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Abstract 

 
Loss-Free handoff in Mobile Networks is an 

extensive research area. Mobile IP (MIP) provided a 
solution to enable a mobile node to roam from one 
location to another while maintaining its network 
level connectivity. However, handoff latencies and 
longer triangular routing paths in MIP can severely 
degrade communication performance and in 
particular cripple connection oriented protocols like 
TCP. In this paper we propose an alternate approach 
for robust mobility. The scheme is based on the 
principle of 'Interactive Transparent Networking' 
where all networking layers remain lightweight but 
are engineered for interactivity. This would allow 
principle intelligent actions to be performed at the 
application layer. With protocol interactivity we 
demonstrate a novel scheme that switches IP address 
in the TCP/IP stack on both end-points and perform 
loss-free rapid handoff. The scheme offers not only 
loss-free handoff, but also offers several fundamental 
system advantages; (i) it does not impose any changes 
on original network protocols or their dynamics, and 
(ii) it fully adheres to the end-to-end principle and do 
not require intermediary nodes as in MIP. We have 
achieved a real implementation of the scheme on 
FreeBSD and tested the real system over Internet with 
voice traffic. We show that this scheme can 
dramatically reduce handoff latency and improve TCP 
performance by offering shorter routes with loss-free 
handoffs and smooth, low-jitter voice stream.  
 
 
1. Introduction 
 

In a typical wireless environment, if a mobile node 
(MN) roams from one access point to another within 

the same IP subnet; it only needs to perform link-layer 
(L2) handoffs in order to maintain its wireless 
connectivity. These L2 handoffs remain transparent to 
the IP layer (L3). However, if the MN migrates to a 
different IP network, its current IP address becomes 
topologically invalid and it must reconfigure a new IP 
address from the newly visited network –i.e. it must 
also perform L3 handoff. In this latter case, L3 
handoff should also remain transparent to upper 
layers. For example, if the MN in figure 1 moves from 
AP1 to AP2 –it is roaming within subnet1—it only 
needs to perform L2 handoff. However, if it moves 
from AP2 to AP3 it must perform L3 handoff and 
configure a new IP from subnet2 since AP3 resides in 
a different IP subnet.  

If a MN performs handoff it acquires a new IP from 
the new access point which renders all the existing 
TCP/IP connections useless. Since classic IP was 
originally designed without any mobility support, its 
routing mechanism relies on IP address semantics to 
deliver data to the correct destination. 

Mobile IP (MIP) [14] provided a global solution to 
this problem by introducing indirection through a set 
of Mobility Agents. In MIP, each MN is identified by 
an IP address assigned to it by its home network –
called home address—regardless of its current point of 
attachment. MIP introduced three new entities, 
namely the home agent, the foreign agent and the MN. 
Whenever a MN performs L3 handoff, it must register 
its current point of attachment with the home agent. 
For every registered MN, the home agent intercepts all 
incoming traffic from a given sender –usually referred 
to as the corresponding node—and redirects it 
through tunneling (packet encapsulation) to the MN’s 
most recently registered location. As a sender, the MN 
can bypass the home agent and transmit packets 
directly to the corresponding node. This kind of traffic 



flow is referred to in the literature as triangular 
routing. 

In MIP, foreign agents periodically broadcast 
Agent Advertisements to detect MN movement. When 
the MN decides to migrate to a new network, it 
configures a new care-of-address, and then it registers 
this address with the home agent. The home agent 
updates its address binding cache and sends an ACK 
to the MN. Communication between the two endpoints 
cannot resume until registration is completed at the 
home agent. This interruption affects transport level 
performance –e.g. may cause TCP retransmission 
timeouts—and may cause severe quality degradation 
especially for time-sensitive (audio/video) 
applications.  

In this paper we propose IPMN (Interactive 
Protocol for Mobile Networks) for network level 
mobility support which diverts from the MIP 
approach. The scheme is based on the new paradigm 
of Interactive Transparent Networking [10] –which we 
have investigated recently—and enables the 
corresponding node to send packets directly to the MN 
and therefore eliminates the need for a home agent 
and triangular routing. The Interactive Transparent 
Networking paradigm calls for meta-engineering of 
existing protocol to add interactivity –protocol end-
point components are reengineered to create an 
interactive version of a protocol with added handles 
and API that facilitates event passing and access to its 
internal states. The paradigm complies with the 
following three principles of backward compatibility: 

1) The interactive version of a protocol remains 
functionally compatible with legacy non-interactive 
versions. 

2) The API is an extended set, and thus classical 
applications remains fully usable with the interactive 
versions of the end-point components. 

3) Interactivity –if used—does not change the 
network side dynamics of the original protocol and 
thus the dynamics of the network. 

The paper is organized as follows: in section 2 we 
discuss MIP handoff latency and related work. In 
section 3 we briefly present the Interactive 
Transparent Networking paradigm. In section 4 we 
discuss IPMN and in section 5 we present experiment 
details and performance results. We give concluding 
remarks in section 6. 
 
2. Mobile IP Handoff Latency 
 

Handoff in Mobile IP goes through a three-stage 
life cycle (i) L2 handoff (e.g. IEEE802.11 handoff), 

(ii) movement detection, and (iii) address registration. 
Normally, the three stages do not overlap and should 
occur in the same order. Therefore, the summation of 
their latencies constitutes the total handoff latency. If 
we can reduce the latency of any one of these stages –
or better, if we can eliminate a stage—we can improve 
the total handoff latency.  

The original MIP proposal maintained a clean 
separation between link-layer (L2) and network layer 
(L3), which affected performance adversely; whenever 
L2 performs handoff, L3 is not notified. L3 then has to 
resort to agent advertisements to discover movement 
and initiate its own handoff procedure. Movement 
detection algorithms that rely on Agent advertisements 
are called advertisement based algorithms. These are 
the Lazy Cell Switching (LCS) [14], and Eager Cell 
Switching (ECS) [15]. In [4], Fikouras, et al, 
introduced a hinted based movement detection 
algorithm called Fast Hinted Cell Switching (FHCS) 
which allowed L2 to send ‘triggers’ to L3 whenever a 
handoff event is initiated. FHCS –which is consistent 
with our event-based scheme—was able to 
significantly reduce handoff latency by negating the 
need for movement detection and agent selection. 
Also, Researchers aimed at reducing registration 
signaling delay by introducing a hierarchical structure 
and therefore allowing regional registration and 
reduced round trip delay. Among these are [2] who 
introduced Micro-mobility by dividing the network in 
a hierarchical structure and [7] who allowed the MN 
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to perform local registrations in the visited domain in 
addition to home registration. [8] And [16] can be also 
classified in the same category; the former suggested a 
network infrastructure which covers a large 
geographical area with L2 switches, and the latter 
used proprietary control messages for MN location 
management and routing within a regional area. Other 
proposals took a different direction by suggesting a 
deployment scheme of MIP based on existing 
infrastructure. The RAT (Reverse Address 
Translation) architecture [17] is based on the network 
address translation (NAT) protocol. It uses a RAT 
device to support IP mobility by providing packet re-
direction service between the correspondent node and 
the MN.  

The above proposed solutions though have 
promised advantages over classical MIP, 
unfortunately, they require new infrastructure and/or 
considerable network level modifications. Thus, they 
are yet to see real deployment. 

 
3. Interactive Transparent Networking 
 

During the past few years, we have been developing 
a new paradigm called Interactive Transparent 
Networking. It provides a framework for researchers to 
deploy protocol solutions/modifications without 
embedding custom codes within the network layer 
itself. Instead, we propose using inter-layer 
interactivity and state transparency to be able to 
perform these solutions at the upper layers –e.g. at the 
application layer. In this section we briefly define the 
new paradigm; more information can be found in our 

previous work in [10] and [11]. 
Within the interactive-transparent framework, we 

provide means to allow programs in upper layers to 
subscribe with protocols in lower layers to be notified 
when certain events (state transitions) occur. 
Subscribers can then pull up the required service state 
information, perform the actual action by 
programmable components running in the upper layer 
–called Transientware modules—and then create 
handles to push down the generated actions (state 
modifications) into the target network layer. A 
subscriber application should be interested in certain 
events that might occur in the target protocol, and by 
subscribing to events, the subscriber wishes to be 
notified when any one of the events has occurred. In 
figure 2 we show the general architecture of a TCP-
based interactive protocol. Upon opening the socket, 
an adaptive application may bind a Transientware 
module to a designated TCP event by subscribing with 
the kernel. This is represented by arrows 1 and 2 in 
figure 2. The binding is optional; if the application 
chooses not to subscribe, the system defaults to the 
silent mode identical to TCP classic. When the event 
occurs in TCP, the kerenl sends a signal to the upper 
layers (3a) and at the same time it saves the event 
information (3b). A special handler catches the signal 
and probes the kernel for the event type (4a, 4b), The 
handler then invokes the appropriate Transientware 
module to serve the event (5),. A Transientware 
module can also use the probing API to access the 
kerenl state (6a, 6b) or to pass some information to the 
subscriber application itself (7). 
 
4. Interactive Protocol For Mobile 
Networks (IPMN) 
 
4.1. The Scheme 
 

We employed the Interactive Framework [11] to 
design an alternative solution for the address binding, 
registration, and tunneling in MIP. The basic idea of 
our scheme is to enable the MN to obtain a new IP 
from the future FA before handoff is performed, 
replace the ‘source IP’ field in the TCP/IP stack of the 
MN with the new IP, and relay the new IP to the fixed 
host (FH). Once it receives the new IP, the FH 
immediately switches to the new IP by replacing the 
‘destination IP’ field in the TCP/IP stack with the new 
IP. A best case scenario for this scheme would happen 
if the MN can locate the new Access Router and 
obtain a new IP address, e.g., through a DHCP server 
before loosing connection with the current Access 

Figure 2. TCP interactive extension and API. 
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Router. Once it obtains its new IP 
address, the MN proceeds with L3 
handoff as follows: 

1. Freeze the TCP connection by 
advertising a zero window to the FH. 

2. Perform actual L3 handoff by 
replacing the IP fields in the TCP/IP 
stack at both the MN and the FH with the 
new IP address. 

3. Wakeup TCP by advertising a 
nonzero window to the FH. 

Handoff pre-processing, i.e., locating a 
future Access Router and obtaining a new 
IP address, can also be done at the 
application level prior to L2 handoff. 
Fortunately, since we allow protocol 
interactivity, we can configure L2 to send 
an early signal the application layer about 
an impeding handoff. This gives the 
application layer a grace period to do all 
the bookkeeping while it is still connected through the 
current Access Router. Naturally, a simple application 
level IP-lookup module should perform the task. We 
can benefit from interactivity again by allowing this 
IP-lookup module to probe L2 for the identity of the 
next Access Router (e.g., its IP address). Then, this 
module can contact the router and obtain its next IP 
address via a DHCP attached scheme. A number of 
previous works like [4], [17], and [21], have shown 
excellent schemes that can support this methodology. 
We can re-model these schemes –or some aspects of 
them—with the interactive paradigm to implement the 
handoff pre-processing illustrated above. Furthermore, 
we believe that since the MN can obtain a new IP 
before handoff, this pre-processing will not impact 
handoff latency. 

The purpose of this current implementation is to 
experiment the basic idea of physically changing the 
IP number at both end-points whenever the MN 
configures a new IP address. Therefore, this version of 
IPMN, only implements the three-step L3 handoff 
procedure shown above. In the future, we plan to 
augment IPMN to include the handoff pre-processing 
as well.  
 
4.2. The Architecture 
 

IPMN tracks three events at the MN and one event 
at the fixed host (FH). Figure 3 describes the 
conceptual architecture of IPMN, and Table 1 
describes the corresponding events and their handling 
sequences at each endpoint. At the MN, when the link 
layer detects signal fading and initiates L2 handoff 
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Figure 3. IPMN architecture and event sequencing. 

Table 1. IPMN events and handling 

Node 
Event  
No. Layer Event tracked Action taken by event handler 

1 LL L2 handoff has been initiated.  Advertises a zero window to the Correspondent Node (CN). The freeze 
mechanism of TCP will force the CN to stop transmission. 

2 IP 
A new IP has been assigned to 
the Mobile Node (MN) from the 
future Access Router. 

Call the switch_ip() system call. This will replace the source IP filed in 
the IP header of the MN with the new IP and will send a segment to the 
CN with TCP option = SWITCH_IP to replace the destination IP field on 
the CN. 

M
obile N

ode 

3 TCP The ‘SWITCH_IP’ segment has 
been ACKed. 

Advertises a non-zero window to the CN. This will unfreeze the 
connection and enable the CN to resume transmission. 

C
orr. 

N
oded 

4 TCP 
A special TCP segment received 
with TCP option=SWITCH_IP. 

Strip the new IP number from the options part of the segment, then call 
the switch_IP() system call which stores the new IP in the destination IP 
field of the IP header overwriting the old IP number.  

 



(event 1), it signals the subscribing application. When 
the event is received at the application layer, a 
Transientware module (handler 1) is activated 
immediately; this module simply makes a simple 
system call which lets TCP advertise a zero window to 
the FH. This would normally cause the FH to stop 
transmission. When the MN gets a new IP from the 
future network (event 2), it activates (handler 2) which 
transmits the future IP to the FH at TCP level through 
a system call. The new IP is sent in a special TCP 
segment with ‘option=SWITCH_IP’. At the FH, 
When TCP recognizes this option (event 4) it activates 
(handler 4) which then triggers a switch_ip() 
system call to replace the ‘destination IP’ field in the 
TCP/IP stack with the newly received IP number. In 
the mean time, at the MN (handler 2) also makes a 
similar system call which changes the ‘source IP’ filed 

in its own TCP/IP stack. When the previous 
‘SWITCH_IP’ segment is ACKed at the MN (event 
3), the MN advertises a non-zero window to the FH 
which allows it to resume transmission. 

Advertising a zero window to the FH to temporarily 
freeze the TCP connection was proposed in [6] to 
improve TCP performance over wireless networks. We 
adapted this part of their solution in our interactive 
scheme as a way to avoid packet loss during handoff. 
Although this will slightly disrupt the service while 
handoff is being performed, but since we avoid packet 
loss, the FH will not resort to congestion control 
procedures avoiding unnecessary retransmissions and 
sender rate throttling. As we show later, this will 
definitely improve TCP performance and save network 
resources. 
 
5. Experiment and Performance Analysis 
 

We have implemented the scheme on FreeBSD-4.5 
by extending the kernel source code. We call the 
extended implementation BSD-interactive1. We have 
created a number of system calls that implement the 
system’s API. The API list is shown in Table 2. The 
first two system calls are standard in the interactivity 
service2. They allow demanding user applications to 
subscribe with lower network protocol to be notified 
when certain events occur. We configured a Signal 
Handler with the OS to catch all signals and filter 
them. Whenever an IPMN relevant signal is detected, 
the signal handler uses the GetEventInfo() 
function to retrieve event type from the network 
protocol which generated the signal. The signal 
handler then activates the appropriate Transientware 

                                                        
1 A public distribution of the complete modified kernel is posted on our 
web page: http://www.medianet.kent.edu/ipmn/ 
2 More details about the interactivity framework and associated service 
model and API can be found in [11].  

Figure 4. Testbed and experiment setup 
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Table 2. API of IPMN 
System Call Usage 

Subscribe(evt) Subscribes with a network layer protocol for event (evt). 

GetEventInfo() 
Used by a global signal handlers which catches all signals from the kernel to probe the kernel and 
retrieve event information and then activate appropriate event handler (Transientware module). 

Relay_IP(IP_addr) Let TCP transmit a special segment carrying the new IP to the other end. 

Switch_Source_IP(IP_addr) Changes the source IP address in local TCP/IP stack. Used by MN only. 

Switch_Dest_IP(IP_addr) Changes the destination IP address in local TCP/IP stack. Used by CN only. 

Freeze_TCP() Advertise a zero window to the other end (the CN) to force it to halt transmission. 

Resume_TCP() Advertise a non-zero window to the other end (the CN) to allow it to resume transmission. 

 



module at the application level (e.g. handler 1 in 
figure 3) to handle the event. The rest of the API 
functions in the table are used by these event handlers 
as described earlier in the IPMN architecture. 
 
5.1. Experiment Setup 
 

Figure 4 explains the experiment testbed. We used 
three machines with AMD 1.6 GHz processor (BS1, 
BS2, and BS2) as our Base Stations and a laptop with 
Intel P-II processor as our MN. The (GW) machine 
was our gateway to the Internet and was also used to 
configure each one of the Base Stations as a separate 
subnet with four IP numbers per subnet. We installed 
FreeBSD-4.5 on all BS machines, the MN, and the 
CN. For Interactivity experiments we installed the 
BSD-interactive on the MN and the CN only. For the 
MIP experiments we installed the MIP 
implementation of the Portland State University [1]–
also known as PSUMIP—on the MN and the three BS 
machines. One of the three Base Stations machine 
(BS1) was configured as the Home Agent (HA), and 
the other two (BS2 and BS3) were configured as 
Foreign Agents.  

For MIP signaling to work correctly, the time must 
be synchronized on all machines that run the MIP 
daemons. For this purpose we used the (ntpd) utility 
in FreeBSD to synchronize with three STATUM 2 
external time servers. We used the simplest possible 

MIP configuration to reduce unnecessary overhead.  
We wanted to test our interactive scheme against 

MIP and compare performance by measuring 
application level voice delay, handoff latency, and 
jitter. We have run all experiments by placing the CN 
in three locations, one locally (in our lab) and two 
remotely; in Texas and Virginia. Table 3 shows the 
three nodes and their route characteristics.  

The CN generated voice traffic based on the 
NetSpec Source Models [9]. We also let the MN move 
along the cyclic path 
(BS1→BS2→BS3→BS2→BS1… etc.) In each run, 
we let server program at the CN transmit voice traffic 
until 5 Mbytes has been received at the MN. We 
configured the MN to perform handoff every 2 
minutes. We used a switch to simulate L2 wireless 
handoff; for example, in figure 4 the MN is connected 
to BS1 through the switch. To perform L2 handoff 
from BS1 to BS2, we manually unplugged BS1 from 
the switch and instantly plugged BS2 to an empty port 
in the switch. We kept the MN connected to the switch 
all the time. 
 
5.2. Traffic Characteristics 
 

In order to model real-world traffic, we used a tool 
called NetSpec [9] which was developed at The 
University of Kansas—to generate traffic at the CN. 
Netspec offers several source models which can 
generate traffic for Telnet, FTP, Video, voice, and 
WWW [12]. In this experiment we only tested with 
voice traffic. We will consider the other types in future 
work. 

In NetSpec., voice has been characterized by a 
constant bit rate (CBR) source. Sampling rate is 8 kHz 
and each sample is 8 bits. This gives the standard bit 

Table 3. Correspondent node locations 

Name Location IP number Average 
RTT 

No. of 
Hops 

Local Kent, Ohio 131.123.36.11 1 ms 3 

Virginia Chantilly, VA 66.94.95.235 90 ms 19 

Texas Huston, TX 70.241.64.99 183 ms 26 
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Figure 5. Call interarrival sampling over 5 
hours for λ = 1. This generates a mean 

interarrival time of 1 second. 
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rate of 64 Kb/sec for acceptable voice quality. Call 
arrivals are modeled by a Poisson process with fix 
hourly rates within one-hour periods. This means that 
the interarrival time between two calls is exponentially 
distributed. The probability density function of 
exponential distribution is given by: 

x
X exf λλ −=)(  mean/1, =λ  

Session duration (holding time) for voice calls was 
also modeled by a Poisson process and followed the 
exponential distribution. Figure 5 shows an example 
of call arrivals with λ=1 over 5 hours sampling, and 
figure 6 shows an example of call duration over 5 hour 
sampling with three values of λ: λ1=0.004167, 
λ2=0.003333, λ3=0.002777. If we take the inverse of 
these λs, we get mean call durations 3, 4, and 5 
minutes respectively. 

At the call level, the source is presented to the 
network as a constant-bit stream. To generate a 64 
Kb/sec voice stream, talk bursts were generated by a 
144-byte blocks separated by 18 ms silence periods. 
 
5.3. Handoff Latency 
 

One of the key features of our interactive scheme is 
short handoff latency. After running the experiment 
several times on the three nodes we have observed a 
big difference –up to two orders of magnitude—in 
handoff latency between IPMN and classic MIP. Table 

4 shows the handoff latency of the first five handoffs 
on the three nodes for both MIP and IPMN runs. 
IPMN managed to perform handoff in 110 to 200 
milliseconds on average while MIP needed between 14 
to 44 seconds. This substantial reduction in handoff 
latency highlights the advantage of event-based 
protocols like IPMN over timer-based protocols like 
MIP. The former allows protocols in different layers to 
interact and pass events and new state information –
like the new IP number in our case—to upper layers 
instantly. This enables peer protocols to respond 
immediately, therefore cutting down unnecessary 
overhead time. Timer-based protocols on the other 
hand usually use a timer-based periodic probing 
mechanism to discover state changes. For example, in 
this particular implementation of MIP that we have 
tested, the foreign agent sends beacon signals (agent 
advertisements) to discover MN movement every 60 
seconds! A best case scenario will happen if L2 
handoff was performed right before the arrival of a 
beacon signal. Therefore, this process will take half of 
that time on average –i.e. 30 seconds. Adding to that 
communication and address registration overhead we 
can easily reach the 40 seconds average especially on 
the two remote nodes. Actual latency in MIP was even 
longer; by the time MIP recovers and becomes ready 
to resume service, TCP has already timed out and will 
probably need even more time to discover MIP 
recovery and then resume communication on its own 

Table 4. Handoff latencies (in ms) of the first five handoffs 
Local Virginia Texas 

Handoff 
IPMN MIP IPMN MIP IPMN MIP

1 106 12654 114 58669 202 51359
2 107 7124 106 24975 193 33187

3 111 1524 106 22672 195 29099

4 115 48945 111 77414 195 63523

5 109 1008 121 30772 200 41676

Average 110 14251 112 42900 197 43769 
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level –and at the application level as well. We have 
observed this behavior of MIP by also registering the 
time when application level communication resumed 
after each handoff was completed. Figure 7 
demonstrates this property by comparing the handoff 
latencies of the first 5 handoffs at the application level 
and at the MIP level. For example, on the Texas node–
figure 7 (c), when handoff 2 was performed, the 
application level suffered 58 seconds of service 
disruption, even though the MIP was responsible for 
33 seconds delay only. While in some cases, TCP 
overhead was small–like handoffs 2 and 3 on the 
Virginia node which had less than 2 second of TCP 
overhead, in other cases–like handoffs 2, 3, and 5 on 
the Local node, TCP added up to 50 seconds. 
 
5.4. Voice Stream Arrival Delay 
 

Now, we show application level performance by 
observing stream arrival delay. At the MN, we kept a 
log file to register the arrival time of each 144-bytes 
block (talk burst) in the voice stream. Figure 8 plots 
the arrival times of the first 20,000 blocks at the MN 

from the two remote nodes: Virginia and Texas. We 
did not include the Local node plot for space 
limitations. 

As we can easily observe, the IPMN dramatically 
outperformed MIP on two levels: Firstly, in general, 
most blocks were delivered faster with IPMN due to 
shorter triangulation-free path that they had to travel 
to reach the MN as well as to smaller overhead. 
Secondly, IPMN plots were much smoother than MIP 
since the latter suffered from longer disruption of TCP 
service due to longer handoff delays. This can be 
observed in the Texas plots. After each handoff event, 
we see the impact of TCP's slow start behavior on the 
plot. These step jumps and the impact of TCP 
dynamics created jitter on the voice stream –as we 
show in the next section. One last observation is the 
impact of connection speed. The CN in Texas was 
transmitting on a 350 kbps DSL connection; MIP 
needed about 650 seconds to transmit all 20,000 
blocks while IPMN managed to transmit them in 
about 450 seconds only –a 3.2 minutes difference. The 
node in Virginia was transmitting on 1.5 Mbps 
connection. It needed 285 seconds on MIP, and 140 
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seconds on IPMN –a 2.4 minutes difference. 
 
5.5. Jitter on the voice stream  
 

Figure 9 plots the interarrival times of the first 
16000 blocks arriving at the MN from the Texas node, 
(a) on IPMN, and (b) on MIP. On IPMN almost all 
blocks were delivered at (75 to 90) ms apart, except 
(mainly) those that faced a handoff –only 22 blocks 
were delayed for more than 100 ms. In figure 9 we 
show a maximum of 150 ms on the y-axis to be able to 
see the mainstream case. Average interarrival time for 
all blocks on IPMN was 85.57 ms. On MIP the 
situation is different; about 177 blocks in the stream 
faced more than 100 ms interarrival –10 of these 
blocks faced more than 8000 ms delay—and average  
interarrival time for all blocks was 129 ms. 
 
6. Concluding Remarks 
 

In this paper, we have presented IPMN –an 
interactive protocol for network mobility. It is based 
on interactive transparent networking paradigm which 
we have developed recently. IPMN uses true end-to-
end signaling to update the current state of the mobile 
node’s location at both end-points. Using interactivity, 
the MN was able to freeze the TCP connection and to 

perform loss-free, rapid handoff by simply changing 
the 'source IP' field in TCP/IP stack of the mobile node 
and the 'destination IP' field in the TCP/IP stack of the 
correspondent node. 

We have shown by real experimentation with voice 
traffic that IPMN offered two key advantages over 
conventional timer-based MIP; (a) it allowed direct 
end-to-end communication between the correspondent 
node and the mobile node by eliminating triangular 
routing, and (b) it dramatically reduced L3 handoff 
latency by canceling movement detection and address 
registration. Also, we have shown that the scheme can 
meet the demands of a low-jitter voice stream. 

Essentially, the results demonstrate the benefit of 
the principle of interactivity in networking. It enables 
event based action and response. It distinguishes from 
the traditional timer-based MIP which depends on 
periodic actions. The periodic agent advertisements 
(beacon signals) used in MIP is one of the prime 
reasons for its sluggishness. MIP has to maintain a 
delicate balance between advertisements' 
frequency/size and their impact on network 
throughput3. Event-based scheme such as the one 
demonstrated by IPMN does not require this 
compromise. Indeed the benefit of instant interactivity 
was so dramatic that it could easily wipeout the 
seeming advantage of MIP’s low layer 
implementation. 

                                                        
3 The original MIP proposal [14] recommended shortest agent 
advertisement rate of 1 per second. The implementation that we have 
tested in this paper (PSUMIP) uses a much slower rate of 1 per minute. 
We tried to lower this rate, but it did not work. Since PSUMIP was the 
only available implementation compatible with FreeBSD-4.5 kernel at 
the time, we could not test with faster agent advertisement rate. Many 
other MIP implementations allow the user to set a preferred rate of one 
or more seconds. The best rate that would yield optimal network 
throughput is still controversial and is highly dependent on MN's 
movement frequency and traffic load. 
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