handler 4) which then triggers a switch_ip()
system call to replace the ‘destination IP’ field in the
TCP/IP stack with the newly received IP number. In
the mean time, at the MN (handler 2) also makes a
similar system call which changes the ‘source IP’ filed

in its own TCP/IP stack. When the previous
‘SWITCH_IP’ segment is ACKed at the MN (event
3), the MN advertises a non-zero window to the FH
which allows it to resume transmission.

Advertising a zero window to the FH to temporarily
freeze the TCP connection was proposed in [6] to
improve TCP performance over wireless networks. We
adapted this part of their solution in our interactive
scheme as a way to avoid packet loss during handoff.
Although this will slightly disrupt the service while
handoff is being performed, but since we avoid packet
loss, the FH will not resort to congestion control
procedures avoiding unnecessary retransmissions and
sender rate throttling. As we show later, this will
definitely improve TCP performance and save network
resources.

5. Experiment and Performance Analysis

We have implemented the scheme on FreeBSD-4.5
by extending the kernel source code. We call the
extended implementation BSD-interactive1. We have
created a number of system calls that implement the
system’s API. The API list is shown in Table 2. The
first two system calls are standard in the interactivity
service2. They allow demanding user applications to
subscribe with lower network protocol to be notified
when certain events occur. We configured a Signal
Handler with the OS to catch all signals and filter
them. Whenever an IPMN relevant signal is detected,
the signal handler uses the GetEventInfo()
function to retrieve event type from the network
protocol which generated the signal. The signal
handler then activates the appropriate Transientware

1 A public distribution of the complete modified kernel is posted on our
web page: http://www.medianet.kent.edu/ipmn/
2 More details about the interactivity framework and associated service
model and API can be found in [11].

Figure 4. Testbed and experiment setup

BS1

Mobile
Node

Correspondent
Node Gateway

Switch

BS2 BS3

Internet

Table 2. API of IPMN
System Call Usage

Subscribe(evt) Subscribes with a network layer protocol for event (evt).

GetEventInfo()
Used by a global signal handlers which catches all signals from the kernel to probe the kernel and
retrieve event information and then activate appropriate event handler (Transientware module).

Relay_IP(IP_addr) Let TCP transmit a special segment carrying the new IP to the other end.

Switch_Source_IP(IP_addr) Changes the source IP address in local TCP/IP stack. Used by MN only.

Switch_Dest_IP(IP_addr) Changes the destination IP address in local TCP/IP stack. Used by CN only.

Freeze_TCP() Advertise a zero window to the other end (the CN) to force it to halt transmission.

Resume_TCP() Advertise a non-zero window to the other end (the CN) to allow it to resume transmission.

module at the application level (e.g. handler 1 in
figure 3) to handle the event. The rest of the API
functions in the table are used by these event handlers
as described earlier in the IPMN architecture.

5.1. Experiment Setup

Figure 4 explains the experiment testbed. We used
three machines with AMD 1.6 GHz processor (BS1,
BS2, and BS2) as our Base Stations and a laptop with
Intel P-II processor as our MN. The (GW) machine
was our gateway to the Internet and was also used to
configure each one of the Base Stations as a separate
subnet with four IP numbers per subnet. We installed
FreeBSD-4.5 on all BS machines, the MN, and the
CN. For Interactivity experiments we installed the
BSD-interactive on the MN and the CN only. For the
MIP experiments we installed the MIP
implementation of the Portland State University [1]–
also known as PSUMIP—on the MN and the three BS
machines. One of the three Base Stations machine
(BS1) was configured as the Home Agent (HA), and
the other two (BS2 and BS3) were configured as
Foreign Agents.

For MIP signaling to work correctly, the time must
be synchronized on all machines that run the MIP
daemons. For this purpose we used the (ntpd) utility
in FreeBSD to synchronize with three STATUM 2
external time servers. We used the simplest possible

MIP configuration to reduce unnecessary overhead.
We wanted to test our interactive scheme against

MIP and compare performance by measuring
application level voice delay, handoff latency, and
jitter. We have run all experiments by placing the CN
in three locations, one locally (in our lab) and two
remotely; in Texas and Virginia. Table 3 shows the
three nodes and their route characteristics.

The CN generated voice traffic based on the
NetSpec Source Models [9]. We also let the MN move
along the cyclic path
(BS1→BS2→BS3→BS2→BS1… etc.) In each run,
we let server program at the CN transmit voice traffic
until 5 Mbytes has been received at the MN. We
configured the MN to perform handoff every 2
minutes. We used a switch to simulate L2 wireless
handoff; for example, in figure 4 the MN is connected
to BS1 through the switch. To perform L2 handoff
from BS1 to BS2, we manually unplugged BS1 from
the switch and instantly plugged BS2 to an empty port
in the switch. We kept the MN connected to the switch
all the time.

5.2. Traffic Characteristics

In order to model real-world traffic, we used a tool
called NetSpec [9] which was developed at The
University of Kansas—to generate traffic at the CN.
Netspec offers several source models which can
generate traffic for Telnet, FTP, Video, voice, and
WWW [12]. In this experiment we only tested with
voice traffic. We will consider the other types in future
work.

In NetSpec., voice has been characterized by a
constant bit rate (CBR) source. Sampling rate is 8 kHz
and each sample is 8 bits. This gives the standard bit

Table 3. Correspondent node locations

Name Location IP number Average
RTT

No. of
Hops

Local Kent, Ohio 131.123.36.11 1 ms 3

Virginia Chantilly, VA 66.94.95.235 90 ms 19

Texas Huston, TX 70.241.64.99 183 ms 26

0

500

1000

1500

2000

2500

3000

1 11 21 31 41 51 61 71

Call Arrival Distribution

Call number

In
te

ra
rr

iv
al

 ti
m

e
(m

s)

Figure 5. Call interarrival sampling over 5
hours for λ = 1. This generates a mean

interarrival time of 1 second.

0

5

10

15

20

25

30

1 11 21 31 41 51 61

L1 = 0.004168

L2 = 0.003334

L3 = 0.002778

Call Duration Distribution

Call number

D
ur

at
io

n
(m

in
)

Figure 6. Call duration sampling over 5 hours.
The three choices of λ shown here generate
mean call durations of 3, 4, and 5 minutes

rate of 64 Kb/sec for acceptable voice quality. Call
arrivals are modeled by a Poisson process with fix
hourly rates within one-hour periods. This means that
the interarrival time between two calls is exponentially
distributed. The probability density function of
exponential distribution is given by:

x
X exf λλ −=)(mean/1, =λ

Session duration (holding time) for voice calls was
also modeled by a Poisson process and followed the
exponential distribution. Figure 5 shows an example
of call arrivals with λ=1 over 5 hours sampling, and
figure 6 shows an example of call duration over 5 hour
sampling with three values of λ: λ1=0.004167,
λ2=0.003333, λ3=0.002777. If we take the inverse of
these λs, we get mean call durations 3, 4, and 5
minutes respectively.

At the call level, the source is presented to the
network as a constant-bit stream. To generate a 64
Kb/sec voice stream, talk bursts were generated by a
144-byte blocks separated by 18 ms silence periods.

5.3. Handoff Latency

One of the key features of our interactive scheme is
short handoff latency. After running the experiment
several times on the three nodes we have observed a
big difference –up to two orders of magnitude—in
handoff latency between IPMN and classic MIP. Table

4 shows the handoff latency of the first five handoffs
on the three nodes for both MIP and IPMN runs.
IPMN managed to perform handoff in 110 to 200
milliseconds on average while MIP needed between 14
to 44 seconds. This substantial reduction in handoff
latency highlights the advantage of event-based
protocols like IPMN over timer-based protocols like
MIP. The former allows protocols in different layers to
interact and pass events and new state information –
like the new IP number in our case—to upper layers
instantly. This enables peer protocols to respond
immediately, therefore cutting down unnecessary
overhead time. Timer-based protocols on the other
hand usually use a timer-based periodic probing
mechanism to discover state changes. For example, in
this particular implementation of MIP that we have
tested, the foreign agent sends beacon signals (agent
advertisements) to discover MN movement every 60
seconds! A best case scenario will happen if L2
handoff was performed right before the arrival of a
beacon signal. Therefore, this process will take half of
that time on average –i.e. 30 seconds. Adding to that
communication and address registration overhead we
can easily reach the 40 seconds average especially on
the two remote nodes. Actual latency in MIP was even
longer; by the time MIP recovers and becomes ready
to resume service, TCP has already timed out and will
probably need even more time to discover MIP
recovery and then resume communication on its own

Table 4. Handoff latencies (in ms) of the first five handoffs
Local Virginia Texas

Handoff
IPMN MIP IPMN MIP IPMN MIP

1 106 12654 114 58669 202 51359
2 107 7124 106 24975 193 33187

3 111 1524 106 22672 195 29099

4 115 48945 111 77414 195 63523

5 109 1008 121 30772 200 41676

Average 110 14251 112 42900 197 43769

0

20

40

60

80

1 2 3 4 5
0

20

40

60

80

100

1 2 3 4 5

0

20

40

60

80

100

1 2 3 4 5

MIP level latency

Application level latency

Figure 7. Handoff latencies at MIP level and application level.

(a) Local node

Handoff

La
te

nc
y

(s
ec

on
ds

)

(b) Virginia node

Handoff

(c) Texas node

Handoff

level –and at the application level as well. We have
observed this behavior of MIP by also registering the
time when application level communication resumed
after each handoff was completed. Figure 7
demonstrates this property by comparing the handoff
latencies of the first 5 handoffs at the application level
and at the MIP level. For example, on the Texas node–
figure 7 (c), when handoff 2 was performed, the
application level suffered 58 seconds of service
disruption, even though the MIP was responsible for
33 seconds delay only. While in some cases, TCP
overhead was small–like handoffs 2 and 3 on the
Virginia node which had less than 2 second of TCP
overhead, in other cases–like handoffs 2, 3, and 5 on
the Local node, TCP added up to 50 seconds.

5.4. Voice Stream Arrival Delay

Now, we show application level performance by
observing stream arrival delay. At the MN, we kept a
log file to register the arrival time of each 144-bytes
block (talk burst) in the voice stream. Figure 8 plots
the arrival times of the first 20,000 blocks at the MN

from the two remote nodes: Virginia and Texas. We
did not include the Local node plot for space
limitations.

As we can easily observe, the IPMN dramatically
outperformed MIP on two levels: Firstly, in general,
most blocks were delivered faster with IPMN due to
shorter triangulation-free path that they had to travel
to reach the MN as well as to smaller overhead.
Secondly, IPMN plots were much smoother than MIP
since the latter suffered from longer disruption of TCP
service due to longer handoff delays. This can be
observed in the Texas plots. After each handoff event,
we see the impact of TCP's slow start behavior on the
plot. These step jumps and the impact of TCP
dynamics created jitter on the voice stream –as we
show in the next section. One last observation is the
impact of connection speed. The CN in Texas was
transmitting on a 350 kbps DSL connection; MIP
needed about 650 seconds to transmit all 20,000
blocks while IPMN managed to transmit them in
about 450 seconds only –a 3.2 minutes difference. The
node in Virginia was transmitting on 1.5 Mbps
connection. It needed 285 seconds on MIP, and 140

0

50

100

150

200

250

300

1 5001 10001 15001 20001

IPMN MIP

0

200

400

600

800

1 5001 10001 15001 20001

IPMN MIP

Figure 8. The arrival time of the 144-bytes blocks (talk bursts) at the MN from (a) Texas node,
and (b) Virginia node.

(b) Virginia node

A
rr

iv
al

 ti
m

e
(s

ec
on

ds
)

Block number

A
rr

iv
al

 ti
m

e
(s

ec
on

ds
)

Block number

(a) Texas node

10

30

50

70

90

110

130

150

1 3001 6001 9001 12001 15001

10

30

50

70

90

110

130

150

1 3001 6001 9001 12001 15001

(a) IPMN Jitter

Block number

In
te

ra
rr

iv
al

 ti
m

e
(m

s)

Figure 9. Block interarrival times at the MN.

(b) MIP Jitter

Block number

In
te

ra
rr

iv
al

 ti
m

e
(m

s)

seconds on IPMN –a 2.4 minutes difference.

5.5. Jitter on the voice stream

Figure 9 plots the interarrival times of the first
16000 blocks arriving at the MN from the Texas node,
(a) on IPMN, and (b) on MIP. On IPMN almost all
blocks were delivered at (75 to 90) ms apart, except
(mainly) those that faced a handoff –only 22 blocks
were delayed for more than 100 ms. In figure 9 we
show a maximum of 150 ms on the y-axis to be able to
see the mainstream case. Average interarrival time for
all blocks on IPMN was 85.57 ms. On MIP the
situation is different; about 177 blocks in the stream
faced more than 100 ms interarrival –10 of these
blocks faced more than 8000 ms delay—and average
interarrival time for all blocks was 129 ms.

6. Concluding Remarks

In this paper, we have presented IPMN –an
interactive protocol for network mobility. It is based
on interactive transparent networking paradigm which
we have developed recently. IPMN uses true end-to-
end signaling to update the current state of the mobile
node’s location at both end-points. Using interactivity,
the MN was able to freeze the TCP connection and to

perform loss-free, rapid handoff by simply changing
the 'source IP' field in TCP/IP stack of the mobile node
and the 'destination IP' field in the TCP/IP stack of the
correspondent node.

We have shown by real experimentation with voice
traffic that IPMN offered two key advantages over
conventional timer-based MIP; (a) it allowed direct
end-to-end communication between the correspondent
node and the mobile node by eliminating triangular
routing, and (b) it dramatically reduced L3 handoff
latency by canceling movement detection and address
registration. Also, we have shown that the scheme can
meet the demands of a low-jitter voice stream.

Essentially, the results demonstrate the benefit of
the principle of interactivity in networking. It enables
event based action and response. It distinguishes from
the traditional timer-based MIP which depends on
periodic actions. The periodic agent advertisements
(beacon signals) used in MIP is one of the prime
reasons for its sluggishness. MIP has to maintain a
delicate balance between advertisements'
frequency/size and their impact on network
throughput3. Event-based scheme such as the one
demonstrated by IPMN does not require this
compromise. Indeed the benefit of instant interactivity
was so dramatic that it could easily wipeout the
seeming advantage of MIP’s low layer
implementation.

3 The original MIP proposal [14] recommended shortest agent
advertisement rate of 1 per second. The implementation that we have
tested in this paper (PSUMIP) uses a much slower rate of 1 per minute.
We tried to lower this rate, but it did not work. Since PSUMIP was the
only available implementation compatible with FreeBSD-4.5 kernel at
the time, we could not test with faster agent advertisement rate. Many
other MIP implementations allow the user to set a preferred rate of one
or more seconds. The best rate that would yield optimal network
throughput is still controversial and is highly dependent on MN's
movement frequency and traffic load.

7. References

[1] Binkley J. and Singh S., The Portland State University
Secure Mobile Networking Project (PSUMIP),
http://www.cs.pdx.edu/research/SMN/, 1999.

[2] Campbell A., et al., “IP Micro-Mobility Protocols,”
ACM SIGMOBILE Mobile Computer and Communication
Review (MC2R), Vol. 4, No. 4, pp. 45–54, October 2001.

[3] Fikouras N. and Görg C., “Performance Comparison of
Hinted and Advertisement Based Movement Detection
Methods for Mobile IP Hand-offs,” In Proc. of the
European Wireless 2000, Dresden, Germany, September
2000.

[4] Fikouras N., Könsgen A., and Görg C., “Accelerating
Mobile IP Hand-offs through Link-layer Information,” in
Proc. of the International Multi-conference on
Measurement, Modeling, and Evaluation of Computer-
Communication Systems (MMB), Aachen, Germany,
September 2001.

[5] Fikouras N., El Malki K., and Cvetkovic S.,
“Performance Evaluation of TCP over Mobile IP,” In Proc.
of the Int'l. Symposium on Personal Indoor and Mobile
Radio Comm. (PIMRC'99), Osaka, Japan, Sep. 1999.

 [6] Goff T., Moronski J., Phatak D., Gupta V., "Freeze-
TCP: A True End-to-End TCP Enhancement Mechanism
for Mobile Environments," INFOCOM'00, Tel-Aviv, Israel,
pp. 1537-1545, 2000.

[7] Gustafsson E., et al. “Mobile IPv4 Regional
Registration” draft-ietf-mobileip-reg-tunnel-05, IETF,
September 2001.

[8] Hristea C. and Tobagi F., “A network infrastructure for
IP mobility support in metropolitan areas,” Computer
Networks, 38, pp.181-206, 2002.[9] Jonkman R., Evans J,
Frost, V., "Netspec: A Tool for Network Experimentation
and Measurement", University of Kansas, 1998.
http://www.ittc.ku.edu/netspec/

[10] Khan J., Zaghal R., and Gu Q., “Symbiotic Streaming
of Elastic Traffic on Interactive Transport,” IEEE ISCC'03,
Antalya, Turkey, July 2003.

[11] Khan J. and Zaghal R., "Protocol Modeling with
Transparent Networking", CCCT'04, Austin, TX, August
2004.

[12] Lee Beng-Ong, "Wide Area ATM Network
Experiments using Emulated Traffic Sources," Master's
Thesis, University of Kansas, Lawrence, Kansas, 1995.

[13] Mishra A., Shin M., Arbaugh W., “An Empirical
Analysis of the IEEE 802.11 MAC Layer Handoff Process,”
Dept. of Computer Science, University of Maryland,
technical report number CS-TR-4395.

[14] Perkins C., “IP Mobility Support,” RFC2002, IETF,
October 1996.

[15] Perkins C., “Mobile IP, Design Principles and
Practices,” Addison Wesley, 1998.

[16] Ramjee R., et al. “HAWAII: A Domain-Based
Approach for Supporting Mobility in Wide-area Wireless
Networks,” Proc. IEEE Int’l Conf. Network Protocols,
1999.

[17] Singh R., Tay Y., Teo W., and Yeow S., “RAT: A
Quick (And Dirty?) Push for Mobility Support,” 2nd IEEE
Workshop on Mobile Computer Systems and Applications,
pp. 32, Feb. 1999.

 [18] Stevens W., “TCP/IP Illustrated Volume I,” Addison-
Wesley, 1994.

[19] Valk´o A., “Cellular IP: A New Approach to Internet
Host Mobility,” ACM SIGCOMM Computer and
Communication Review, Vol. 29, No.1, pp. 50–65, January
1999.

[20] Wu J., et al. “Intelligent Handoff for Mobile Wireless
Internet,” Mobile Networks and Applications, Vol. 6,
pp.67-79, 2001

[21] Wu W., Banerjee N., Basu K., Das S., "Network
Assisted IP Mobility Support in Wireless LANs,"
Proceedings of the 2nd IEEE International Symposium on
Network Computing and Applications, NCA’03, 2003.

[22] Yokota H, et al., “Link Layer Assisted Handoff
Method over Wireless LAN Networks,” Proc. of
MOBICOM ’02, Sept. 2002.

