
Analyzing the Impact of Neighbor Sensing on the
Performance of the OLSR protocol

Michael Voorhaen and Chris Blondia

University of Antwerp, Dept. Mathematics and Computer Science
Middelheimlaan 1, B-2020 Antwerpen, Belgium

{firstname.lastname}@ua.ac.be

Abstract— This paper presents an analysis of several neighbor
sensing approaches for the OLSR routing protocol. While several
performance studies of OLSR proceed this work, few attention
has been paid to the impact of neighbor sensing on the per-
formance of ad hoc routing protocols. The goal of this article
is to better understand how neighbor sensing can contribute to
packet loss in an OLSR network and thus degrade the overall
performance. Three neighbor sensing schemes are compared: the
OLSR HELLO messaging protocol, Fast-OLSR and a link-layer
feedback scheme that uses information of the 802.11 MAC to
determine lost links. To allow more detailed analysis of the events
occuring in the network we initially limit our simulation setup
to a simple scenario. As a result we are able to seperate the
loss of packets into loss due to the neighbor sensing mechanism
used and loss due to the impact of neighbor sensing on the other
protocol operations. In the second part of this paper we compare
the performance of the link-layer feedback scheme to OLSR in
a random waypoint scenario.

I. INTRODUCTION

Mobile Ad hoc NETworks (MANETs) are an emerging
technology made possible by the progress in the field of wire-
less communication. Target applications for these networks
can be envisaged for almost every aspect of modern day
life, ranging from home automation systems, electronic learn-
ing environments, e-health, vehicular networks up to public
safety communication systems. In each of these applications
ad hoc networks are faced with dynamic environments and
neighboring nodes can be discovered or lost at any moment,
causing the network topology to change constantly. Ad hoc
routing protocols can be classified into proactive, reactive
and hybrid routing protocols. Proactive protocols are very
similar to routing protocols from wired networks, since they
regularly advertise routing information into the network and
each node keeps a route to each other node in the network
(e.g. OLSR [6]), however support for mobility in the network
has been added. Reactive protocols follow the reasoning that
in an ad hoc network a route to a node is not needed until it
is actually used. Therefor routes are determined on-demand,
often by a so called route request packet that is broadcasted
into the network (e.g. AODV [7], DSR [8]). Hybrid protocols
combine the benefits of both protocols by working proactive in
the local neighborhood of a node and reactive for nodes further
away. All of these protocols have one common part, they need
to be able to know what nodes they can reach directly. In this
paper we will refer to this as neighbor sensing. The primary

purpose of neighbor sensing is to discover information on
the local topology, i.e. discovering new neighbors and timely
discovery of losing a direct link with a neighbor. The latter is
critical if packet loss is to be avoided. The intention of this
paper is to investigate the impact of neighbor sensing on the
performance of the OLSR routing protocol [6]. We choose
the OLSR routing protocol because it clearly defines its own
neighbor sensing protocol in the RFC, and several alternatives
to this protocol have already been proposed.

A. OLSR

The OLSR (Optimized Link State Routing) protocol is a
proactive ad hoc routing protocol. Its operation is similar
to classic link state routing protocols, however to avoid the
overhead, inherent to advertising the link state information,
a clever flooding optimization is used. The OLSR protocol
consists out of four major elements:

• Neighbor Sensing: Each OLSR node gathers information
about its local neighborhood from the HELLO messages
that it receives. The operation of the HELLO messaging
is explained in detail in section II-A.

• MPR Selection: From its neighbor set OLSR chooses a
small amount of Multi Point Relays (MPRs) that will be
used to optimize flooding of routing signalling packets.

Fig. 1. Optimized flooding in OLSR

• Optimized Flooding: To decrease the overhead of ad-
vertising link state information only nodes chosen as
MPR send out the Topology Control (TC) messages.
The TC messages that MPRs broadcast only contain the
links of their MPR selectors, to limit the packet size.
This approach reduces the signalling overhead, while still

guaranteeing that there exists a route between each pair
of nodes that can reach each other.

• Route Selection: Routes are computed using a link state
algorithm that is similar to the Dijkstra algorithm.

B. Related Work & Outline

[12] analyzes the performance of the MPR selection al-
gorithm used in the OLSR protocol. [11] points out some
problems in the packet processing of several OLSR imple-
mentations that impacts the convergence of the MPR selection
algorithm towards a stable set of MPRs after a new link is
discovered. Section II describes the OLSR neighbor sensing
protocol, the fast-OLSR extension, and an approach that
enhances OLSR neighbor sensing using feedback from the
802.11 link-layer. The simulation study that we performed is
described in sections III and IV. Section V concludes this
paper and proposes some future research perspectives.

II. NEIGHBOR SENSING

A. OLSR Neighbor Sensing

The OLSR RFC [6] proposes a HELLO messaging protocol
to perform neighbor sensing. In order for a node to discover its
neighbors, HELLO packets are broadcasted periodically. The
symmetric nature of a link is determined by advertising the
neighbors from which a node has received a HELLO message
in its own HELLO messages. We will first introduce some
additional notations to express the neighbor set and the con-
tents of the HELLO messages. The neigbor set of a node Nx

that has Ns as a symmetric neighbor and Na as an assymetric
neighbor can be written down as a tuple of the assymetric
and the symmetric links: NSx = (Ax = {Na}, Sx = {Ns}).
The following expression represents the contents of a HELLO
message from Nx: HELLOx = (Nx, Ax, Sx). The operation
of the HELLO messaging protocol between two nodes, called
N1 and N2 can then be explained as follows:

• Both N1 and N2 start out with empty neighbor sets:
NS1 = (∅, ∅) and NS2 = (∅, ∅).

• N1 sends out a HELLO message which is received by
N2. Since N1 does not know any neighbors the neighbor
list in the HELLO message is empty: (N1, ∅, ∅).

• On receiving this message N2 adds N1 to its neighbor
set and marks the link to N1 as asymmetric. The update
neighbor set of N2 is then NS2 = ({N1}, ∅).

• N2 broadcasts a hello message containing N1 in the list
of asymmetric neighbors (N2, {N1}, ∅).

• N1 receives the hello message and adds N2 to its
neighbor set. Since N2 advertised an asymmetric link to
N1, the latter realizes that N2 is receiving its HELLO
messages. Thus it concludes that a symmetric link with
N2 exists. This results in the following updated neighbor
set of N1: (∅, {N2}).

• N1 broadcasts a hello message and advertises N2 as a
symmetric neighbor: (N1, ∅, {N2}).

• On receiving this message N2 realizes that it has a
symmetric link to N1: NS2 = (∅, {N1}).

• Periodic broadcasting of the HELLO messages is used to
keep the entry of the link between N1 and N2 alive, a
link is only considered lost if its entry times out before
another HELLO message was received.

In addition to discovering new neighbors the OLSR HELLO
messaging protocol is used to determine if links are symmetric.
OLSR only takes into account symmetric links in its route
computation algorithm. To optimize the flooding of control
messages, an OLSR node also chooses some of its neighbors
to act as a Multipoint Relay (MPR). The nodes chosen as
MPR are also advertised in the HELLO messages. These
entries can also be considered as symmetric links since only
nodes to which a symmetric link exist can be chosen as
MPR. Additionally a node can build up a view of its two
hop neighborhood using the information gathered from the
HELLO messages it receives.

B. Link-layer Feedback extension

We now propose a lightweight link-layer feedback extension
to the OLSR protocol that works alongside the HELLO
messaging protocol and attempts to improve the reaction time
for detecting a link down event.
Figure 2 shows how a simple link-layer feedback scheme, that
reacts to link-layer failures, can be implemented. This figure
shows a rough description of how a router works internally.
Packets arriving from the network are checked, to see if they
have reached their destination, if so they are delivered to the
system. Packets from the system or those that have not yet
reached their destination will be forwarded and a route lookup
is performed. If no route is found the packet is discarded, else
the packet is delivered to the link-layer (in our case 802.11).
Packets that 802.11 can not deliver to the next hop are sent
back up the network stack to the network layer, i.e. OLSR
(LL Feedback). In order for OLSR to determine what the
next hop was it needs to perform a reverse ARP lookup in
the ARP cache. If this lookup succeeds the link entry in the
OLSR Link Table is marked as asymmetric and the routing
table is updated. OLSR will then attempt to reroute the packet
through another node. Marking the link as assymetric makes
sure that the next time OLSR sees a HELLO message from
this neighbor it will reactivate the link and it can be used
again, making sure that the three-way handshake that is used
normally is no longer necessary.
It is important to remark that in the case that 802.11 does not
provide correct information (e.g. the network is too congested
to send the packet), OLSR will also mark the link as assy-
metric. The impact on the protocol should be minimal since
it only requires one HELLO packet to recover and the same
situation where one node has marked the link as symmetric
and the other node has not can also occur when the three-way
handshake is not yet completed.
In our simulations we set the short retry limit, i.e. the number
of times 802.11 tries to send the packet, to the default value
specified by the protocol: 7. This means that 802.11 will
attempt to send a packet 7 times before assuming that it cannot
reach the next hop.

From Network From System LL Feedback

To NetworkTo System

Check Destination

Discard

Update Neighbor Set

Lookup Route

Fig. 2. Link-layer Feedback Extension Fig. 3. Strip Scenario

Parameter value
HELLO INTERVAL 1s
TC INTERVAL 5s
NEIGHB HOLD TIME 3s
TOP HOLD TIME 15s

Fig. 4. Default OLSR Parameters

Parameter value
Node coverage 100m
802.11 Rate 2Mb/s
Application type CBR
Packet size 500byte
Rate 64kb/s

Fig. 5. Simulation Parameters

C. Fast-OLSR

Fast-OLSR [9] assumes that in a highly mobile ad hoc
network the default HELLO frequency is not enough to track
the motion of the node. It attempts to improve upon the OLSR
neighbor sensing protocol by introducing additional signalling
when the mobility increases. A node switches to Fast-OLSR
when it notices that it is moving fast (e.g. by keeping track
of the changes in its neighborhood). When in Fast-OLSR
mode the node starts broadcasting fast-HELLOs, which are
generated at a higher frequency then the default HELLO
messages. To reduce the overhead caused by the increased
frequency of the fast-HELLOs, they contain a limited number
of neighbor addresses. The nodes receiving a Fast-HELLO
will then reply with a fast-HELLO, and from the nodes that
replied a small set of MPRs is chosen. In this way a set of Fast-
Links are established which are kept alive using fast-HELLOs.
If an MPR misses a fast-HELLO from the moving node it
broadcasts a TC message declaring the lost link. In this way
loss of a link can be detected faster than using the default
OLSR neighbor sensing protocol.

III. STRIP SCENARIO

In the following sections we will investigate in detail
the benefits and problems related to these neighbor sensing
approaches. We take a look at a simple strip scenario, shown
in Fig. 3. In real life this could compare to a highway scenario
where one car is driving faster than the other cars, or a
variety of other examples. For our simulations we will use
the nsclick [2] simulation platform. Nsclick embeds the Click
Modular Router Platform ([3]) into the ns-2 [1] simulator
allowing us to run actual routing protocols developed for the
click platform inside a simulation. We based our work on a
click implementation of the OLSR protocol . The parameters
used for OLSR are shown in Fig. 4.

In our simple scenario only one application is running,
which is a CBR stream between the first node and the
moving node. Different speeds for Nm where simulated: from

2.0m/s to 20.0m/s in 10 steps. A summary of the important
parameters can be found in Fig. 5.

A. Results

Figures 6 and 7 show the packet receive (Rx) and drop
events for the OLSR neighbor sensing protocol and OLSR with
the link-layer feedback extension respectively. We will start by
discussing the results for a standard OLSR implementation.

a) OLSR Neighbor Sensing: Figure 6 shows that each
time the destination moves out of range of the last hop
several packets are lost. In total four gaps can be found in
the packet arrival graph, corresponding to Nm losing its direct
connnection with N1, N2, N3 and N4 respectively. This loss
is caused by the HELLO messaging protocol of OLSR. As
specified in table 4 the HELLO interval was set at the default
value for OLSR, which is 1 second, and the HELLO timeout
value is set to 3 seconds. This means that until the neighbor
entry of Nm times out, OLSR will keep routing the packets
to the destination while it is no longer in range.
As can be seen in Fig. 11 no trend in the packet loss can be
observed with different speeds of Nm.
The effect of the HELLO interval on the packet loss is shown
in Fig. 9. We can conclude that even if we drastically decrease
the HELLO interval there is still packet loss when the data rate
is high. In fact the rate of the HELLO messages should be a
function of the rate at which a node is forwarding packets and
not the mobility, since the latter only affects the rate at which
the link down events occur. Fig. 10 shows that the amount
of routing signalling packets increases exponentially when the
HELLO interval decreases linearly, as was to be expected.

b) Link Layer Feedback: Figure 7 shows the benefit of
the link-layer feedback mechanism, however there are still two
gaps with packet loss. We will now provide a detailed analysis
of the events occuring in this simulation.
No packets are lost when the link between N1 and Nm

disappears, since N1 can immediately reroute the packets
through N2, when it notices the lost link. The same argument

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000

Si
m

ul
at

io
n

T
im

e
(s

)

Packet Sequence Number

Rx
Drop

Fig. 6. Pakket arrival events for OLSR (Packets
dropped are shown at 40.0s)

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000

Si
m

ul
at

io
n

T
im

e
(s

)

Packet Sequence Number

Rx
Drop

Fig. 7. Pakket arrival events for OLSR-LL
(Packets dropped are shown at 40.0s)

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000

Si
m

ul
at

io
n

T
im

e
(s

)

Packet Sequence Number

Rx
Drop

Fig. 8. Pakket arrival events for OLSR-LL with
additional MPRs (Packets dropped are shown at
40.0s)

 0

 50

 100

 150

 200

 250

 300

 350

100 200 300 400 500 600 700 800 900 1000

pa

ck
et

s
lo

st

HELLO INTERVAL (ms)

OLSR
OLSR-LL

OLSR-LL + MPR
OLSR estimate

Fig. 9. # packets lost for different values of
HELLO INTERVAL

 5

 10

 15

 20

 25

 30

 35

 40

 45

100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
in

 #
 p

kt
s

(x
10

00
)

HELLO INTERVAL (ms)

OLSR
OLSR-LL

OLSR-LL + MPR

Fig. 10. Routing Signalling Overhead

 0

 50

 100

 150

 200

 250

 300

 350

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

pa

ck
et

s
lo

st

Speed of the mobile node

OLSR
OLSR-LL

OLSR-LL + MPR

Fig. 11. # packets lost with varying node
mobility

holds for the link between N2 and Nm.
Before Nm loses connection with N3 it will have connectivity
with N3, N4 and N5. This is shown in Fig. 12. Before the
link with N5 existed, Nm needed to choose N4 as MPR since
it was the only neighbor through which it could reach N5.
At the moment Nm discovers that it has a symmetric link to
N5 it will no longer be necessary to choose N4 as an MPR,
causing N4 to stop advertising its link to Nm.
On the exact moment that N3 loses its link to Nm, there
will be no more nodes in the network to advertise that they
have an existing link to Nm. While N3 learns of the lost link
from the link-layer feedback, the only way for Nm to notice
this is when the neighbor entry times out. In this case the
packet loss does not occur at N3 but at N1 and N2 since they
will not have a route to Nm once they learn of the broken
link between N3 and Nm. This also means that it will take
NEIGHB HOLD TIME for Nm to determine that the
link to N3 - its only MPR - has been lost, and to choose
a new MPR (i.e. N4). After which N4 still needs to send a
TC packet before the rest of the network is informed. We can
follow the same reasoning for the packet loss occuring when
the link with N4 is lost, since there is no reason to choose N5

as MPR.
Note that this packet loss is an edge effect. If N4 and N5 had
not been the two last nodes in the chain we would not have
lost any packets. Although this scenario can only happen with
edge nodes that only have 1 MPR, there are two reasons we
are discussing it here:

• It is partially caused by the neighbor sensing.
• While the information about the lost link that N3 adver-

tises into the network using a TC message is up-to-date,
the lack of information on other existing links to Nm is
not.

The asymmetric behaviour of the neighbor sensing, by which
we mean that the sending node has discovered the lost link,
but the receiving node takes much longer to discover this, is
at the bottom of this problem.

c) MPR Coverage: One possible solution is to make sure
that more topology information is available in the network.
This can be done in a number of different ways, but we
have chosen for the solution proposed in [10]. The authors
propose a tunable parameter for the OLSR protocol called
MPR coverage. If MPR coverage is set to 1, a minimal
MPR-set, minizing both overhead and redundancy, is sought.
With MPR coverage set to k, a node will choose at least
k MPRs, meaning increased overhead and redundancy. We
implemented this solution and ran the same simulations as
before, only setting MPR coverage to 2, forcing the OLSR
nodes to choose at least 2 MPRs. Figure 8 shows the packet
arrival events for this simulation and confirms that no packets
are lost. In combination with the link-layer feedback this
solution succeeds in avoiding any packet loss in the simple
scenario we set up. Figures 11 and 9 show that these results
hold for different node speeds and data rates, i.e. no packet
loss are lost. Figure 10 shows that setting the MPR coverage
to 2 does not have a significant impact on the overhead in the
strip scenario.

d) Fast-OLSR: Fast-HELLO messages are not that dif-
ferent from HELLO messages: they are sent at a higher rate
and contain information about less neighbors. This means that
the main benefit of Fast-OLSR is reducing the overhead by

sending smaller HELLO messages, and not by sending less
messages. In [9] the fast-HELLO INTERVAL is chosen to be
100ms instead of 1s. However our results show that the amount
of packets lost is not a function of the speed of the node, but of
the rate at which it is generating traffic. Secondly packets can
still get lost when a node has not entered fast-OLSR mode.

IV. RANDOM WAYPOINT SCENARIO

We have taken a look at the strip scenario since it was
easy to understand and analyze. Even though the results were
quite predictable, the scenario was important in helping us
understand the finer protocol operations of OLSR. Addition-
ally we simulated a random waypoint scenario with 40 nodes
on a 1000m by 1000m surface, 250m transmission range and
20 CBR streams with different speeds for the mobile nodes:
2.0m/s, 4.0m/s, 6.0m/s, 12.0m/s, 20.0m/s and for each
node speed 3 different rates for the 20 CBR streams were
simulated: 16kb/s, 32kb/s and 64kb/s. The same settings for
OLSR were used and the link rate was increased from 2Mb/s
in the strip scenario to 54Mb/s.

Due to the complexity and size of the traces it was not
possible to perform a complete analysis of the obtained
results. Future work will be to translate the experience from
small scenarios like the strip scenario into tools that allow
us to perform a detailed analysis of these random waypoint
scenarios. This section presents an overview of the analysis
performed so far and is meant to validate the results obtained
in section III.

A. Results

Figure 13 shows the packet delivery ratio for the different
node speeds and data rate. The results show that our simple
link-layer feedback approach increases the performance when
the network load is acceptable, at a high network load the
link-layer feedback has a negative impact on the network
performance. The effect of the link-layer feedback scheme can
especially be noticed when the speed is higher and the network
load is low. Indeed at higher speeds this approach increases the
packet delivery ratio by up to 30%. As can be seen in Fig. 13
the performance of the link-layer sensing decreases with a
higher network load for the different speeds. This is because
the link-layer feedback of 802.11 becomes less accurate at a
high network load, i.e. failure of delivering a packet to the
next hop could also mean that the medium was too congested
and the node was not able to gain access to the medium.
We also measured the probability of receiving wrong feedback
from the link-layer, by comparing the time at which an event
was received with detailed topology information obtained by
using the analysis tools provided by the BonnMotion software.
The results are plotted in Fig. 15, that shows that the amount of
false positives depends on the occupancy of the medium when
the speed is low. When the speed is high links will usually
not live very long so the probability of detecting a broken link
while it is still there is a lot smaller. When the network load
is low there is less probability of having a congested link-
layer, which means that there is less probability of having

wrong feedback. However at higher speeds the link lifetime
reduces and the probability of having false positives is higher.
It appears that the accuracy of the link-layer feedback scheme
can be improved, however the false positives only indicate that
the performance can still be improved. We also observed (not
shown in the graphs) that the number of L2 events received
is much larger that the actual number of link breaks in the
scenario, which was unexpected. By carefully observing the
traces we noticed that often several packets are sent up from
the link-layer to the network layer that point out the same
broken link, this occurs more frequent in scenarios with a
higher network load.
Figure 14 confirms these conclusions: the average number of
packets buffered at the link-layer in the high load scenario
is around 30 packets. If we have a look at the maximum
occupancy together with the average number of packets that
are lost due to buffer overflows, we observe that when half
of the applications have been started, at any point there is at
least one node that has a full buffer and on average between
20 and and 40 packets are lost each second. This implies that
when a link between two nodes dissapears there can be several
packets residing in the link-layer queue. In our simple scheme
none of these packets can be delivered to the next hop and
eventually they will sent back up the network stack when
they can not be delivered. Since packets to other neighbors
will also be residing in this queue, it might take longer to
detect the link break since we only notice a possible lost link
when attemping to send the packet. In an ideal scenario a
packet would be served immediately by the link-layer and the
following packets would follow another route. This means that
there is an effect of the network load on the accuracy and the
behaviour of the link-layer feedback scheme.
Our results also imply that with an increasing load the overall
network performance could be increased if the MAC layer
does not only return the packet - whose transmission failed -
to the network layer, but also all the other packets remaining
in the link-layer queue with the same next hop. This would
reduce the amount of unnecessary transmissions and unnec-
essary buffer usage. We did not yet investigate the possible
impact of this, however this can have a significant impact on
the complexity of the system.

V. CONCLUSION

In this paper we have presented an analysis of several link
sensing approaches for the OLSR protocol. Using the nsclick
simulation environment we performed an extensive simulation
study. The following conclusions can be made:

• The OLSR HELLO messaging protocol with its default
parameters can cause enormous packet loss even in small
low mobility scenarios.

• From the point of view of the OLSR neighbor sensing
protocol there is no connection between the speed of the
node and the amount of packets lost ff the node is mobile
The amount of packets lost depends on both the data rate
and the frequency of the HELLO messages.

Fig. 12. Nm has connection with N3, N4 and N5

 0

 20

 40

 60

 80

 100

 120

 140

 160

2.0 4.0 6.0 12.0 20.0

Pa
ck

et
 D

el
iv

er
y

R
at

io
 (

%
)

Speed of the mobile node (s)

OLSR 16e3
OLSR-LL 16e3

OLSR 32e3
OLSR-LL 32e3

OLSR 64e3
OLSR-LL 64e3

Fig. 13. Packet Delivery Ratio in a random waypoint scenario

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300

pa

ck
et

s

simulation time (s)

OLSR-LL 16e3 avg occ
OLSR-LL 32e3 avg occ
OLSR-LL 64e3 avg occ

OLSR-LL 64e3 max occ
OLSR-LL 64e3 avg drops

Fig. 14. Buffer occupancy measurements

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20

Fa
ls

e
Po

si
tiv

es
 (

%
)

Node speed (m/s)

OLSR-LL 16e3
OLSR-LL 32e3
OLSR-LL 64e3

Fig. 15. % of false positive in link-layer feedback

• Link layer feedback from the 802.11 MAC layer can
improve the performance, but introduces asymmetric
neighbor sensing since the receiving node still needs to
rely on the timeout. Feedback from the 802.11 MAC
layer also becomes inaccurate when the network load
increases. This has an effect on the operation of the OLSR
protocol since it is the receiving node that is responsible
for choosing MPRs that should advertise that they can
reach the receiving node. The tunable parameter MPR
coverage can be used to solve this problem.

• The Link-Layer feedback scheme works well in both
the strip scenario and the generalized random waypoint
scenario, without increasing the signalling overhead like
Fast-OLSR.

• When the network load is high the accuracy of the L2
feedback remains acceptable, however the simple scheme
is not resilient to multiple packets with the same next hop
present in the link-layer queue when a link between the
two neighbors dissapears.

Our results show that neighbor sensing can have a large impact
on the performance of a routing protocol, especially in terms
of packet loss and overhead. We feel confident that the work
described in this article will prove a good guideline for future
analysis of the OLSR protocol. In the future we plan to
extend our work and be able to classify packet losses at a
more detailed level and thus be able to tackle their origins
in different steps. We are also interested in improving the
simple link-layer feedback scheme, since its benefits in terms
of performance for the OLSR protocol were interesting, to say
the least.

ACKNOWLEDGMENT

This work was supported by the Fund for Scientific Re-
search Flanders under Scientific Research Community Broad-
band communication and multimedia services for mobile
users, by DWTC Belgium under project IAP P5/11 MOTION
(Mobile Multimedia Communication Systems and Networks),
by IWT under project 020152–End-to-end QoS in IP based
Mobile Networks, by the European NoE EuroNGI and by the
European project WIDENS.

REFERENCES

[1] The Network Simulator ns-2.
[2] M. Neufeld, A. Jain, D. Grunwald, ”Nsclick: bridging network simu-

lation and deployment”, In Proceedings of the 5th ACM international
workshop on Modeling analysis and simulation of wireless and mobile
systems, Atlanta, Georgia, USA, 2002

[3] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. Frans Kaashoek, ”The
Click modular router”, In ACM Transactions on Computer Systems
18(3), pages 263-297, August 2000

[4] E. Kohler, ”The Click modular router”, Master thesis, MIT, November
2000

[5] A. Tønnesen, ”Implementing and extending the Optimized Link State
Routing protocol”, Ph.D. thesis, UniK, November 2000

[6] P. Jacquet, T. Clausen., ”RFC 3626: Optimized Link State Routing
Protocol (OLSR)”, Oct 2003.

[7] C. Perkins, E. Belding-Royer, S. Das, ”RFC 3561: Ad hoc On-Demand
Distance Vector (AODV) Routing”, July 2003.

[8] B. David, David A. Johnson, Hu Yih-Chun, ”The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR)”, July 2004.

[9] M. Benzaid, P. Minet, K. Al, ”Integrating fast mobility in the OLSR
routing protocol)”, INRIA Research Rapport, June 2002.

[10] T.H. Clausen, P. Jacquet, L. Viennot, ”Investigating the Impact of Partial
Topology in Proactive MANET Routing Protocols”, In Proceedings
of The 5th International Symposium on Wireless Personal Multimedia
Comminications, 2002

[11] J. Haerri, C. Bonnet, F. Filali, ”OLSR and MPR: Mutual Dependencies
and Performances”, In Proceedings of Med-Hoc Net 2005, June 2005

[12] A. Busson, N. Mitton, ’E Fleury, ”Analysis of the Multi-Point Relays
selection in OLSR and Implications”, In Proceedings of Med-Hoc Net
2005, June 2005

