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Abstract—The objective of the paper is to provide quali-
tative insight into the global effects of distributed mechanisms, -
such as carrier sense multiple access (CSMA) and rate control, {g
on the performance and stability of multi-hop wireless networks. A
Toward this end, we introduce a linear queueing network model A=
where the service capacity of each node is modulated by the EQ .—é@
transmission state of its neighbor. We derive lower bounds on
the steady-state utilization at each queue of such networks and a | &
demonstrate the existence of a phase transition phenomenon, A %
whereby infinitesimal traffic increase at a single node in the {@ 2
network can suddenly render the entire network instable. We also
present NS simulation results that show how this phenomenon c
can actually take place in IEEE 802.11 multi-hop wireless net-
works. Our results have direct bearing on rate control schemes, in
that they indicate a minimum admissible threshold rate required
to prevent network instability. Fig. 1. Influence propagation in a 6-node network.

| INTRODUCTION receive data at a high rage when no nearby node interferes

One of the key reasons for the success of IEEE 802.34d at lower rate:;,, where0 < k < 1, when a nearby node

(Wi-Fi) networks is their reliance on simple, distributed mechnterferes (note that = 0 corresponds to the hidden node
anisms. For instance, channel access is implemented usingage). In this case, because of a propagation effect similar to
variant of the carrier sense multiple access (CSMA) protocgie one described above, it becomes increasingly likely that

that allows a user to transmit if it senses the channel to Redes down the chain can only communicate at the low data
idle [2]. Similarly, IEEE 802.11 networks support rate controlgte.

mechanisms, whereby users can adapt their transmission rate The objective of this paper is to get further insight into
based on local channel conditions (see [4] and referena@gse propagation effects and better understand the impact of
therein). distributed channel access and rate adaptation mechanisms on
While the impact of the above mechanisms in singlehe performance and stability of multi-hop wireless networks.
hop (star) networks is pretty well understood (see, e.g., [3Because of the difficulty of analyzing general multi-hop wire-
they can lead to much more complex interactions in multi-hagss networks, we focus our attention to the case where nodes
(mesh) networks. For example, consider the 6-node netweike arranged along a linear topology. This configuration will
shown in Fig. 1 and assume that each node implements CSM#&cur repeatedly at different times and locations in large multi-
In this topology, node”’ cannot hear nodél’s transmissions, hop networks.
i.e., nodeA is a hidden node with respect to node Thus, In order to characterize the interaction between different
if node A transmits whenever node C transmits, a collisionodes, we introduce a model called influence queueing net-
will occur at nodeD 1. In this scenario, nod€ will have work (IQN). Using this model, we identify situations under
to retransmit until a packet is successfully received at noeghich traffic increase at a single node in the network can
D. These retransmissions by node will in turn limit the render the entire network instable. Moreover, we show that
fraction of time nodel' can successfully transmit to nod&, a distant node can potentially experienc@lemse transition
thus triggering an even larger number of retransmissions t#ere virtually no change in the node’s utilization is observed
node E, and so forth. This example can be generalized tmtil it is suddenly forced to instability. We illustrate the
the case where nodes perform rate adaption, e.g., a node egistence of this phase transition phenomenon with several
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In Section II, we introduce and justify our IQN model

and discuss related work. In Section Ill, we derive lowe C1(t)
bounds on the steady-state utilization at each queue of th: ﬁ
networks and in Section IV we demonstrate the existence © - : )_’

a phase transition phenomenon. These findings are valida :

by numerical results that are presented in Section V. In tl v 1, X1(t)=0
- mulat ined us Ca(t) =

same section, we also present simulation results obtained us \ E, X1(t)=1

the Network Simulator (NS) [1], showing phase transitio "\2

in a multi-hop IEEE 802.11b wireless ad-hoc network. W m

conclude the paper in Section VI.
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. 1, X,1(#)=0
] Cn(t) ==
Il. M ODELS AND NOTATIONS kE, X,—1(t)=1
In this section, we first present our model, based on infl ﬁ -

ence queuing networks, that provides an analytical framewc

to capture interaction between neighboring nodes in a mul [

hop wireless network. We then provide justifications to ot .

modeling assumptions and discuss related work. .

A. The Influence Queue Fig. 2. A linear influence queuing network.

We model the behavior of each node usingirftuence
gueue According to this model, data packets arrive according o
to an independent Poisson process with mean jatand length 1/Mn_, n=1,2,... The steady-state_unllzatlon of the
packets length are i.i.d. following a general distribution witffth gueue is denoted by,. Queuel is “un-influenced”, i.e.

meant /. Upon arrival, packets are either served immediatelfp c@pacity process’, (¢) = 1 for all ¢. Each of the remaining

or forced to wait in an infinite-length buffer (if the server iddueues is directly influenced only by the preceding one, and

found to be busy). Packets in the buffer are served accordififjuences only the following one. Thus, the service capacity
to a “first in, first out” (FIFO) priority discipline. process of queue for n = 2,3, ... is:

At first glance, the influence queue model appears quite 1, X,1(t)=0
similar to the familiarA//G/1 queuing model. However, an Calt) = { k, Xno1(t) =1, @
influence queue includes two additional components: an influ- _
ence processX (¢) and a capacity process(t) = f(X(t)). WhereXy(t) is an on-off process that depends on whether or
The influence process at each node is a function of the sta§g% the preceding —1th queue is transmitting. An illustration
of other nodes in the network. of a linear influence queuing network is shown in Fig. 2.

We now focus on the most basic example of an influence  Our primary questions of interest for linear IQNs are as
queue model, the binary-rate influence queue. First, let tidlows. First, if we were to increase the mean traffic rate of
influence process¥(t) € {0, 1} be an on-off process. Theonly the first queue, how would this influence propagate to

capacity process (or the modulated process) is defined as affect the new steady-state utilization of the other queues in
o the network? Second, under what conditions are we guaranteed
1 X(t)=0

C(t) = { 1) that simply changing the traffic load on the first queue will
ko X(t)=1 drive some queue in the network to instability, especially for

where0 < k < 1 is the influence rate. In other words, the/€ry distant queuesi(— oc)? Finally, how does this behavior
queue operates at ratewhen the influence process is “on”change as a function of the influence paramdteand the
and at unity when it is “off”. In this paper, we apply this modeinitial load on the network?
to the case where the transmission rate of a node depends on
the transmission state of a neighboring node. Specifically,df Model Justification and Related Work
the neighbor transmits at timg then X (¢) = 1; otherwise,

X(t) =0 The Poisson process, in addition to making the analysis

tractable, can be a suitable model for applications where
traffic is generated by the aggregation of a large number of
B. Linear Influence Queuing Networks independent streams.

An influence queuing network (IQN) is a network in Our model assumes that interferences are only due to
which each node is represented by a single influence quefi@nsmissions from an immediate upstream neighbor. This is a
and the influence between these nodes is defined by the stg@sonable assumption in situations similar to the one depicted
Of one or more other queues in the network_ in Flg 1 Where the transmission by a nearby node dominates

We next focus on a special class of IQNs, referred {he interferences at the receiver. For instance, in that figure,
aslinear IQN, that is defined as follows. Consider an infinitd10de A is the dominant interferer for nod® and nodeC
network of influence queues with arrival rateés and packet 1S the dominant interferer for nod#, etc. If the path loss



exponentx is high enough, e.gq = 4, then the interference queue transmitting at an infinitesimally small data rate when
caused by the immediate upstream neighbor will typically befluenced by another queue.
much larger than the aggregate interference caused by all the We point out two subtle aspects of our analysis:

other transmitting nodes. 1) Packets in queue depart only when queue — 1 is
Our model is closely related to priority queues [5] but idle.

differs in some key aspects. First, a priority queueing system2) A packet in queue: enters service as soon as no other
has a single server and only a single queue can be served at any packets are ahead of it in the queue.

time. In contrast, in our model several queues can be servfthrefore packets in queueare being served (albeit at zero
simultaneously at different rates. Second, unlike a prioripgie) even when queue—1 is busy. Figure 3 illustrates such a
queueing system, where the highest priority queue blocks &i,ation where packet in the second queue enters service at
the other queues, in our model each queue is influenced Ofifyie instanty. We note that even though the packet gets served
by one adjacent queue. at non-zero rate only starting from time, it does reduce the

While problems involving influence queueing networkgansmission rate of the server of the third queue starting from
have been studied in the literature in the past, previoyge .

work has mostly focused on determining the stability region  \ye now introduce some notations to keep track of

and devising scheduling policies that stabilize the netwoylg ious variables. We denote Hy,(j) the system timespent

whenever the arrival rates are within this region [7, 10]. 'By packetj at noden, i.e., the total time spent by packet
contrast, our paper investigates how distributed channel accesg he queue and server of node We denote by, (5)
and rate control mechanisms can affect the stability of IQNg,e waiting timefor packet; at noden, i.e., the time spent
by packetj in the queue of node. The service timeis the
. A GENERAL LOWERBOUND ON THE SERVER difference between the system time and waiting time, i.e.,
UTILIZATION IN LINEAR IQNS S,.(j) = Tn(j) — Wn(4). In Figure 3 the time intervalv, 2|
The derivation of a closed-form expression for theorresponds to the system and service times for packet
steady-state utilizatiorp,, of each queue in a linear IQN (observe that, in this case, the waiting time is zero). Rgt;)
appears to be a difficult problem. Instead, we provide a genegiagihote theresidual timeit takes to serve all the packets that
lower boundp, on this quantity. This lower bound will be are already in the queue of nodewhen packetj arrives. Let
useful to determine the possible situations in which phase,(;), M, (j) be the number of new packets that arrive in

transition phenomena may take place. queuen — 1 during the timesT,,(j), W, (j) respectively. For
A . packetC' in Figure 3,N,,(C) =1 and M,,(C) = 0.
Theorem 1 Setp; = p1 = min{A1/u, 1} and for alln > 2 The workload for packet; is the time packej is served

A ) A\, at the full rate (this corresponds to the intervéls x] and
fn = min { =)+ kfﬁnl)un’l} () [y, 2] for packetC). Finally, let V,,(j) denote the sum of the
o o workload and the initiallead time after which packetj in
Thenp, is a lower bound on the steady-state utilization  q,eyey is served at the full rate. This initial lead time accounts
at each queuer. for the situation where packgtarrives at a time instant when
Proof: The proof is by induction. Fon = 1, the claim N0 other packets are ahead of it in queuebut there are
is obviously true. Our goal now is to show that for any pack&aCckets in queue — 1 that are to be served (this corresponds
j in queuen > 2, we have the following lower bound on thet© the intervallv, w] in Figure 3 for packet”). Observe that

expected service time if there are packets in the server of queuavhen packet;
arrives, then the initial lead time is equal to zero for pagket
E[S,(j)] > { 1 1} a1l (4) Based on the above definitions we have,
" o ((1 - pAn—l) + k/;n—l),un’ ﬂn7

whereS,, (j) represents the service time of packett queuer. Nn(j)
Since the above lower bound does not depend,dhapplies T.(j) = R,(J)+Va(y) + Z Sn—1(m),
also to the steady-state service tifig. Thus, once we prove m=1
Eq. (4), the proof of the theorem follows immediately since M (5)
pn = min(A\, F[S,], 1). Wo(j) = Rn(j)+ Sp—1(m).

Now, suppose that for any packgtin queuen — 1 we m=1

have a lower bound on the expected service time independent Therefore,

of packetj, i.e., N (4) M (5)

B[Sy _1(j)] > ﬂl . Sn(j) = Vald) + Zl Sn1(m) — Zl Sn-1(m).  (5)

We are left to establish, based on the induction hypothesis, We now note that the expected value Gf(j) is no

that a lower bound independent of any packet can also $maller thanl/u,. This is becausé/,(j) includes the lead

established for queue. time as well as the workload, which is equal 1Q/u,.
To simplify the exposition, we first consider the case cfherefore,

k = 0, which can be considered as the limiting case of a EV,()] > 1/tn.




Taking expectations in Equation (5) we have, packet arrivals

LT

BS () = —+E| 3 ElSu1(m)INa(), Mali)]|
“““ idle busy I_

Hn m=DM,, (j)+1
where we have used the property of nested expectations. Now, workload for packet C
we remind that the arrival process into queue- 1 is a el
Poisson process that is independent of the service time of pack- A+ B c +“ -
ets. ThereforeE[S,,—1(m)|Nn(j), Mn(j)] = E[Snh—1(m)]. J J L vlwi 2

Server 1

Putting these facts together and using the induction hypothesis ?, . iphoketé i
E[Sn—1(m)] > 1/fi,—1, we obtain § ----- idle | busy ]*“““"‘““”*
, 1 E(N,(j) — M,(j —
E(S,() > — + ZEU ZMal)) - )
Hn Hn—1 i
. . warkload for packet D
From the fact that the arrivals form a Poisson process, we have Dl . l
E[Nu(4)] = E[E[Nu(5)ITa(5)]] ©
. . [
= E[)\n—lTn(]ﬂ :An—lE[Tn(])]- ;)E ————— idle ‘s:rLk::iD:e_. busyl_
Similarly, we have '
EM,(j)] = A1 E[W,(5)]-
[ (J)] ! [ (‘7)] Fig. 3. Depiction of packet arrivals and the corresponding busy and idle
Thus, periods in a 3-node unidirectional influence queueing network.
= M1E[S,(5)], Example: To illustrate our results, we compute an

exact expression for the queue utilization in a special case

and substituting this expression into Equation (6), we get . .
9 P q ©) 9 of an influence network, that is, a two-node network where

E[S.(j)] > 1 An,leE[Sn(j))]' (7) k= 0. We then compare this expression with the lower bound
Hon Hn—1 provided by Theorem 1. This case is similar to a priority
Equation (7) implies that gueuing system since the influenced queue becomes “blocked”
1 whenever influence exists.
E[S. ()] > #; — Al — i For this specific case, the exact value @f can be
1-— #Z—j (1= pn—ttn  fin computed using priority queuing results given in [5]. kgt,,

Consequently, this provides a lower bound for the expect@§ the joint probability of» users in queue 1 and users in
service time that is independent of packeand thus proves queue 2. We define the two-dimensional moment-generating
the induction step. function (MGF) of the joint probability as the unilaterat

To generalize this result to the case whére- 0, we transform
proceed as follows: since during any busy time interval at T B Sad n —m
queuen — 1 the server at queue is served at raté, this is (21, 22) = Z Z Tnm#1 22
equivalent to supplying the server with full rate capacity for o o
k fraction of time and at zero rate f¢t — k) fraction of time The MGF of the two-node priority network is given as
during that busy period. Using this equivalence we get, pa(l = p1— Ao/pa)(z2 — 1)(1 — n(z2)/21) 7"

(8)

n=0m=0

, 1I(21,20) =
‘ ‘ ' Nn(j) ( ! 2) [,ulr](zg) — /\1 — )\2(1 — 22_1) + MQ(ZQ — 1)2
() = Ru(j) + Va(i) + (L= k) D Sua(m); _ 5 _ o)
m=1 where 7(z2) is the positive root of the following quadratic
M () equation in the variable
W (j) = Ru(j) + (1 — k) Z:l Sp—1(m). a2 — M+ Al =z D4 mlz+A =0, (10)

Again we haveE[V,(j)] > 1/u, because a packet canlhe utilization of the second queue is the complementary of
initially be served at the ‘lower ratéu,. The result now the marginal probability that no class 2 users are in the system:

follows along the same lines as before. u 1w L IO it ue 11
Remark: It is worth noting that Theorem 1 provides 2 =+ — 11 il (21,22) = T 1—g (11)

a proof of Ross’s conjecture [9] for the special case of Iinearh

influence queueing networks. This conjecture has aIreaWyere

been proven under quite general assumptions for_single-servem7 = lim n(z)

gueueing systems (see [6] and references therein), but these F2e0

results do not appear to be directly applicable to the model oM e+ =V Oa A+ )? — 4

considered in this paper. 2411



! Proof:

0.9 ',: ] Wle first consider the casréj—k < pr < 2(17171@) for which
Los o * PL= 1 —Pr
g 4l K | Now, assume thas; € [0, p; — o], wherex is a constant
el S such thatd < a < 2 — 2p;. For such value ofy, it is
506 Exact (p,) ¢ ] easy to show by induction that, € [0, p} — a]. Specifically,
gos o assumep, 1 € [0, p} — . From Egs. (3) an®?QN-rates),
=Pl -’ ] we hav
504 Lo’ Lower bound (3,) € have ) pr—(1— k)(ﬁ])z (15)

0.3 ‘_"' | Pn= 17(1*]@)/2%—1 .

07 02 o4, 06 08 1 We note thatp,, is an increasing function of,,_1. Thus, j,,

1

achieves its minimum whep,,_; = 0 and maximum when
Pn—1 = p; — . Substituting O forp,,—; in Eq. (15), we obtain
the following lower bound orp,,:

. _ _ _ pn > pr— (1= k)(pr)*. (16)
It is easy to show that the expression provided by Eq. (11) is ] ] )
always larger thars, for any values of\;, Ao, 11, andp,. LIS @asy to show that the right-hand S|_de_ of Eq. (16)_|s glways

Figure 4 compares, and s, for pg = us = 1, \p = 0.2  greater than 0, for any < p;r < L. Slmllarly, supsntutmg
and; € [0,1]. We observe that the lower bound is reasonabi — @ for pn—1 in Eq. (15), we obtain the following upper
close to the actual queue utilization. bound onp,,:

6 — (1—k)(pr)? _ pr— (1 —k)(pr)?
IV. PHASE TRANSITION pn <22 ( )Epl) _ | - )pr) . (@17
: 1=(1=k)pi—a)  (A=k)(pr+a)

We now show how the lower bound provided by Theo- ) X o _
rem 1 leads to a phase transition in the network behavior undPcea < t—¢ — 2pr, we have, after multiplying both sides
certain conditions. We assume the model given in the beg®f- this equation byx(1 — k)(we remind thatx > 0) and re-
ning of Section II-B, with a uniform influence parameter arranging terms,
and pa_lcket size paramete_;t,s = u for all n. a—2(1—k)pra— (1 — k)a2 < 0. (18)

First, we set the traffic rates, such that all queues =

1,2, 3, ... are guaranteed to have a certain minimum utilizatioe now addp; — (1 — k)(p1)? to both the lhs and rhs of
pr < 1 as specified by the lower bound of Theorem 1. Thu&d. (18) and obtain, after factoring terms,

No= pupr (12)  (pr+a)—(L—k)(pr+a)® > pr— (1 —k)(pr)? (19)

Fig. 4. Utilization of a two-node influence network with= 0.

Moo= plpr—(1=k)(pr)*),  n=2,3,... (13) Dividing both the rhs and Ihs of Eq. (19) 4y — k) (51 + ),
Now, suppose we increase the traffic only at queue W€ get

that is, we increase; but keep the mean arrival rates to all 1 R pr — (1 —k)(p1)?

the other queues),, constant. How will the effect of this =5~ Pr+a)> A=W +a) (20)

increased traffic propagate through the network? i , .
There are two main cases to consider based on th& now identify the Ihs of Eq. (20) g8 — a, while the rhs of
relationship between the parametggsand k. If ; < & it Eq. (20) is the same as the rhs of Eq. (17), Wh.ICh is an upper

turns out that independent of the valuegfthe downstream Pound onp,. Therefore,p, < pi — a, and the induction is
queuesn = 2,3, ... will always remain stable (we recall thatP"OVen

p1 = A1/p). On the other hand, iy > —%, then the lower Our goal now is to show that for any; < pj, the

bound on the queue utilizatiop, will experience a phase S€AUeNCep, converges topy. First we note, that for any
there exists somé < a < = — 2p;, such that

transition, ag; is increased. Specifically, we next show that if1 < PT’* . - ) :
p1 crosses a certain thresholt, then the value of,, suddenly 21 € [0:pi — a]. Consider the “error” expression,

jumps fromp; to 1, for large values ofi. Our simulations in e(n) = pn — pr. (21)
the next section show that a similar phenomenon takes place _

for the actual queue utilizations,. Note that the condition We Will show that|e(r)| is bounded from above by a geomet-
pr < 1 implies that a phase transition can only take madgzally decreasing sequence with ratio factbk 1. This will

whenk < 0.5, for the system under consideration. establish that(n) — 0 and p, — pr. .
It follows by direct substitution of Eq. (15) into Eg. (21)

Theorem 2 Suppose that a linear influence queuing netwoitkat
is given with mean arrival rates satisfying Eq. (13). Suppose pr(1—k) N
further that p; > £ with k¥ < 0.5 and definep; = le(n)] = 1—(1—k)pn_s le(n = 1) = C(pn-1) e(n — 1)|.

5 -1 _ 5 i :
max(pr, ;=5 — p1)- Then, the following result holds: We are left to show that the multiplicative factor satisfies

{ pr p1<pl (14) C(pn-1) < B < 1, whereg is a constant. We observe now

Hm_ pn = 1 p1>pf. thatC'(p,—1) is an increasing function g4, ;. Furthermore,

n—oo



sincep; € [0, pf — ], we know from the first part of the proof
that p,,—1 < p7 — a. Therefore,
__pr
(b1 + )
which completes our proof for the cage < p3.

The casep; > pj is handled in an analogous manner.
We first note that ifp; € [p] + o, 1], with 0 < a < 1 — p7,
then for anyn > 2, we havep, € [p} + «,1]. The proof
of convergence of,, follows the same line as before, with
all the inequalities reversed. Thus, is lower bounded by
the minimum between a geometric sequence with factor ratio
B > 1 and the value of one. Therefore, for some sufficiently
large numberNy, g, = 1, Vn > Nj.

The proof for the cas%ﬁ < pr < 1, for which
p} = p1, follows the same lines as above. ]

Cpn-1) <Cp1 — ) = 2p<1,

V. SIMULATION RESULTS

In this section, we first present simulations results for
linear IQNs, based on the mathematical model introduced
in the previous sections of this paper. Next, we present NS
simulations demonstrating the existence of the phase transi-
tion phenomenon in an IEEE 802.11-based wireless ad-hoc
network.

A. Simulation of Linear IQNs

We have conducted Matlab simulations to evaluate the
performance of a linear IQN, consisting &f = 20 influence
gueues. For the simulations, packet lengths are generated as
exponential random variables with normalized mégn = 1.

As specified by the linear IQN model, all queues operate at
only two rates: packets in a queue are served at rate of 1 packet
per unit of time when the queue’s immediate predecessor is
idle, and at rate ot = 0.3 packet per unit of time when
the queue’s immediate predecessor is busy. Also as specified
earlier, we set all arrival rates as a function to the lower bound
of the initial network utilizationg;, and then let\; — p
(while keeping all other parameters constant) to illustrate the
effects of influence propagation. For each value\ gfsteady-
state results were obtained by simulating the networkifes

2 % 105 units of time and averaging over 5 trials.

Note that from Theorem 2, phase transition may possibly
take place only ifp; > 0.428 when & = 0.3. In our
simulations, we set; = 0.45. Figure 5 depicts the simulation
results obtained for the queue utilizatigrp, as a function
of p;, for queuesn = 2,5,10,20. These simulation results
are compared with the lower bound provided by Theorem 1.
In each case, we observe that the qualitative behavior of the
simulated results and the lower bound are similar. The lower
bound predicts quite well the point at which a sharp increase
in the utilization takes place.

B. Phase Transition in IEEE 802.11 Wireless Networks

In this section, we present simulation results, obtained
using the Network Simulator (NS) [1], for a linear IEEE
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the influence propagation and phase transition phenomena
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Fig. 6. Simulated IEEE 802.11 network topology '
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reported in the previous sections may actually take place é’oe E
in real wireless networks. Thus, although our IQN model § .
provides a fairly high-level abstraction of the operation of Zost *, p,=0.75
actual wireless network protocols, it is able to properly capture ‘x,‘ /
their qualitative behavior. 04r N
Set-up: We consider a linear topology consisting of 03 /‘~\’
50 pairs of nodes, as shown in Fig. 6. Each neden = R
1,2,...,50, transmits packets to node’. In addition, any 02, 10 20 R

transmission by node: interferes with packet reception at
node(n + 1)’. For instance, if both nodelsand2 transmit at Fig. 7.
the same time, then the packet sent by n@de node?2’ is
destroyed.

In accordance with the IEEE 802.11 standard, data packet
transmissions must be acknowledged [2]. If a node does
not a receive an acknowledgement for a packet that it has
transmitted, it backoffs for a random period of time and tries 4|

Utilization at each network node for two different valuespof

0.8

again. The maximum number of retransmissions is limited by &
the “Long Retry Limit’ parameter. This parameter is setto 4  Zos
in our simulations. 5
Our statistical assumptions on the network traffic are as '%0-4
follows. At each node:, packets arrive according a Poisson ?,03

process with rate\,,. These packets are stored in a very large
(lossless) buffer and transmitted in a First-In First-Out (FIFO)
order. The size of each packet is fixed and set to 2000 bytes.
The data rate of the channel is set to 1 Mb/s. Thus, each ; i i ‘ ‘ ‘
node can transmit at most 62.5 packets per second. The total ~ ° 02 Uliation of nedie 1 08 !
running time of the simulation is 1000 seconds.

The IEEE 802.11 network model under consideratiof9- 8- Utilization of node 25 as a function pf.
is similar to a linear IQN with influence parametér= 0
(queue n represents the buffer at node). Note, though,
that the linear IQN model does not incorporate back-off§ the network become saturated. Note that the maximum
and retransmissions. Thus, we cannot expect both modelg/tdization in the saturated case is less than 1, due to backoffs
produce the same exact results. However, we will show thitd inter-frame spacings required by the IEEE 802.11 standard
their qualitative behavior is similar in the sense that the IEEthat prevent nodes from transmitting continuously [2].
802.11 network does experience phase transitions as predicted The phase transition phenomenon taking place in this
by the IQN model. IEEE 802.11 network is further illustrated by Fig. 8. This

Results: The main performance metric for our simulafigure depicts the utilization at node = 25 as a function
tions is the (channel) utilization at each node of the networRf the load at node 1. We observe that the utilization remains
This metric is defined as the fraction of time each node €ady around 0.2, as long as < 0.75. Then it increases
transmitting (successfully or not) over the course of the entif@@rPly, reaching saturation as exceeds 0.8. This effect is
simulation. The exogenous packet arrival rateat each node quite dramatic given the fact that node 25 is at a distance of

n > 2 is set to 7 packets per second, while the packet arriva hops frc_)m node 1. ) .
rate \; at the first node is varied from 1 to 62.5 packets per For this network, Theorem 2 predicts that phase transition
second. would take place at load no higher than = 0.87. From

Figure 7 depicts the average utilization at each noc'ge'g' 8, we observe that it actually takes place at lpad~

of the network, for two different casesy, — 47 packets -8. This result suggests that Theorem 2 may provide a useful

. _estimate on the critical threshold value of the phase transition.
per second and; = 52 packets per second (corresponding

respectively to utilizatiorp; = 0.75 and p; = 0.83 at node VI. CONCLUDING REMARKS
1). Although the utilization of node 1 varies only by a little ) ) ) .
amount, the corresponding network behavior is completely !N this paper, we have studied the impact of distributed
different. In the first case the influence of node 1 decays afgmer sense angl rate ada_ptatlon .mechamsms on the perfor-
the network is stable, while in the second case all the nod®&§"c€ and stability of multi-hop wireless networks. We have




shown that while these mechanisms attempt at maximizing the]
use of local resources, they may have a detrimental impact on
global network performance. Specifically, we have introduced
a queuing framework, called influence queueing networks]
(IQN), which qualitatively captures interference effects causeg5 ]
by nearby transmitting nodes. Using this framework, we hav
shown that transmissions by a single node can influence the
behavior of the entire network. A surprising result in thisl’]
context is that the network may exhibit a phase transition,
wherein a distant queue may exhibit little change before being]
forced to instability. The practical implication of these findings
has been confirmed by NS simulations of an IEEE 802.1%,
wireless ad-hoc network.

Furthermore, the analysis and simulations in this work0l
have illustrated how propagating influence can lead to network
instability, as a function of the influence parameteand the
overall traffic load on the network. The impact of this trade-off
is significant, because it limits how much can be gained by rate
control in an ad hoc network, once the minimum available rate
drops below a certain threshold with respect to the network
load, the network faces a greater chance of instability than if
only a single rate were used.

As an example, consider an IEEE 802.11 wireless net-
work which offer data rates of 1, 2, 5.5, and 11 Mb/s. If many
such wireless devices were to form a network with a linear
influence structure, our results indicate that the low data rates
offered would lead to phase transition behavior for sufficiently
high levels of traffic. Specifically, if the data rates were
limited to either 1 or 11 Mbps (i.e. the binary-rate influence
model), phase transition behavior would be predicted for an
average network load of only 10%. Furthermore, as shown
in the simulated performance, phase transition effects can be
quite visible in a linear network with as few as 10 nodes.
Consequently, this phenomenon is a realistic concern even
for a network with low-to-moderate traffic and a reasonable
number of nodes.

This work opens several new directions for research. For
instance, a challenging problem is to derive upper bounds on
the network utilization that would shed further light into the
phase transition phenomenon and complement our existing
lower bound. Another interesting research area is in the
analysis of non-linear IQNs and bi-directional IQNs where
gueues can mutually influence each other. Finally, the analysis
of IQNs with traffic assumptions other than those used in this
paper could also be of interest.
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