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Abstract— The Maximum Differential Backlog (MDB) demands that the network can support. Moreover, they
control policy of Tassiulas and Ephremides has been shown gbtain athroughput optimakouting and link activation
to adaptively maximize the stable throughput of multi- ey which stabilizes the network whenever the arrival

hop wireless networks with random traffic arrivals and ¢ in the interi f th bili . ith
gueueing. The practical implementation of the MDB policy rates are in tne interior of the stability region, without

in wireless networks with mutually interfering links, how- & priori knowledge of arrival statistics. The throughput
ever, requires the development of distributed optimizatim  optimal policy operates on the Maximum Differential

al_gorithms. Within the context of CDMA-based multi-hop Backlog (MDB) principle, which essentially seeks to
wireless networks, we develop a set of node-based Scaledachieve load-balancing in the network. The MDB policy

gradient projection power control algorithms which solves . .
the MDB optimization problem in a distributed manner has been extended to multi-hop networks with general

using low communication overhead. As these algorithms Capacity constraints in [2] and has been combined with
require time to converge to a neighborhood of the optimum, congestion control mechanisms in [3], [4].

the implementation of the MDB policy must be done with While the MDB policy represents a remarkable
delayed queue state information. For this, we show that the 5chjeyement, there remains a significant difficulty in
MDB policy with delayed queue state information remains . . .
throughput optimal. applymg the policy to \_N|reless. netvyorks. The mutual
interference between wireless links imply that the eval-
uation of the MDB policy involves a centralized net-
work optimization. This, however, is highly undesirable
in wireless networks with limited transmission range
l. INTRODUCTION and scarce battery resources. The call for distributed
The optimal control of multi-hop wireless networks isscheduling algorithms with guaranteed throughput gives
a major research and design challenge due, in part,rtee to two main lines of research. One approach is
the interference between nodes, the time-varying nature adopt simple physical and MAC layer models and
of the communication channels, the energy limitation afpply computationally efficient scheduling rules in a
mobile nodes, and the lack of centralized coordinatiodistributed manner. The work in [5], [6] studied networks
This problem is further complicated by the fact thatvhere interfering links are prohibited from transmitting
data traffic in wireless networks often arrive at randorsimultaneously and any active link has a fixed capacity.
instants into network buffers. Although a complete sdn particular, it is shown in [5] that Maximal Greedy
lution to the optimal control problem is still elusive, aScheduling can achieve a guaranteed fraction of the
major advance is made in the seminal work of Tassiulasaximum throughput region. This result is generalized
and Ephremides [1]. In this work, the authors considén [6] to multi-hop networks where the end-to-end paths
a stochastic multi-hop wireless network with randorare given and fixed. Despite its simplicity, the distributed
traffic arrivals and queueing, where the activation of linkscheduling considered in the above work applies to only
satisfies specified constraints reflecting, for instance,limited class of networks and loses the throughput
channel interference. For this network, the authors champtimality. This consequence is analyzed in a more
acterize the stability region, i.e. the set of all end-tarergeneral context by Lin and Shroff [7] as the impact of

— . . _ imperfect scheduling.
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the MDB policy in the aim of preserving the throughputate region Here, the convex hull operatioconv(-)
optimality. Thus far, distributed MDB control has beerindicates the possibility of time sharing among different
investigated only for networks with relatively simplefeasible power allocation® € II over a sufficiently long
physical layer models. For example, Neely [8] studigseriod.
a cell partitioned network model where different cells Let the data traffic in the network be classified accord-
do not interference with each other so that schedulingg to their destinations. Traffic of typec K is destined
can be decentralized to each cell. However, the questifor a set of nodesV;, C N (when typek traffic reaches
of how the MDB policy can be efficiently applied inany node in\Vy, it exits the network), wherg is the set
general wireless networks remains elusive. of all traffic types. Lefl’ > 0 be a given time slot length.
In this paper, we consider the implementation dfet the number of bits of typé& entering the network
the MDB algorithm within interference-limited CDMA at node: from time ¢T to (¢t + 1)T be a nonnegative
wireless networks, where transmission on any given limandom variableBZ[t]. Assume that for alt € Z,
potentially contends with interference from all otheB%[t] are independent and identically distributed. Let
active links. In this setting, we present two main set8B[t] = af < o andE(Bf[t])Q = b < oo be
of results. First, we develop a set of node-based scalg@ first and second moments &f[t]. Furthermore,
gradient projection power control algorithms which solvassume all arrival processé®[t]}2,,i € N,k € K
the MDB optimization in a distributed manner using loware mutually independent.
communication overhead. As these algorithms require Assume nodei € N provides a (separate) infinite
time to converge to a neighborhood of the optimum, Buffer:* for each type: of traffic that is not destined for
turns out that the implementation of the MDB policy;. Denote the unfinished work it at timer by UF (7).
must be done with delayed queue state information. We focus on the queue states sampled at slot boundaries
the second result, we show that the MDB policy with- = T, ¢ € Z,. Let UF[t] denote the instantaneous
delayed queue information remains throughput optimbhcklog at the beginning of th&h slot, i.e.,UF[t] =
as long as the second moments of the traffic arrival®(¢7). Over thetth slot, link (i, j) servesi® at rate
rates are bounded. Combining these two results, we capk [f] = t(;j“l)T RE.(T)dr. The aggregate service rate
clude that our algorithms yield a distributed solution t@n |ink (i, j) over thetth slot is Rijlt] = X pex RE ).

with random traffic arrivals.

UFt+1] <
Il. NETWORK MODEL AND -
THROUGHPUTOPTIMAL CONTROL UF[t] — Z REt] + Z RE[t] + BlIt]
A. Model of Stochastic Multi-hop Wireless Network JEO() meL() )

Consider a wireless network represented by a directp@re(x)Jr denotesnax{z,0}, and the inequality comes
and connected grapd = (V,&). Each nodei € N rom the fact that in general, since certain queues may

models a wireless transceiver. An edgej) € £ pe empty, the actual endogenous arrival rate is less than
represents a unidirectional radio channel from nadeg, equal to the nominal ratg ) R 4]
3 me *

to j. For convenience, le®(i) £ {j : (i,j) € £} and
N A . ..

Z(i) = {j : (j,1) € &} denote the sets of nodé& next- g giapility Region and Throughput Optimal Policy

hop and previous-hop neighbors, respectively. Let theGiven the wireless network model, we now define

vectorh = (i) ;j)<e represent the (constant) Channerlwtions of stability and investigate th,rou hput optimal

gains on all links. y 9 ghput optima

Denote the transmission power used on lifikj) at control policies.

(continuous) timer by P;;(r) > 0, and the instan-  pefinition 1: [2] The queuei” is stableif g#(¢) £
taneous service rate of linki, j) by R;;(t) > 0. A limsup,, . = 31 P[UF[] > €] — 0 as¢ — oo
feasible service rate vectd(r) = (R;;(7))(i,;)ee Must Input processe$B|t] = (BY[t])icnr.rex }32, arestabi-
belong to a giveninstantaneous feasible rate regionjzaple if there exist service processé®” [t]} for all
C_(P(T)) reflecting the physical-laye[ coding mecha(ivj) c £ andk € K such that for evjerw € 7.,
nism. Under peak power constraint§,i € N, let R[] ¢ ¢(I1),2 and the resulting queueing processes are
I = {P(T) € Rl_f‘ : Zje(?(i) Pi(t) < P,Vie ./\/} all stable.

. . A
be the set of feasible power aIIocatlons_ aﬁ(ﬂ) = 2Here we assume the slot lendthis long enough for time-sharing
conv (Upen C(P)) be thelong-term feasible service among differentP € I1.

meZ(

2



Definition 2: The stability region A of a wireless paper, we assume all nodes have synchronized clocks so
multi-hop network is the closure of the set of the averaghat their timing for the boundaries of time slots are the
arrival rate vectors of all stabilizable input processes.same. This assumption guarantees that the MDB values

. . ) ..in @) are taken at the same instant across all links.
For a general wireless multi-hop network, its stability

region has a simple characterization in terms of support-
ing multi-commodity rates that are feasible under link
capacity constraints.

Theorem 1: [2] The stability regionA of the wireless A. Throughput Optimal Power Control
multi-hop network with transmission power constraint
II is the set of all average rate vectdig’) such that
there exists a multi-commodity service rate vec(thj)

IIl. DISTRIBUTED MAXIMUM DIFFERENTIAL
BACKLOG CONTROL

We study a wireless network using direct-sequence
spread-spectrum CDMA. The received signal-to-
interference-plus-noise ratio (SINR) per channel code

satisfying symbol of link (i, 7) is given by
RE, >0, V(i,j) €€ andk € K, SINER Kh;;P;;
17 = Y
ai_C S Z RZ_ Z RZ”’ We]\/, kGIC, elhw(Pz—Pw)‘F%thJPm‘i‘NJ
JEO(i) meZL(i)

where K is the processing gairp,, = Zkeo(m) Pk
Z R, < Cij, V(i, j) € € where(Cy;) (i jyee € C(IT). is the total transmission power of node, and N
kek represents the noise power of receiyeilhe parameter
The following Maximum Differential Backlog (MDB) i € [0,1] character.izes the degr.ee of self—int.erfere?lc.e.
policy has been shown to broughput optimal[1], Assume the receiver of every link decgdes its own sig-
[2] in the sense that it stabilizes all input processééa! agalnst_the mter_ference fro_m other_llnks as Ga_ussmn
with average rate vectors belonging to the interionpf Noise. The information-theoretic capacity of litk j) is
without knowledge of arrival statistics. The policy cargiven by
be described as follows:
1) At slot ¢, find traffic type kj;[t] having the p log [ 1+ Khi; Py
maximum differential backlogover link (i, j) * O;hij(Pi — Pij) + > hmjPm + N
for all (i,5) € €& That is, kjj[t] = m#i
argmaxgex {UF[t] — UF[t]}, whereUJ[t] = 0 if  For convenience, we normalize the channel symbol rate
j € Ni. Let bjj[t] = max {0,UF [t] - Uf [t]}, R, tobe one for subsequent analysis. We also take)

wherek™ = k; [t]. to be the natural logarithm to simplify differentiation
2) Find the rate vectoR"[t] which solves operations.
. In most CDMA systems, due to the large multiplica-
Reoq) > Ul Rij. @) tion factor K, the SINRper symbol
(i,5)€€
3) Th ice rat ided by link, /) t fhig By
e service rate provided by link, j) to queue 0h P —P. WP TN
i* is determined by ihij (Fi = Fig) +,§i mytm 4

RE[f] = Ri[t], i k=kjt], is typically high [9]. Therefore, in the high SINR regime,
" 0, otherwise we can approximate the capacity of any active ljikj)

For wired networks, the above MDB policy can béoy
implemented in a fully distributed manner. In wireless
networks, however, the capacity of a link is usuall og Khi; P;j
affegted by_ interference f_rom other .Iinks. Therefo_re, Oihij 3 kzj Pik + 22 hanj 2 peo(m) Pmk + N
solving [2) in general requires centralized computation. m#i
Thus far, distributed solutions fol(2) are available only 3y, _ ( corresponds to the case when nadepplies mutually
for relatively simple physical layer models [8]. orthogonal direct sequences for transmissions to its vexi In this
In the following, we develop efficient distributed MDB case. signals intended for different receivers will nogiifére with each
trol al ith ' for interf limited CDMA tother in demodulation. The other extreme, whéje= 1, represents
contro ggorl ms 1or 'n_er erence-imite N€l-the most pessimistic case where self-interference is asfis@nt as
works with random traffic. Throughout the rest of theill other sources of interference.




With a change of variables; = InP;, S; = In P,
and S;; = In Py, the capacity function becomes

Cij (S) = log(K hij) + Sij —

10g Gzhw ZGSM + Z hmj Z eSm’“ + Nj ,

k#j m#i keO(m)
which is known to be concave inS [10], [11]. o
It follows that the instantaneous achievable region P,:(B)
Upen C(P) is concave, and therefore is equal to
C(IT) = conv (Upep C(P)). Fig. 1. Transmission powers in terms of the power control jpoter

Thus, the optimization problem iJ(2) at a fixechllocation variables.
time slot can be seen as optimizing over the redjion
Upen C(P). More specifically, it can be rewritten as

the following concave maximization problem C. Conditions for Optimality
maximize Z by Rij () To solve the TOPC problem ifd(4), we compute the
(i.7)€€ gradients of the objective function, denoted By with
subjectto Ry = Ci;(S), Y(i,j) € € respect to the power allocation variables and the power
! SJ L , ’ control variables, respectively. They are as follows. For
Y, <P, VieN all i € N andj € O(i),

JEO(d)
Without loss of generality, we assunig, > 0 for oF . —Oihik
all (i, j) (otherwise we can simply exclude those links 3y, "IN
havingb;; = 0 from the objective function inq3)). keo()

hi
B. Power Adjustment Variables TN b+ iy |
. . . INyp,
Next we introduce a set of node-based control vari- m#i k€O (m)
ables for adjusting the transmission powers on all linkghere thepower allocation marginal gain indicatois
They are
p s o (2 4 il )
Power allocation variables: n;; £ #’ (i,k) € €, g = Pig P, IN;; )
_ S, For alli € NV,
Power control variables: ~; £ ==, i € N. oF g5
i = 04+ 0%,

0vi
These variables are illustrated in Figlile 1. With appro- 7 ) o )
priate scaling, we can always 18t > 1 for all i € A" so where thepower control marginal gain indicatois
thatS; > 0. Therefore, we have the following equivalent W R
Throughput Optimal Power Control (TOPC) problem: . A2 p mkik
ghput Op (TOPC) p 5i 2 D Tt

maximize mi keO(m)
Khij(P,)
> bj;log J J —0;b%, ha,
ij 5 5 N 05 i o
(i.9) Oihij (Fi)7 (1 = mi5) + Z P (P )™ + N Z TNy + Z onite - it | - (6)
m#i keO(4) keO(7)
) The termIN;; appearing above is short-hand notation
subjectto  n;; >0, V(i,j) €€, for the overall interference-plus-noise power at the re-
Z mj=1, %<1, YieN. ceiver end of link(z, j), that is
) INij = 0ihi; Y €5+ hpy > €5k 4 N
“Notice that even ifJpg; C(P) is not convex, restricting the k#j m#i keO(m)

optimization in [2) within{J p - ;; C(P) does not lose any optimality. - o .
This is because the object%/e function is linear in link sat¢he The margmal gan indicators fu”y characterize the

maximum attained in any compact region region is equal to th@ptimality conditions as follows.
maximum achievable in the convex hull of that region.



Theorem 2:A feasible set of transmission power vari- 2) Power Control Algorithm (PC):After a phase for
ables {7t} ;,x)ce and {vi}icn is the solution of the exchanging control messages (which will be discussed
TOPC problem[{#d) if and only if the following conditionsbelow), every nodei is able to calculate its power
hold. For alli € NV, there exists a constant such that control marginal gain indicatod-;. From a network-

Sk = i, vk € O(), ) wide viewpoint, the power control vector = (7F);en
is updated by

5y >0, if =1, @ T =POEN) =[P (v oL
Here, alln;, > 0 sinceb}, > 0 by assumption. Here, £* is a positive stepsize and matrix* is sym-

metric and positive definite. Note thaC becomes

For the_ d_eta|led proof of Theoreﬁ‘ 2'_ see [12_]_‘ Dugmenable to distributed implementation if and only if
to the distributed form of the optimality condltlons,v;C is diagonal

every node can check the conditions with respect 10\\e now derive an efficient protocol which allows
its controlled variables locally, and adjust them towardsach node to calculate its own; given limited control

the optimum. In the next section, we present a set ofessaging. We first re-order the summations on the RHS
distributed algorithms that achieve the global optim#f @© as

power configuration. 5
dvi =P —hi; i
D. Distributed Power Control Algorithms ; { ! mezw) I Ny }
We design scaled gradient projection algorithms which 1 b
iteratively update the nodes’ power allocation variables Z {b}‘j {F + (Bimij — 0 + 1)1.]\2[’.} } .
and power control variables in a distributed manner, so as JEO ) ’ “

to asymptotically converge to the optimal solution[df (4)\yjith reference to the above expression, we propose the
At each iteration, the variables are updated in the pos““l’@llowing procedure for computingy;
i

gradient direction, scaled by a positive definite matriX. py\wer Control Messa

. : . ge Exchange Protodo#t each
When an update leads to a point outside the feasible Selye assemble the measureei from all its incom-
the point is projected back into the feasible set [13]. J PR

ing links (m, j). For this purposénf an upstream neighbor
1) Power Allocation Algorithm (PA)At the kth iter- m needs to informj with the valueb;, ;/P,,;. Since

ation at node, the current local power allocation vectomodej can measure bot§I/NR,,; and h,,; by itself,

ny = (n})jeo() is updated by it can calculate according to

- + * * .
nitt = PAMY) = [nf + 85 - (@) "ot g O _ Omg SINFimy.
Here,don* = (0n%.),cou and ¥ is a positive st;psize I By Domg B
- i 17€00) ! After obtaining the measures from all incoming links,

The matrix Q¥ is symmetric, positive definite on the e h tof h ol _
subspacev; : Zje(’)(i) vi; = 0}. Finally, H& denotes Nodej sums them up to form e;)*owercon rol message:
mj

the projection on the feasible set gf relative to the A
norm induced byQ*.> Msg(j) = Z IN, .
Suppose each nod¢ can measure the value of meL(j) ’
SINR;; for any of its incoming links. Before an itera-|t then broadcastd/sg(j) to the whole network. The
tion of PA, nodei collects the feedback from next-hopcontrol message generating process is illustrated by
neighborsj of the present 1N R;;’s. Theni can readily Figure[2, where the solid arrows represent local mes-
compute alldz;;’s according to sage communications and the hollow arrow signifies the
1 0;h bi: 0;SINR; message being broadcast.
onij = by; <P_ WJ> = Pij» <1+ TJ> Upon obtainingM sg(j) from nodej # i, nodei
i i i processes it according to the following rule. jfis a
Note that since the calculation df;; involves only next-hop neighbor of, it multiplies the message with
locally obtainable measurethe PA algorithm does not i; and subtracts the product from the local measure
require global exchange of control messages.

b | = + (0imi; — 0; + 1) —2

b\ 1—6;
Omij - Mij + (5%‘ - P—J> o
©j i

5In general,[ﬁc]& = argminger(z — &) - QF - (x — &), where
F is the feasible set of.




saging. The detailed derivation of these parameters and
the full proof of Theorenfd3 can be found in [12].

Also note that the convergence of the algorithms does
not require any particular order of runnifgA and PC
algorithms at different nodes. Any nodenly needs to
update its own variableg, andy; using PA and PC
until its local variables satisfy the optimality condit®n

@-@).

o\ mj
Msg(j)= ). N IV. THROUGHPUTOPTIMALITY OF DELAYED
mel () 22 my MAXIMUM DIFFERENTIAL BACKLOG PoLICY

Since the PA and PC algorithms need a certain
number of iterations before reaching a close neighbor-
hood of an optimum to the problem ifll (4), the MDB
policy must now be implemented wittelayed queue

Otherwise, it multipliesM sg(j) with —h;;. Finally, state informationThis issue is studied in the context of
node: adds up the results derived from processing al' x N packet switches by Neely et al. [f43nd in a
other nodes’ messages, and this sum multipliedFpy queueing network with Poisson arrivals and exponential
equalsév;. Note that in a symmetric duplex chanhel service rates by Tassiulas and Ephremides [15]. Here,
hij =~ hji, and nodei may use its own measure ofwe analyze the MDB algorithm with delayed queue
h;; in the place ofh;;. Otherwise, it will need channel state information in general multi-hop networks with
feedback from nodg to calculateh;;. To summarize, i.i.d. random arrival processes and general rate regions.
the protocol requiresnly one message from each nodgve show that the throughput optimality of the MDB
to be broadcast to the whole network. policy is preserved for any finite delay in the queue
state information. For this, we invent a new geometric

3) Convergence of AlgorithmsWe now formally approach for computing the expected Lyapunov drift of
state the central convergence result for thé and PC the queue state

algorithms discussed above.

Fig. 2. Information Exchange Protocol for Power Control éxighm

Theorer_n 3:From any valid initial trqnsmis;ion POWer o~ Transient Optimal Rates
configuration {n?} and ~°, there exist valid scaling . _
matrices{Q*} andV’*, and positive stepsize3*} and Without loss of generality, assume the convergence
¢k such that the update sequences generated by ifae of the MDB algogthms in Sectioh IHD is the
algorithms PA(-) and PC(-) converge, i.e.pt — nr 1ength of a time slot7'® i.e., at timer = (¢ + 1)7,
for all i, andy* — v* ask — oco. Furthermore{n:} the optimal service rate vector fér|¢] is achieved. For

and~* constitute a set of jointly optimal solution to the®2s€ of analysis, we further scale time so tha¢ 1.
TOPC problem[4). We assume a general feasible service rate region.

Instead of studying the service ratéR(r)), in this
In the PA and PC algorithms, the scaling matricessection we focus on theirtual service rate® defined as
are chosen to be appropriate diagonal matrices which . . .
approximate the relevant Hessians such that the objective ~ RF(7) = > RE(T)— > RE(7).
value is increased by every iteration until the optimum JEO(i) meZL(i)
is achieved. This allows the scaled gradient projection, .

. . . In [14], the current queue state is taken to be the state of the
al-lgomhmsl to approximate constrained Newton algcRiIarkov chain used for stability analysis. As we show beloawéver,
rithms, which are known to have fast convergence ratese Markov state should consist of the current queue stateetisas
Furthermore, the scaling matrices are shown to be easl§ Previous queue state.

A A In practice, the gradient projection algorithms can onlyd fin
calculated at each node using very limited control meQﬁproximate optimal solution within a finite period of timie this

work, we make the idealization that the exact optimum cancbeeged
6In this case, we can let the control signal broadcastjbpe after the convergence peridff. Such an assumption simplifies the
amplitude modulated by\/Msg(j), therefore the received signal following analysis while its loss of precision is small whewe takeT
power at node is h;; Msg(j) = hijMsg(j), i.e., the multiplication ~sufficiently large.
of messages with path gains at nodés done automatically by the  °Virtual service rates can be negative, as when a queue’syendas
channel. incoming rate is higher than its outgoing rate.




Such a transformation considerably simplifies our sub- Lemma 1:If there exist a (Lyapunov) functioly” :
sequent analysis. The total virtual service rate vector W — R,, a compact subsét), C W, and a positive
the tth slot is constantzq such that for alw € W,

~ t+1

R[t] = R(7)dr, E[V(Wt+1]) - V(W[t)[W]t] = w] < oo, (11)

t

where the integration is taken component-wise. B@nd for allw ¢ Wy

definition, we have RXt] = Yicom RSl =  EV(WIt+ 1) - VW)W = w] < —c0, (12)
Yomez(i) Binilt]. Therefore, we considerR[t] =
(RE [t])ien kex induced byR[t]. A total virtual service

(2

rate vectorR[t] is feasible if it is induced by a feasible
RJ[t] € C(II). Denote the set of all feasibl&[t] by  We use the Lyapunov function from [15]:
Cr(II). It is straightforward to verify thaCg(II) is

compact and convex. By Theorem 1 of [3], the subset df (W[t]) = > > UF[H? + (Uf[t] - UF[t — 1))
Cg(IT) in the positive orthant is the stability region of keK ieN

the wireless multi-hop networks with power constraints U+ ||Ut) = Ut — 1)),

II. For brevity, we denot€y(II) by C in this section.

5 . .
Finally, the queueing dynamics il (1) can be written ith(_areH | denote; the* norm. Using relatiorl{]0), we
vector form as derive the following upper bound on the expected one-

step Lyapunov drift conditioned oW [t] = (w, ui—1):

then the Markov chaif W t]} is recurrent. Hence, the
gueueing system is stable in the sense of Definffion 1.

N +
Ult+1 < (U - R+ Bl) . @0 EV (Wt + 1)) — VW)W = (s, 1)

N_ote that maximizing the MDB objectlye funcpon < 2l (a—R[t]) 19 (|b| 4 ||R[t]|\2)
@) in R over thefeasible service rate regiod(II) is

equivalent to maximizing/[t]’ - R in R over thevirtual —[lwe — wya?,

service rate regiorC. We denote the maximizindg? by
R’ (U[t]). From now on, we simply calR the service
rate vector and refer t&? (U[]) as theoptimal rate

whereb is the vector of second moments of the random
arrival rates and - | denotes the.! norm. The detailed

; derivation of the above inequality is left to Appendk A.
allocation for queue statd/[t]. quatty ppendik

Recall our discussion of the distributed MDB contro] Because the distributed power adjustment algorithms

. : ) L in SectiorIII=D increase the objective valug - R with
algorithms in the last section. Due to the iterative nature : ; : ;= . .
. . every iteration from time to t+1, u}-R(7) is increasing
of the algorithms, the optimal power vector and the .
. X . Ih 7 € [t,t+ 1) and givenW[t] = (u, ui—1),
optimal rate allocation for a given queue state can be

found only when the algorithms converge. Therefore in . = EAE .

practice, the rate vector solvinfl (2) f¢b;;[t]) cannot u, - Rft] = /t u; - R(r)dr 2

be applied instantly at the beginning of ttith slot. t+1 _ _ .

The actual service rateR(r),7 € Ry, are always in / u) - R(t)dr =u} - R(t) = u} - R (us—1).
t

transience, shifting from the previous optimum to the
next optimum. Thus, the instantaneous rate vector at tifidso notice that because the second moment vebtor
r=tis R(t) = R (U]t — 1]), and at timer = ¢+ 1, is assumed to be finite ani[¢] lies in the bounded

R(t+1)= R (U[t). region C, we can find a finite constank such that
2 (|b] + HR[t]H?) < \. Thus, the conditional expected
B. Lyapunov Drift Criterion Lyapunov drift is upper bounded by
Following the previous model, the process ou - _ R B . 2.y
{(U[t],U[t —1])};2, forms a Markov chain. The e (a (ut_l)) e = wea 1”4 A

A

state (U[t], U[t — 1]) = W[t] lies in the state space Using the above Lyapunov function and the upper

W = RY x RY where M is the total number of pound for the expected Lyapunov drift, we show the
queues. As an extension of Foster's criterion for fllowing main result.

recurrent Markov chain [16], the following condition

is used in studying the stability of stochastic queueing Theorem 4:The delayed MDB policy is throughput
systems [1], [14]. optimal, i.e. it stabilizes all arrival processes whose

average rate vectar € int C.



Guided by the Lyapunov drift criterion, the proof R, 6
aims to find ansy > 0 and a compact setV, (which
may depend orxg) which satisfy the conditiond_(11)- /
(@) for any average arrival rates € int C. Note / f
that condition[[Tl1) is always satisfied since the first and
second moments of arrival rates as well as the service Je ;u'
rate vector are bounded. Now consider the compact a
region characterized by £

Wo={w e RY xRY : V(w) <Q}. (13)

Giveneg > 0, we need to specify a finit€ and show
that whenw[t] = (us, wi—1) & W,
. Fig. 3. The geometry wheBe (u;) intersectsbd C at two different
2uj- (@ = B (w1)) = u—we 1 |P+X < —eo. (14)  pomnts inff

Towards this objective, we devise a geometric method
to relate the position of; andw,_; in the state space The last inequality follows fromju,| > ||u.|| since
to the value of the inner produet, - [a — R (u:—1)]. In w >0 O
order to reveal the insight underlying this approach, we’ =
first develop the methodology IR?. The generalization

to higher dimensions as well as the proof for Theofém 4 Two-D_|menS|onaI Heurls.t|c:Assume there are FWO
can be found in the Appendix. gueues in the network and index thembgnd2. In this

subsection, all vectors, hyperplanes, surfaces, etcnare i
R2. The hyperpland. (u;) must intersecbd C at two
C. Geometric Analysis different points, as illustrated in Figuf@ 3. Let the two

In this section, we analyze vectors of arrival rate%o'nti btehf 1hand f |2 Wherﬁ.fﬁ S tf|1_e uﬂg?petr-left c;{:)e.
service rates, and queue states geometrically. In view gnote the hyperplane (which is a linel) tange

condition [I#), we characterize a neighborhood arourg(&ct at J;lthby thl(nlt)i' Whesr;enl_f_B ;tlhe unit normal
u; Which has the following properties:if;_; lies in the vector ot the tangent fine. Specitically, We requme

neighborhood, then the first teer;-(a—R*(ut_l)) is b‘; poinj[ing outward fro_nﬁ,’. SinceC i_s not confi_ned .
substantially negative<{ — — zo): if u;_; lies outside inR%, f, is not necegsarlly nonnegative, and neither is
of the neighborhood (meaning théits, — w, 1||? is n1. If there exist multiple tangent_hnes g, taken,
relatively large), then the second teru; — w12 to be any one of them. Let the unit normal vectorfat

is sufficiently negative forl{14) to hold. be n,, defined in the same manner. Let

We assume an average arrival rate veatof int C. ¢, (u}) = arccos(n/, - u}), 62(w)) = arccos(n), - a}),
There must exist a poiné € bd C, and a positive
constant: such thata + ¢ - 1 < a. Therefore the point wherew; stands for the normalized vector af. Since
e=a+5-1is also in the interior of. e € int C, ny andn, can never be parallel ta,. Thus,

Given the current queue state vectey > 0, the
hyperplaneB. (u;) = {x : u} - = = u} - e} is perpendic-
ular to u; and crosses the poirt The intersection of gnd 91(17;) >0, 92(17;) > 0. Moreover, 91(17;) and
halfspacet (u;) £ {x : uj-x > uj-e} with C, denoted g, (%) are bounded away from zero for all. To see
by CZ (u.), is closed and convex with non-empty interiokhjs, we make use of Figuld 3 again. The pojht is
[17]. on the boundary and the vectgt, — e is parallel to
u;. By simple geometry, the convexity of the rate region
implies 0 (u;) > arctan(||f. —e||/||f1 —e]|). Because

Proof: Sincey € H (u;), by definitionu}-y > u}-e. e is an interior point,||f, — el > & > 0. Moreover,
Thus, |f, — el < D < oo sinceC is a bounded region.

Thereforef, (w;) > arctan(¢/D) > 0. The same is true

n) - <1, nh-u; < 1,

Lemma 2:Fory € CJ (u¢), u} - [a — y] < —5||ul.

up-la—yl < up-la—e
10The tangent hyperplane containg, and defines a halfspace

€ €
= _§|ut| < _iHut”- containingC.



u, 1 ! Then for allw]t] such thatV (w[t]) > (1 + 1/a?)ws =
Do, ||uy — ui—1]]? > we and [IF) holds.
Combining the above two cases and lettiflg =
U, max{Q,Q}, we see that the region specified [01(13)
satisfies LemmAl1 and Theoréin 4 follows.

n,
V. NUMERICAL EXPERIMENTS

To assess the practical performance of the node-based
distributed MDB policy in stochastic wireless networks,
we conduct the following simulation to compare the total
backlogs as the result of the same arrival processes but
different MDB schemes.

Our scheme iteratively adjusts the transmission powers
during a slot to find the optimal rates for the queue
state at the beginning of a slot. As a consequence, the

for 92(17%). Thus, we can construct a non-empty conMDB optimization is done with delayed queue state

emanating from the origin sweeping from the OIireCti0|nformat|0n, the transmission rates keep changing all

of vectoru; clockwise byeg(m) and counterclockwise &2 :::je’ bimijnr:?ne oopftltrggl cLartrEéSnta;eexiczlli\'ulege(::zlztlat
by 91(1_&). Such a cone always contaimg in its strict (beg 9) ( ) ) Y

interior. This is illustrated in Figurd 4 Giannoulis et al. [18] proposed another distributed power

We .consider the following two.cases. First ifcontrol algorithm to implement the MDB policy in
s — wer]|/||we]| < sin [min{@l(tﬁ) 0s()) 7/2}] E CDMA networks. Instead of converging to the optimal
o(i}), then the pair of pointéus, u, 1) both lie in the solution to th_e current MDB problem, their scheme
cone described above. In this casg, ; is said to be in updates the link powers based on the present queue
the neighborhoodbf ;. See Figur{]zl state only once in a slot. The new queue state at the

t- . . . .

Let o be the infimum ofa(zﬁ) over all nonnegative beginning of the next slot is used for the subsequent
unit vector ,. Because alld; (@) and 6s(w,) are iteration. To mark out the above difference, we refer to
strictly positive, « must be strictly positive. Ifju, — O method as “iterative MDB YY'th convergence’, and
wi||/|[ws]l < @, w1 is also in the cone withu,. In the method studied in [18] as “iterative MDB without

this case, the hyperplane of normal vector ; tangent convergence"._Both schemes.a_re shown to preserve the
to the rate regior® touchesbd C at R*(ut—l) some- throughput optimality of the original MDB policy, which

. = % N ideally finds the optimal transmission rates for the queue
where betweenf, and fs, i.e., R (u;1) < Ce (). state at the beginning of a slot, and applies them for the

By Lemmal2, the inner produet, - [a — R (u¢—1)] <
. 5~ whole slot.
—5|lu¢||. Then for allw|t] such thal/ (w(t]) > (14+a?)- : .
(0 + N)2/e2 = Oy, lwe|l > (c0 + \)/e, and therefore .For a single run of the experiment, we use a netW(_)rk
0 = 2 T 0 : with N nodes uniformly distributed in a disc of unit
2ul, - (a — R*(ut—l)) — Jly — we ||+ A radius. Nodes andj have a direct connection if their
. distanced(i, j) is less thar.5/v/N, so that the average
< 2uy - (a -R (ut—l)) + A < —eo, number of a nodes’s neighbors remains constant with
which is the desired conditioR{lL4). N. The_path gain is modeled dg; = d(i’j)%; The
It s~ |/ [te]| > @ and assump—u,_, |2 — PTOCESSINg gain of the CDMA system I$ = 10°, and
the self-interference cancellation factomis= 0.25. All

o u,

Fig. 4. The geometry ofu;—; lying in the neighborhood ofu;,
wherer = [Ju¢]| - a(tz).

w, then . .
. nodes are subject to the common total power constraint
2uy - (a -R (Utﬂ)) — Jlag — w1 |* + A P, =100 and AWGN of powerN; = 0.1.
< ulla - IS (e 1) — w+ A Egch _node is the source node of one session with the
= ¢ =1 destination chosen from the oth®r1 nodes at random.
< 2Vw/aPVA/2—w+ A At the beginning of every slot, the new arrivals of Al
= V2wl a—w+ A\ sessions are independent Poisson random variables with
Define the same parametét. As an approximation, we assume

the iterative MDB scheme converges after 50 iterations
we =1inf{w > 0: V2wl /a—w+ X< —g}. (15) of the PA and PC algorithms. The convergence time



2000 Total Ba‘cklog UnderM‘DBSchemes(‘N=10,B=4, ‘10Tr|a|s) V| CONCLUS|ON
et In this work, we study the distributed implementa-
1800 s ] tion of the Maximum Differential Backlog algorithm
el H;Q oy .- 900007 within interference-limited CDMA wireless networks
. oo 92;;@ ®©®6 ghesy with random traffic arrivals. In the first half of the
£ 1400 5066 paper, we develop a set of node-based iterative power
£ %o allocation and power control algorithms for solving the
g 1200 ﬁoo MDB optimization problem. Our algorithms are based
ool © on the scaled gradient projection method. We show that
X the algorithms can solve the MDB optimization in a
800 : :gmmgga;?gg:;;g::;:f distributed manner using low communication overhead.
‘ Lo instantaneous s Because these iterative algorithms typically require non-
*% 05 1 15 2 25 negligible time to converge, the optimal rate allocation

Fig. 5. Total backlogs under three MDB schem&&£ 10, B = 4).

Time x 10°

Total Backog Under MDB Schemes (N =5, B = 7, 10 Trials)

can only be achieved with delay. In the second half of
the paper, we analyze the MDB policy with delayed
gueue information. Using a new geometric approach for
analysis of the expected Lyapunov drift, we prove that
throughput optimality of the MDB algorithm still holds
as long as the second moments of traffic arrival rates
are bounded. The two parts of the paper in conjunction

500
. yield a distributed solution to throughput optimal control
Bor « o of CDMA wireless networks with random traffic arrivals.
200k ** ***** ok * I N Z,
o | 0 L0y oKt o X #B APPENDIX
8 X X% xoQ o2, Rk L .
g 30 5500 o%5 glon o A. Derivation of Lyapunov Drift
g soo—; By definition, the difference of Lyapunov values
V(W[t+1]) and V(W t]) can be written as
250
______ V(W[t+1]) = V(W)
200+ x !Ieral!ve MDB with convergence| 9 2 2
* ferti DB o sonrgece = |Ult+1)* - [U|? + U+ 1] - U
s : s ; -lum - Ut - 1)
Time 5
x10 = 2U[t+1)-(U[t+1]-Ult])
~lUT - Ul - 1|

Fig. 6. Total backlogs under three MDB schem@&§ £ 5, B = 7).

is taken to be the length of a slot, as in Section IV. =

Using relation [(ID), we have

Ult+1) - (U[t+1] - UJt)

Under each one of the MDB schemes, the network is
fed with the same arrival processes. The total backlog in
the network is recorded after every slot. Figllte 5 shows
the backlog curves generated by the three schemes after <
averagingl0 independent runs with the parametéfs=

(Ul - Rl + B[t])' (Bl - Rit))

< Ut - (B[] - R[t)) + | BIE)|I* + | R[]

10 and B = 4. Figure[® reports the result from the =

experiment with the paramete’é = 5 and B = 7. The Therefore, we finally obtain

three methods all manage to stabilize the network queues

in the long run. However, the convergent MDB scheme ~ V(W[t +1]) — V(Wt])

and the instantaneous MDB scheme result in lower queue 2U) - (B[t] — R[t]) + 2 (||B[ 1112 + | R )

occupancy, hence lower delay than the MDB scheme

without convergence. —lUl) - uft - 1.
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B. Geometric Analysis ilRM we have

_ We now generallze our geometric analygls in Sec- - f > u-a—0A - (f-a)
tion [V=C] to M-dimensional space. We retain the no- , € , ~
tation from Sectiof IV=C. Z wet §H“t” —0A"-(f-a)
Analogous to the argument used in the 2-dimensional / € N / _
case, WengCUS on cha?acterizing the neighborhoag of Z et §Hut” B M}zlgé(A (R-a)
Lemma 3:For any u; > 0, there exists a region = u;-e+ gHUtH - ;'l‘u;” -d(A)
K(u:) c RY such that , (4)
1. u € K(uy); = Wl
2. K(u;) has non-empty and convex interior relativerhus, we can conclude that e CH(uy). Since f is
to any one-dimensional affine space containing chosen arbitrarily, the claim at the beginning of the proof
~§. For all u;—; € K(u;), the optimal rate vector js proved.
R (u;—1) with respect tou;_; is in CF(u;). Finally, definef(u,) as

Note thatXC(u;) is the M-dimensional analogue of " £ |||
the circle S(u¢,r) of radiusr aroundw; in Figure[3. i € RY: fJugy — | < m ’
To facilitate the proof, define the set of feasible unit - (18)
incremental vectors around a nonnegative unit vedor where d(-) is defined as in[{17). To accommodate
as the special case ofi; | = u;, we defined(0) = 0.
Sa A=) e el el e oot
A =1, andAF > 0 if @* =0} . g n asreq 4

Proof of Lemme3:Each A € Ay spans a one-
dimensional affine space containing. It is sufficient C. Proof for Theorenil4
to show that given anA € Ay, there exists) > 0 If
such that for alby € [0,0] and f € C satisfying

w1 — | £ _ .
(uy +6A) - f > (us +6A) - R, YReC, (16) udl T 2supgsod(®)
we havef € CJ (u;). thenwu;_; € K(u;) where K(u;) is defined in [IB). In

We prove the claim by construction. We make use dhis case, for alkw[t] such thatV (w[t]) > (1 + o?) -
the dominant point of a such thata +¢-1 < a (also (go + \)?/e% = Qu, |lue]| > (e0 + A)/e, and therefore
e+¢/2-1 < a). Define the parameter

. 2u; - (a—R*(ut_l)) — Jlg — weg]|* + A
d(A) = III%aé( A (R-a), a7
€

< 2uj- (a — R*(ut_l)) + X< —eg,
which is at least zero (by settin@ = a in the objective o ) -
function). It is possibly equal to zero, and must b¥hich is the desired conditio {iL4).

bounded from above, becauge is a unit vector and  f [ut — we1]l/[|ue]| > «, definew; as in [I3), then

the optimization regior® is compact. for all wlt] SQUCh thatV (wlt]) > (1+ 1/a*)ws = Qo,
Now consider [[ws —ui—1]|* > w2 and [I3) holds.
5 ef|u| Combining the above two cases and letting
- 2d(A)’ Q = max{Q,Q:}, we see that the region specified

in (I3J) satisfies Lemm&l 1 and therefore the queueing

which by the above analysis is positive. Becadsés . .
system is stable under any average arrival rate vector

convex and compact, for any € [0, 4] there exists at

least onef satisfying [Ib). Picking any one sughand ¢ € int C. =
specifically lettingR = a on the RHS of[(1B), we have

(ur +0A) - f > (ur + 6A) - a. REFERENCES
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