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Abstract— The objective of the paper is to provide quali-
tative insight into the global effects of distributed mechanisms,
such as carrier sense multiple access (CSMA) and rate control,
on the performance and stability of multi-hop wireless networks.
Toward this end, we introduce a linear queueing network model
where the service capacity of each node is modulated by the
transmission state of its neighbor. We derive lower bounds on
the steady-state utilization at each queue of such networks and
demonstrate the existence of a phase transition phenomenon,
whereby infinitesimal traffic increase at a single node in the
network can suddenly render the entire network instable. We also
present NS simulation results that show how this phenomenon
can actually take place in IEEE 802.11 multi-hop wireless net-
works. Our results have direct bearing on rate control schemes, in
that they indicate a minimum admissible threshold rate required
to prevent network instability.

I. I NTRODUCTION

One of the key reasons for the success of IEEE 802.11
(Wi-Fi) networks is their reliance on simple, distributed mech-
anisms. For instance, channel access is implemented using a
variant of the carrier sense multiple access (CSMA) protocol
that allows a user to transmit if it senses the channel to be
idle [2]. Similarly, IEEE 802.11 networks support rate control
mechanisms, whereby users can adapt their transmission rate
based on local channel conditions (see [4] and references
therein).

While the impact of the above mechanisms in single-
hop (star) networks is pretty well understood (see, e.g., [3]),
they can lead to much more complex interactions in multi-hop
(mesh) networks. For example, consider the 6-node network
shown in Fig. 1 and assume that each node implements CSMA.
In this topology, nodeC cannot hear nodeA’s transmissions,
i.e., nodeA is a hidden node with respect to nodeC. Thus,
if node A transmits whenever node C transmits, a collision
will occur at nodeD 1. In this scenario, nodeC will have
to retransmit until a packet is successfully received at node
D. These retransmissions by nodeC will in turn limit the
fraction of time nodeE can successfully transmit to nodeF ,
thus triggering an even larger number of retransmissions by
node E, and so forth. This example can be generalized to
the case where nodes perform rate adaption, e.g., a node can
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1The IEEE 802.11 standard includes an optional mechanism, called
RTS/CTS, that can be used to reduce collisions due to hidden nodes, but is
often not implemented in practice as it incurs significant overhead and does
not fully prevent packet collisions [8].
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Fig. 1. Influence propagation in a 6-node network.

receive data at a high rateµ when no nearby node interferes
and at lower ratekµ, where0 ≤ k < 1, when a nearby node
interferes (note thatk = 0 corresponds to the hidden node
case). In this case, because of a propagation effect similar to
the one described above, it becomes increasingly likely that
nodes down the chain can only communicate at the low data
rate.

The objective of this paper is to get further insight into
these propagation effects and better understand the impact of
distributed channel access and rate adaptation mechanisms on
the performance and stability of multi-hop wireless networks.
Because of the difficulty of analyzing general multi-hop wire-
less networks, we focus our attention to the case where nodes
are arranged along a linear topology. This configuration will
occur repeatedly at different times and locations in large multi-
hop networks.

In order to characterize the interaction between different
nodes, we introduce a model called influence queueing net-
work (IQN). Using this model, we identify situations under
which traffic increase at a single node in the network can
render the entire network instable. Moreover, we show that
a distant node can potentially experience aphase transition,
where virtually no change in the node’s utilization is observed
until it is suddenly forced to instability. We illustrate the
existence of this phase transition phenomenon with several
numerical examples. Furthermore, we present NS simulation
results that show how the same phenomenon can actually take
place in an IEEE 802.11-based wireless ad-hoc network.

Our analysis also provides key insight into the situations
leading to network instability. Specifically, it reveals that
instability is more likely to take place when the range of
available transmission rates is large. Thus, to avoid instability,
a decentralized rate control scheme should not allocate rates
below a minimum admissible threshold level.



In Section II, we introduce and justify our IQN model
and discuss related work. In Section III, we derive lower
bounds on the steady-state utilization at each queue of these
networks and in Section IV we demonstrate the existence of
a phase transition phenomenon. These findings are validated
by numerical results that are presented in Section V. In the
same section, we also present simulation results obtained using
the Network Simulator (NS) [1], showing phase transition
in a multi-hop IEEE 802.11b wireless ad-hoc network. We
conclude the paper in Section VI.

II. M ODELS AND NOTATIONS

In this section, we first present our model, based on influ-
ence queuing networks, that provides an analytical framework
to capture interaction between neighboring nodes in a multi-
hop wireless network. We then provide justifications to our
modeling assumptions and discuss related work.

A. The Influence Queue

We model the behavior of each node using aninfluence
queue. According to this model, data packets arrive according
to an independent Poisson process with mean rateλ and
packets length are i.i.d. following a general distribution with
mean1/µ. Upon arrival, packets are either served immediately
or forced to wait in an infinite-length buffer (if the server is
found to be busy). Packets in the buffer are served according
to a “first in, first out” (FIFO) priority discipline.

At first glance, the influence queue model appears quite
similar to the familiarM/G/1 queuing model. However, an
influence queue includes two additional components: an influ-
ence process,X(t) and a capacity processC(t) = f(X(t)).
The influence process at each node is a function of the states
of other nodes in the network.

We now focus on the most basic example of an influence
queue model, the binary-rate influence queue. First, let the
influence processX(t) ∈ {0, 1} be an on-off process. The
capacity process (or the modulated process) is defined as

C(t) =
{

1 X(t) = 0
k X(t) = 1,

(1)

where0 ≤ k < 1 is the influence rate. In other words, the
queue operates at ratek when the influence process is “on”
and at unity when it is “off”. In this paper, we apply this model
to the case where the transmission rate of a node depends on
the transmission state of a neighboring node. Specifically, if
the neighbor transmits at timet, then X(t) = 1; otherwise,
X(t) = 0.

B. Linear Influence Queuing Networks

An influence queuing network (IQN) is a network in
which each node is represented by a single influence queue,
and the influence between these nodes is defined by the state
of one or more other queues in the network.

We next focus on a special class of IQNs, referred to
as linear IQN, that is defined as follows. Consider an infinite
network of influence queues with arrival ratesλn and packet

Fig. 2. A linear influence queuing network.

length 1/µn, n = 1, 2, .... The steady-state utilization of the
nth queue is denoted byρn. Queue1 is “un-influenced”, i.e.
its capacity processC1(t) = 1 for all t. Each of the remaining
queues is directly influenced only by the preceding one, and
influences only the following one. Thus, the service capacity
process of queuen for n = 2, 3, ... is:

Cn(t) =
{

1, Xn−1(t) = 0
k, Xn−1(t) = 1,

(2)

whereXn(t) is an on-off process that depends on whether or
not the precedingn−1th queue is transmitting. An illustration
of a linear influence queuing network is shown in Fig. 2.

Our primary questions of interest for linear IQNs are as
follows. First, if we were to increase the mean traffic rate of
only the first queue, how would this influence propagate to
affect the new steady-state utilization of the other queues in
the network? Second, under what conditions are we guaranteed
that simply changing the traffic load on the first queue will
drive some queue in the network to instability, especially for
very distant queues (n →∞)? Finally, how does this behavior
change as a function of the influence parameterk and the
initial load on the network?

C. Model Justification and Related Work

The Poisson process, in addition to making the analysis
tractable, can be a suitable model for applications where
traffic is generated by the aggregation of a large number of
independent streams.

Our model assumes that interferences are only due to
transmissions from an immediate upstream neighbor. This is a
reasonable assumption in situations similar to the one depicted
in Fig. 1 where the transmission by a nearby node dominates
the interferences at the receiver. For instance, in that figure,
node A is the dominant interferer for nodeD and nodeC
is the dominant interferer for nodeF , etc. If the path loss



exponentα is high enough, e.g.,α = 4, then the interference
caused by the immediate upstream neighbor will typically be
much larger than the aggregate interference caused by all the
other transmitting nodes.

Our model is closely related to priority queues [5] but
differs in some key aspects. First, a priority queueing system
has a single server and only a single queue can be served at any
time. In contrast, in our model several queues can be served
simultaneously at different rates. Second, unlike a priority
queueing system, where the highest priority queue blocks all
the other queues, in our model each queue is influenced only
by one adjacent queue.

While problems involving influence queueing networks
have been studied in the literature in the past, previous
work has mostly focused on determining the stability region
and devising scheduling policies that stabilize the network
whenever the arrival rates are within this region [7, 10]. In
contrast, our paper investigates how distributed channel access
and rate control mechanisms can affect the stability of IQNs.

III. A G ENERAL LOWER BOUND ON THE SERVER

UTILIZATION IN L INEAR IQNS

The derivation of a closed-form expression for the
steady-state utilizationρn of each queue in a linear IQN
appears to be a difficult problem. Instead, we provide a general
lower boundρ̂n on this quantity. This lower bound will be
useful to determine the possible situations in which phase
transition phenomena may take place.

Theorem 1 Setρ̂1 = ρ1 = min{λ1/µ1, 1} and for all n ≥ 2

ρ̂n = min
{

λn

((1− ρ̂n−1) + kρ̂n−1)µn
, 1

}
. (3)

Then ρ̂n is a lower bound on the steady-state utilizationρn

at each queuen.

Proof: The proof is by induction. Forn = 1, the claim
is obviously true. Our goal now is to show that for any packet
j in queuen ≥ 2, we have the following lower bound on the
expected service time

E[Sn(j)] ≥
{

1
((1− ρ̂n−1) + kρ̂n−1)µn

, 1
}

, 1
µ̂n

, (4)

whereSn(j) represents the service time of packetj at queuen.
Since the above lower bound does not depend onj, it applies
also to the steady-state service timeSn. Thus, once we prove
Eq. (4), the proof of the theorem follows immediately since
ρn = min(λnE[Sn], 1).

Now, suppose that for any packetj in queuen − 1 we
have a lower bound on the expected service time independent
of packetj, i.e.,

E[Sn−1(j)] ≥ 1
µ̂n−1

.

We are left to establish, based on the induction hypothesis,
that a lower bound independent of any packet can also be
established for queuen.

To simplify the exposition, we first consider the case of
k = 0, which can be considered as the limiting case of a

queue transmitting at an infinitesimally small data rate when
influenced by another queue.

We point out two subtle aspects of our analysis:
1) Packets in queuen depart only when queuen − 1 is

idle.
2) A packet in queuen enters service as soon as no other

packets are ahead of it in the queue.
Therefore packets in queuen are being served (albeit at zero
rate) even when queuen−1 is busy. Figure 3 illustrates such a
situation where packetC in the second queue enters service at
time instantv. We note that even though the packet gets served
at non-zero rate only starting from timew, it does reduce the
transmission rate of the server of the third queue starting from
time v.

We now introduce some notations to keep track of
various variables. We denote byTn(j) the system timespent
by packetj at noden, i.e., the total time spent by packet
j in the queue and server of noden. We denote byWn(j)
the waiting time for packetj at noden, i.e., the time spent
by packetj in the queue of noden. The service timeis the
difference between the system time and waiting time, i.e.,
Sn(j) = Tn(j) −Wn(j). In Figure 3 the time interval[v, z]
corresponds to the system and service times for packetC
(observe that, in this case, the waiting time is zero). LetRn(j)
denote theresidual timeit takes to serve all the packets that
are already in the queue of noden when packetj arrives. Let
Nn(j), Mn(j) be the number of new packets that arrive in
queuen− 1 during the timesTn(j), Wn(j) respectively. For
packetC in Figure 3,Nn(C) = 1 andMn(C) = 0.

The workload for packetj is the time packetj is served
at the full rate (this corresponds to the intervals[w, x] and
[y, z] for packetC). Finally, let Vn(j) denote the sum of the
workload and the initiallead time after which packetj in
queuen is served at the full rate. This initial lead time accounts
for the situation where packetj arrives at a time instant when
no other packets are ahead of it in queuen, but there are
packets in queuen− 1 that are to be served (this corresponds
to the interval[v, w] in Figure 3 for packetC). Observe that
if there are packets in the server of queuen when packetj
arrives, then the initial lead time is equal to zero for packetj.

Based on the above definitions we have,

Tn(j) = Rn(j) + Vn(j) +
Nn(j)∑
m=1

Sn−1(m),

Wn(j) = Rn(j) +
Mn(j)∑
m=1

Sn−1(m).

Therefore,

Sn(j) = Vn(j) +
Nn(j)∑
m=1

Sn−1(m)−
Mn(j)∑
m=1

Sn−1(m). (5)

We now note that the expected value ofVn(j) is no
smaller than1/µn. This is becauseVn(j) includes the lead
time as well as the workload, which is equal to1/µn.
Therefore,

E[Vn(j)] ≥ 1/µn.



Taking expectations in Equation (5) we have,

E[Sn(j)] ≥ 1
µn

+E




Nn(j)∑

m=Mn(j)+1

E[Sn−1(m)|Nn(j),Mn(j)]


 ,

where we have used the property of nested expectations. Now,
we remind that the arrival process into queuen − 1 is a
Poisson process that is independent of the service time of pack-
ets. ThereforeE[Sn−1(m)|Nn(j),Mn(j)] = E[Sn−1(m)].
Putting these facts together and using the induction hypothesis
E[Sn−1(m)] ≥ 1/µ̂n−1, we obtain

E(Sn(j)) ≥ 1
µn

+
E(Nn(j)−Mn(j))

µ̂n−1
. (6)

From the fact that the arrivals form a Poisson process, we have

E[Nn(j)] = E [E[Nn(j)|Tn(j)]]
= E[λn−1Tn(j)] = λn−1E[Tn(j)].

Similarly, we have

E[Mn(j)] = λn−1E[Wn(j)].

Thus,

E[Nn(j)−Mn(j)] = λn−1E[Tn(j)−Wn(j)]
= λn−1E[Sn(j)],

and substituting this expression into Equation (6), we get

E[Sn(j)] ≥ 1
µn

+
λn−1E[Sn(j))]

µ̂n−1
. (7)

Equation (7) implies that

E[Sn(j)] ≥
1

µn

1− λn−1
µ̂n−1

=
1

(1− ρ̂n−1)µn
=

1
µ̂n

.

Consequently, this provides a lower bound for the expected
service time that is independent of packetj and thus proves
the induction step.

To generalize this result to the case wherek > 0, we
proceed as follows: since during any busy time interval at
queuen− 1 the server at queuen is served at ratek, this is
equivalent to supplying the server with full rate capacity for
k fraction of time and at zero rate for(1−k) fraction of time
during that busy period. Using this equivalence we get,

Tn(j) = Rn(j) + Vn(j) + (1− k)
Nn(j)∑
m=1

Sn−1(m);

Wn(j) = Rn(j) + (1− k)
Mn(j)∑
m=1

Sn−1(m).

Again we haveE[Vn(j)] ≥ 1/µn because a packet can
initially be served at the lower ratekµn. The result now
follows along the same lines as before.

Remark: It is worth noting that Theorem 1 provides
a proof of Ross’s conjecture [9] for the special case of linear
influence queueing networks. This conjecture has already
been proven under quite general assumptions for single-server
queueing systems (see [6] and references therein), but these
results do not appear to be directly applicable to the model
considered in this paper.

Fig. 3. Depiction of packet arrivals and the corresponding busy and idle
periods in a 3-node unidirectional influence queueing network.

Example: To illustrate our results, we compute an
exact expression for the queue utilization in a special case
of an influence network, that is, a two-node network where
k = 0. We then compare this expression with the lower bound
provided by Theorem 1. This case is similar to a priority
queuing system since the influenced queue becomes “blocked”
whenever influence exists.

For this specific case, the exact value ofρ2 can be
computed using priority queuing results given in [5]. Letπn,m

be the joint probability ofn users in queue 1 andm users in
queue 2. We define the two-dimensional moment-generating
function (MGF) of the joint probability as the unilateralz-
transform

Π(z1, z2) =
∞∑

n=0

∞∑
m=0

πn,mz1
−nz2

−m. (8)

The MGF of the two-node priority network is given as

Π(z1, z2) =
µ2(1− ρ1 − λ2/µ2)(z2 − 1)(1− η(z2)/z1)−1

[µ1η(z2)− λ1 − λ2(1− z2
−1) + µ2(z2 − 1)]

(9)
where η(z2) is the positive root of the following quadratic
equation in the variablex

µ1x
2 − [λ1 + λ2(1− z2

−1) + µ1]x + λ1 = 0. (10)

The utilization of the second queue is the complementary of
the marginal probability that no class 2 users are in the system:

ρ2 = 1− lim
z2→∞

lim
z1→1

Π(z1, z2) =
ρ1 + λ2/µ2 + η

1− η
, (11)

where

η = lim
z2→∞

η(z2)

=
λ1 + λ2 + µ1 −

√
(λ1 + λ2 + µ1)2 − 4λ1µ1

2µ1
.
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Fig. 4. Utilization of a two-node influence network withk = 0.

It is easy to show that the expression provided by Eq. (11) is
always larger than̂ρ2, for any values ofλ1, λ2, µ1, andµ2.

Figure 4 comparesρ2 andρ̂2 for µ1 = µ2 = 1, λ2 = 0.2
andλ1 ∈ [0, 1]. We observe that the lower bound is reasonably
close to the actual queue utilization.

IV. PHASE TRANSITION

We now show how the lower bound provided by Theo-
rem 1 leads to a phase transition in the network behavior under
certain conditions. We assume the model given in the begin-
ning of Section II-B, with a uniform influence parameterk
and packet size parametersµn = µ for all n.

First, we set the traffic ratesλn such that all queuesn =
1, 2, 3, ... are guaranteed to have a certain minimum utilization
ρ̂I < 1 as specified by the lower bound of Theorem 1. Thus,

λ1 = µρ̂I (12)

λn = µ[ρ̂I − (1− k)(ρ̂I)2], n = 2, 3, .... (13)

Now, suppose we increase the traffic only at queue 1,
that is, we increaseλ1 but keep the mean arrival rates to all
the other queues,λn, constant. How will the effect of this
increased traffic propagate through the network?

There are two main cases to consider based on the
relationship between the parametersρ̂I andk. If ρ̂I < k

1−k it
turns out that independent of the value ofρ1 the downstream
queuesn = 2, 3, ... will always remain stable (we recall that
ρ1 = λ1/µ). On the other hand, if̂ρI > k

1−k , then the lower
bound on the queue utilization̂ρn will experience a phase
transition, asρ1 is increased. Specifically, we next show that if
ρ1 crosses a certain thresholdρ∗1, then the value of̂ρn suddenly
jumps fromρ̂I to 1, for large values ofn. Our simulations in
the next section show that a similar phenomenon takes place
for the actual queue utilizationsρn. Note that the condition
ρ̂I < 1 implies that a phase transition can only take place
whenk < 0.5, for the system under consideration.

Theorem 2 Suppose that a linear influence queuing network
is given with mean arrival rates satisfying Eq. (13). Suppose
further that ρ̂I > k

1−k with k < 0.5 and defineρ∗1 =
max(ρ̂I ,

1
1−k − ρ̂I). Then, the following result holds:

lim
n→∞

ρ̂n =
{

ρ̂I ρ1 < ρ∗1
1 ρ1 > ρ∗1.

(14)

Proof:
We first consider the casek1−k < ρ̂I ≤ 1

2(1−k) , for which
ρ∗1 = 1

1−k − ρ̂I .
Now, assume thatρ1 ∈ [0, ρ∗1−α], whereα is a constant

such that0 < α < 1
1−k − 2ρ̂I . For such value ofρ1, it is

easy to show by induction that̂ρn ∈ [0, ρ∗1 − α]. Specifically,
assumêρn−1 ∈ [0, ρ∗1 − α]. From Eqs. (3) and??IQN-rates),
we have

ρ̂n =
ρ̂I − (1− k)(ρ̂I)2

1− (1− k)ρ̂n−1
. (15)

We note thatρ̂n is an increasing function of̂ρn−1. Thus, ρ̂n

achieves its minimum when̂ρn−1 = 0 and maximum when
ρ̂n−1 = ρ∗1−α. Substituting 0 forρn−1 in Eq. (15), we obtain
the following lower bound on̂ρn:

ρ̂n ≥ ρ̂I − (1− k)(ρ̂I)2. (16)

It is easy to show that the right-hand side of Eq. (16) is always
greater than 0, for any0 < ρI < 1. Similarly, substituting
ρ∗1 − α for ρn−1 in Eq. (15), we obtain the following upper
bound onρ̂n:

ρ̂n ≤ ρ̂I − (1− k)(ρ̂I)2

1− (1− k)(ρ∗1 − α)
=

ρ̂I − (1− k)(ρ̂I)2

(1− k)(ρ̂I + α)
. (17)

Sinceα < 1
1−k − 2ρ̂I , we have, after multiplying both sides

of this equation byα(1 − k)(we remind thatα > 0) and re-
arranging terms,

α− 2(1− k)ρ̂1α− (1− k)α2 > 0. (18)

We now addρ̂I − (1 − k)(ρ̂I)2 to both the lhs and rhs of
Eq. (18) and obtain, after factoring terms,

(ρ̂I + α)− (1− k)(ρ̂I + α)2 > ρ̂I − (1− k)(ρ̂I)2. (19)

Dividing both the rhs and lhs of Eq. (19) by(1− k)(ρ̂I + α),
we get

1
1− k

− (ρ̂I + α) >
ρ̂I − (1− k)(ρ̂I)2

(1− k)(ρ̂I + α)
. (20)

We now identify the lhs of Eq. (20) asρ∗1−α, while the rhs of
Eq. (20) is the same as the rhs of Eq. (17), which is an upper
bound onρ̂n. Therefore,ρ̂n < ρ∗1 − α, and the induction is
proven.

Our goal now is to show that for anyρ1 < ρ∗1, the
sequenceρ̂n converges toρ̂I . First we note, that for any
ρ1 < ρ∗1, there exists some0 < α < 1

1−k − 2ρ̂I , such that
ρ1 ∈ [0, ρ∗1 − α]. Consider the “error” expression,

e(n) = ρ̂n − ρ̂I . (21)

We will show that|e(n)| is bounded from above by a geomet-
rically decreasing sequence with ratio factorβ < 1. This will
establish thate(n) → 0 and ρ̂n → ρI .

It follows by direct substitution of Eq. (15) into Eq. (21)
that

|e(n)| = ρ̂I(1− k)
1− (1− k)ρ̂n−1

|e(n− 1)| , C(ρ̂n−1) |e(n− 1)| .

We are left to show that the multiplicative factor satisfies
C(ρ̂n−1) ≤ β < 1, whereβ is a constant. We observe now
that C(ρ̂n−1) is an increasing function of̂ρn−1. Furthermore,



sinceρ1 ∈ [0, ρ∗1−α], we know from the first part of the proof
that ρ̂n−1 ≤ ρ∗1 − α. Therefore,

C(ρ̂n−1) ≤ C(ρ∗1 − α) =
ρ̂I

(ρ̂I + α)
, β < 1,

which completes our proof for the caseρ1 < ρ∗1.
The caseρ1 > ρ∗1 is handled in an analogous manner.

We first note that ifρ1 ∈ [ρ∗1 + α, 1], with 0 < α < 1 − ρ∗1,
then for anyn ≥ 2, we haveρ̂n ∈ [ρ∗1 + α, 1]. The proof
of convergence of̂ρn follows the same line as before, with
all the inequalities reversed. Thus,ρ̂n is lower bounded by
the minimum between a geometric sequence with factor ratio
β > 1 and the value of one. Therefore, for some sufficiently
large numberN0, ρ̂n = 1, ∀n ≥ N0.

The proof for the case 1
2(1−k) ≤ ρ̂I < 1, for which

ρ∗1 = ρ̂I , follows the same lines as above.

V. SIMULATION RESULTS

In this section, we first present simulations results for
linear IQNs, based on the mathematical model introduced
in the previous sections of this paper. Next, we present NS
simulations demonstrating the existence of the phase transi-
tion phenomenon in an IEEE 802.11-based wireless ad-hoc
network.

A. Simulation of Linear IQNs

We have conducted Matlab simulations to evaluate the
performance of a linear IQN, consisting ofN = 20 influence
queues. For the simulations, packet lengths are generated as
exponential random variables with normalized mean1/µ = 1.
As specified by the linear IQN model, all queues operate at
only two rates: packets in a queue are served at rate of 1 packet
per unit of time when the queue’s immediate predecessor is
idle, and at rate ofk = 0.3 packet per unit of time when
the queue’s immediate predecessor is busy. Also as specified
earlier, we set all arrival rates as a function to the lower bound
of the initial network utilizationρ̂I , and then letλ1 → µ
(while keeping all other parameters constant) to illustrate the
effects of influence propagation. For each value ofλ1, steady-
state results were obtained by simulating the network forT =
2 ∗ 105 units of time and averaging over 5 trials.

Note that from Theorem 2, phase transition may possibly
take place only if ρ̂I > 0.428 when k = 0.3. In our
simulations, we set̂ρI = 0.45. Figure 5 depicts the simulation
results obtained for the queue utilizationρn as a function
of ρ1, for queuesn = 2, 5, 10, 20. These simulation results
are compared with the lower bound provided by Theorem 1.
In each case, we observe that the qualitative behavior of the
simulated results and the lower bound are similar. The lower
bound predicts quite well the point at which a sharp increase
in the utilization takes place.

B. Phase Transition in IEEE 802.11 Wireless Networks

In this section, we present simulation results, obtained
using the Network Simulator (NS) [1], for a linear IEEE
802.11 wireless ad-hoc network. These results suggest that
the influence propagation and phase transition phenomena
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Fig. 5. Utilization of various queues as a function ofρ1: simulation and
lower bound (k = 0.3 andρI = 0.45).
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Fig. 6. Simulated IEEE 802.11 network topology

reported in the previous sections may actually take place
in real wireless networks. Thus, although our IQN model
provides a fairly high-level abstraction of the operation of
actual wireless network protocols, it is able to properly capture
their qualitative behavior.

Set-up: We consider a linear topology consisting of
50 pairs of nodes, as shown in Fig. 6. Each noden, n =
1, 2, . . . , 50, transmits packets to noden′. In addition, any
transmission by noden interferes with packet reception at
node(n + 1)′. For instance, if both nodes1 and2 transmit at
the same time, then the packet sent by node2 to node2′ is
destroyed.

In accordance with the IEEE 802.11 standard, data packet
transmissions must be acknowledged [2]. If a node does
not a receive an acknowledgement for a packet that it has
transmitted, it backoffs for a random period of time and tries
again. The maximum number of retransmissions is limited by
the “Long Retry Limit” parameter. This parameter is set to 4
in our simulations.

Our statistical assumptions on the network traffic are as
follows. At each noden, packets arrive according a Poisson
process with rateλn. These packets are stored in a very large
(lossless) buffer and transmitted in a First-In First-Out (FIFO)
order. The size of each packet is fixed and set to 2000 bytes.
The data rate of the channel is set to 1 Mb/s. Thus, each
node can transmit at most 62.5 packets per second. The total
running time of the simulation is 1000 seconds.

The IEEE 802.11 network model under consideration
is similar to a linear IQN with influence parameterk = 0
(queue n represents the buffer at noden). Note, though,
that the linear IQN model does not incorporate back-offs
and retransmissions. Thus, we cannot expect both models to
produce the same exact results. However, we will show that
their qualitative behavior is similar in the sense that the IEEE
802.11 network does experience phase transitions as predicted
by the IQN model.

Results: The main performance metric for our simula-
tions is the (channel) utilization at each node of the network.
This metric is defined as the fraction of time each node is
transmitting (successfully or not) over the course of the entire
simulation. The exogenous packet arrival rateλn at each node
n ≥ 2 is set to 7 packets per second, while the packet arrival
rateλ1 at the first node is varied from 1 to 62.5 packets per
second.

Figure 7 depicts the average utilization at each node
of the network, for two different cases:λ1 = 47 packets
per second andλ1 = 52 packets per second (corresponding
respectively to utilizationρ1 = 0.75 and ρ1 = 0.83 at node
1). Although the utilization of node 1 varies only by a little
amount, the corresponding network behavior is completely
different. In the first case the influence of node 1 decays and
the network is stable, while in the second case all the nodes
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in the network become saturated. Note that the maximum
utilization in the saturated case is less than 1, due to backoffs
and inter-frame spacings required by the IEEE 802.11 standard
that prevent nodes from transmitting continuously [2].

The phase transition phenomenon taking place in this
IEEE 802.11 network is further illustrated by Fig. 8. This
figure depicts the utilization at noden = 25 as a function
of the load at node 1. We observe that the utilization remains
steady around 0.2, as long asρ1 < 0.75. Then it increases
sharply, reaching saturation asρ1 exceeds 0.8. This effect is
quite dramatic given the fact that node 25 is at a distance of
50 hops from node 1.

For this network, Theorem 2 predicts that phase transition
would take place at load no higher thanρ1 = 0.87. From
Fig. 8, we observe that it actually takes place at loadρ1 ≈
0.8. This result suggests that Theorem 2 may provide a useful
estimate on the critical threshold value of the phase transition.

VI. CONCLUDING REMARKS

In this paper, we have studied the impact of distributed
carrier sense and rate adaptation mechanisms on the perfor-
mance and stability of multi-hop wireless networks. We have



shown that while these mechanisms attempt at maximizing the
use of local resources, they may have a detrimental impact on
global network performance. Specifically, we have introduced
a queuing framework, called influence queueing network
(IQN), which qualitatively captures interference effects caused
by nearby transmitting nodes. Using this framework, we have
shown that transmissions by a single node can influence the
behavior of the entire network. A surprising result in this
context is that the network may exhibit a phase transition,
wherein a distant queue may exhibit little change before being
forced to instability. The practical implication of these findings
has been confirmed by NS simulations of an IEEE 802.11
wireless ad-hoc network.

Furthermore, the analysis and simulations in this work
have illustrated how propagating influence can lead to network
instability, as a function of the influence parameterk and the
overall traffic load on the network. The impact of this trade-off
is significant, because it limits how much can be gained by rate
control in an ad hoc network, once the minimum available rate
drops below a certain threshold with respect to the network
load, the network faces a greater chance of instability than if
only a single rate were used.

As an example, consider an IEEE 802.11 wireless net-
work which offer data rates of 1, 2, 5.5, and 11 Mb/s. If many
such wireless devices were to form a network with a linear
influence structure, our results indicate that the low data rates
offered would lead to phase transition behavior for sufficiently
high levels of traffic. Specifically, if the data rates were
limited to either 1 or 11 Mbps (i.e. the binary-rate influence
model), phase transition behavior would be predicted for an
average network load of only 10%. Furthermore, as shown
in the simulated performance, phase transition effects can be
quite visible in a linear network with as few as 10 nodes.
Consequently, this phenomenon is a realistic concern even
for a network with low-to-moderate traffic and a reasonable
number of nodes.

This work opens several new directions for research. For
instance, a challenging problem is to derive upper bounds on
the network utilization that would shed further light into the
phase transition phenomenon and complement our existing
lower bound. Another interesting research area is in the
analysis of non-linear IQNs and bi-directional IQNs where
queues can mutually influence each other. Finally, the analysis
of IQNs with traffic assumptions other than those used in this
paper could also be of interest.
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