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Abstract

We analyse an ALOHA-type random multiple-access protocol where users have

local interactions. We show that the fluid model of the system workload satisfies

a certain differential equation. We obtain a sufficient condition for the stability

of this differential equation and deduce from that a sufficient condition for the

stability of the protocol. We discuss the necessary condition. Further, for the

underlying Markov chain, we estimate the rate of convergence to the stationary

distribution. Then we establish an interesting and unexpected result showing

that the main diagonal is locally unstable if the input rate is sufficiently small.

Finally, we consider two generalisations of the model.
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1. Introduction and stability result

1.1. A spatial ALOHA

We consider a random spatial service system governed by an ALOHA-type algo-

rithm. More precisely, time is slotted, during a time slot n = 1, 2, .. a random number

ξn of users arrive in the system, and at each slot every user in the system requires

service (transmission) with a certain (transmission) probability independently of all

other users. The sequence {ξn} is assumed to be i.i.d.

The ALOHA multi-access algorithm was first proposed by Abramson [1]. The

slotted scheme was introduced by Roberts [15]. We consider the latter setting. In

the conventional centralised slotted ALOHA model, there is a single server. At the

beginning of a time slot n, the total number Wn of users in the system is known, and

each of them asks for service (transmission) with probability
1

Wn

independently of all

others. If two or more users attempt transmissions simultaneously, then transmissions

collide, the users remain in the system and try to transmit later. All service times are

equal to 1, and the server is free at the beginning of any time slot. It is easy to show

that for this system the maximum throughput is equal to e−1. Further, the Markov

chain {Wn} is positive recurrent if Eξ1 < e−1 and transient if Eξ1 > e−1.

When the information on the numbers Wn of users is unavailable, various decen-

tralised adaptive algorithms have been introduced and studied. Algorithms of this type

use the information on what has occurred in the previous time slot: either a conflict or

a successful transmission or no attempted transmissions. More precisely, let Bn be the

number of users trying to transmit during a time slot n. In a decentralised algorithm,

only the values of min{Bn, 2} are available at time n+1. Assuming that at any time slot

n the transmission probability is the same for all users, Hajek [11] proved that if {ξn}

are i.i.d. with a finite exponential moment, then Eξn < e−1 ≈ 0.37 is still necessary

and sufficient for the existence of a stable algorithm. Mikhailov [14] generalised this

result by weakening the exponential moment assumption to the requirement for only

the second moment to exist, while Foss [9] generalised it further by dropping this as

well as the independence assumption. We also refer to Ephremides and Hajek [6] for a

survey which includes, in particular, results in this direction.

The model described above ignores the network’s spatial diversity. In this paper we



A Random Multiple Access Protocol 3

present a new model which allows the possibility for interaction between users to occur

only when the distance between these users is small. A limited spatial interaction

is a common feature of wireless networks and is thus very important for practical

consideration.

In this paper we consider only spatial centralised schemes (protocols) where the total

number of users in a neighbourhood is known. The study of decentralised protocols is

a subject of our future research. Our main result establishes the stability of the model

under consideration. For that, we use the fluid approximation approach. We show that

the state is repelled by the boundary, and in the interior, the Euclidean norm turns

out to be a Lyapunov function for the fluid model. Other results of the paper include

convergence rates to stationarity and local (in)stability.

The remainder of the paper is organised as follows. The rest of this introduction is

devoted to the description of the model and the statement of our main stability result.

In Section 2 we prove that fluid limits of the workload in the system satisfy a certain

differential equation. Section 3 is devoted to the analysis of the behaviour of fluid

limits on the boundary of the positive orthant. In Section 4 we present a proof of our

main stability result and formulate one of its possible generalisations. Section 5 deals

with rates of convergence towards the steady state. Sections 6 and 7 contain some

interesting results on the behaviour of solutions to the differential equation. Finally, in

Section 8 we conclude with some extensions of our model, which are in a certain sense

more applicable to real systems. In particular, these extensions include systems where

various changes in environment conditions may result in changes in the radius and/or

direction of interference between the message transmissions).

1.2. Model description

Let G = (V , E) be an undirected graph with a finite set of vertices, say V = {1, ...,K}.

We suppose that G is connected. For the graph G we use the standard notion of the

graph distance. For i ∈ V , let Vi = {i} ∪ {j ∈ V : such that (i, j) ∈ E} be the

neighbourhood of a vertex i, i.e. the set of vertices at a maximum distance of 1 from

i in the graph. In the particular case where all vertices have the same number of

neighbours, we denote by V the cardinality of Vi, card(Vi) = V .

We introduce now a service system with spatial (neighbourhood) interactions as-
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sociated with the graph G. We assume that time is slotted, i.e., arrivals and services

may occur only at times n = 1, 2, . . .. Suppose that there is a service station at

each vertex of G. The arrival process is denoted by A = (A(n))n∈N, where A(n) =

(A1(n), ..., AK(n)) ∈ N
K , and Ai(n) is the number of users arriving at time n at a

vertex i. For s < t, denote by A(s, t) =
∑⌈t⌉−1

n=⌈s⌉ A(n) the vector representing the

number of users arriving between time instances s and t−. We suppose that (A(n)) is

an i.i.d. sequence (while the coordinates of the vectors may be dependent). We also

suppose that EAi(n) = λi > 0 for i = 1, . . . ,K. If values of λi do not depend on i,

then we write λi = λ, i = 1, . . . ,K.

LetW (n) = (W1(n), ...,WK(n)) ∈ R
K
+ , whereWi(n) is the number of users at vertex

i at time n. At time n, a user at vertex i attempts transmission independently of the

others with probability 1/
∑

j∈Vi
Wj(n). This user receives service if he is the only user

attempting transmission in Vi at time n. We suppose that all service times are equal to

1 and that any user leaves the system immediately upon service completion. Let Ni(n)

be the number of users attempting transmission at time n at vertex i. Then Ni(n) is

a binomial random variable with parameters

(
Wi(n),

1∑
j∈Vi

Wj(n)

)
and {Ni(n), 1 ≤

i ≤ K} are independent variables conditioned on W (n). The sequence {W (n)} forms

a time-homogeneous irreducible Markov Chain, which satisfies the recursion

Wi(n) =Wi(n− 1) +Ai(n)− 11(Ni(n− 1) = 1)
∏

j∈Vi\{i}

11(Nj(n− 1) = 0). (1)

To explicitly show the dependence of W (n) on the initial condition W (0) = x, we

may sometimes write W x(n).

If xi > 0, then the i-th component of the drift vector is given by the expression

E
[
Wi(1)−Wi(0)|W (0) = x

]
= λi−

xi∑
k∈Vi

xk

(
1−

1∑
k∈Vi

xk

)xi−1 ∏

j∈Vi\{i}

(
1−

1∑
k∈Vj

xk

)xj

,

(2)

and if xi = 0, then E
[
Wi(1)−Wi(0)|W (0) = x

]
= λi.

We rewrite the expression for the drift vector in the following way:

E
[
W (1)−W (0)|W (0) = x

]
= λ−G(x).
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Here λ is a K-dimensional vector with its i-th component being equal to λi and G(x) =

(G1(x), . . . , GK(x)) is a function from R
K to R

K defined by

Gi(x) =





xi
P

k∈Vi
xk

(
1− 1

P

k∈Vi
xk

)xi−1∏
j∈Vi\{i}

(
1− 1

P

k∈Vj
xk

)xj

, if xi > 0,

0, if xi = 0.

For x ∈ R
K , we denote φi(x) =

xi
P

j∈Vi
xj
. Let φ(x) = (φ1(x), ..., φK(x)). Note that Gi

is bounded from above by 1 and if
∑

k∈Vi
xk > 0 then

lim
t→+∞

Gi(tx) = G̃i(x) = φi(x)e
−

P

j∈Vi
φj(x).

In particular, G̃i is a homogeneous function of order 0, i.e. G̃i(cx) = G̃i(x) for any

c > 0.

We now comment on the model. In this paper, we mostly consider the symmetric

case, where λi = λ for all i = 1, . . . ,K and the graph G is (V − 1)-regular: the

cardinality of Vi is equal to V for all i. Notice that, even in this case, the graph G is

not necessarily completely symmetric.

Note also that the system is not monotone. Indeed, x ≤ y (component-wise) does

not imply thatW y(1) stochastically dominatesW x(1). Neither is the system monotone

with respect to the graph structure: if G1 is embedded into G2, this does not imply that

the workload process built on graph G1 is stochastically dominated by the workload

built on graph G2.

We also present a number of generalisations to a non-symmetric case. In partic-

ular, using methods suggested recently in [18], we formulate in Remark 3 sufficient

conditions for the stability of the system with space-inhomogeneous input. Some other

generalisations of the model are proposed in Section 8.

1.3. Stability result

We first explain the intuition hidden behind the result. Consider the symmetric

case, λi = λ, card(Vi) = V , i = 1, . . . ,K.

The access protocol favours an equilibrium of the workload in the network: assume

that the workload at node i is much larger than the workload in its neighbouring

nodes, Vi \ {i}. Then φi(x) is close to 1, whereas φj(x) is close to 0 for all the other

nodes j in Vi. Thus the workload at node j in Vi will tend to get closer to the
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workload at node i. From this balance mechanism one can guess that the diagonal

∆ = {x ∈ R
K : x1 = x2... = xK} is an attractive set.

If the workload vector belongs to the diagonal: W (0) = c11 where c ∈ N, then we

obtain:

E(W (1)−W (0)|W (0) = c11) =

(
λ−

1

V

(
1−

1

V c

)V c−1
)
11.

Hence, as c tends to infinity, the drift vector converges to (λ − e−1/V )11.

So finally, we end up with the conjecture that if λ < e−1/V , then the Markov chain

W is ergodic. This conjecture is clearly true for the fully isolated graph and for the

complete graph.

The reasons that led to this conjecture appear to be wrong (this will follow from

the results of Sections 6 and 7, which show that in general the main diagonal is not

attractive). However, the conjecture itself is true and we can formulate our main

stability result that will be proved in Section 4.

Theorem 1. Assume the model to be symmetric.

(i) If λ < e−1/V , then the Markov chain W is positive recurrent.

(ii) Assume further that P(A1(1) = A2(1) = ... = AK(1) = 0) > 0. Then W is

ergodic, i.e. there exists a unique stationary distribution and the distribution of Wn

converges to the stationary one in the total variation norm.

Our proof of (i) is based on the fluid approximation approach. We will show that

all fluid limits satisfy a certain differential equation and then proceed with the analysis

of that equation. The proof of (ii) is standard: the state 0 = (0, 0, ..., 0) is achievable

from any other state and from itself. So, the state 0 is positive recurrent (due to (i))

and the Markov chain W is aperiodic. The ergodicity follows.

Our heuristics suggest also that if λ > e−1/V then W is transient. Corollary 4 in

Section 6 is a partial result which corroborates this intuition.

2. Fluid approximation method

This section deals with a general (not necessarily symmetric) graph.
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2.1. General properties

In what follows, we endow R
K with the L1-norm: |x| =

∑K
k=1 |xk|. Let (x

n), n ∈ N,

be a sequence in N
K such that limn |x

n| = ∞. For t ∈ [0, T ], we define:

Xn(t) =
W xn

(⌈|xn|t⌉)

|xn|
.

To simplify the notation, for t ∈ R+, we set W (t) =W (⌈t⌉).

Let D([0, T ],RK) denote the space of càdlàg functions from [0, T ] to R
K endowed

with the usual Skorokhod topology. This means that the distance between the functions

f1 and f2 is defined by

dT (f1, f2) = inf sup
t∈[0,T ]

{|g(t)− t|+ ρ(f1(g(t)), f2(t))},

where ρ is the L1-metric in RK and the outer infimum is taken over all monotone

continuous functions g : [0, T ] → [0, T ] such that g(0) = 0 and g(T ) = T . Denote by

D([0,∞)) the space of RK–valued càdlàg functions on [0,∞) with the metric

d(f1, f2) =

∞∑

T=1

2−T dT (f1, f2)

1 + dT (f1, f2)
.

Note that Xn ∈ D([0, T ],RK), for all n.

Lemma 1. (i) For any sequence xn such that |xn| → ∞, the family {(Xn), n ∈ N}

almost surely has a compact closure in the Skorokhod topology, and any accumulation

point z of {Xn} is almost surely continuous.

(ii) Function z is Lipschitz with the constant max{
∑K

i=1 λi,K}.

Proof. (i) One can easily obtain a proof of this statement along the lines of the

proof of [3], Theorem 4.1 or [17], Theorem 7.1. Formally, the proofs of the mentioned

theorems are given for multi-class networks. However, as pointed out in [10], the

tightness of such families holds under weaker conditions (see [10], Assumption 2.19).

(ii) Since Gi are bounded by 1 from above,

|Xn(t)−Xn
i (s)| ≤ max

{
|A(s|xn|, t|xn|)|

|xn|
,
K|xn|(t− s+ 1/|xn|)

|xn|

}

≤ max





1

|xn|

⌊|xn|t⌋∑

k=⌈|xn|s⌉

Bk,K(t− s+ 1/|xn|)



 ,
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where Bk is the total number of arrivals at time k. Sequence {Bk}k∈N consists of i.i.d.

random variables with EBk = Kλ. By the law of large numbers, the result now follows

if we let n→ ∞.

Definition 1. Any accumulation (in the Skorokhod topology) point z of the sequence

Xn is a fluid limit. The collection of all fluid limits is called the fluid model.

It follows from the definition of Xn and z that |z(0)| = 1 and that zi(t) ≥ 0 for all

i = 1, . . . ,K and for all t.

Corollary 1. The sample-path trajectories of fluid limits are self-similar. More pre-

cisely, for any fluid limit z and for any u > 0 such that P(|z(u)| > 0) > 0, the random

process {z̃(t), t ≥ 0} with conditional distribution

P(z̃(t) ∈· ) = P

(
z(u+ t)

|z(u)|
∈·
∣∣z(u)

)

is also a fluid limit on the event |z(u)| > 0.

This result may be obtained along the lines of the proof of Stolyar [17], Lemma 6.1.

However, the remark given in the proof of Lemma 1 (i) also applies here.

Definition 2. We say that the fluid model is stable if there exists a deterministic time

t0 and ε ≥ 0, such that |z(t)| ≤ ε a.s. for t ≥ t0, for all fluid limits z. Due to the self-

similarity of fluid limits, this is equivalent to saying that there exists a deterministic

time t such that |z(t)| = 0 a.s., for all fluid limits z.

Definition 2 of fluid stability has become standard and appears in most papers

dealing with the fluid approximation method.

2.2. Fluid model criterion for stability

In this subsection we formulate a stability theorem for fluid limits which will imply

Theorem 1 (i).

Lemma 2. If the fluid model is stable then W is positive recurrent.

Proof. One can again obtain a proof of this assertion by following the lines of the

proofs of Dai [3] or Stolyar [17] which are given for multi-class networks.

By Lemma 2, Theorem 1 (i) will follow from the next statement.
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Theorem 2. If λ < e−1/V , then the fluid model is stable.

Our proof of Theorem 2 is given in Section 4.

2.3. Fluid limit evolution equation

In what follows we write

ϕi(t) = φi(z(t)) =
zi(t)∑

j∈Vi

zj(t)
. (3)

Theorem 3. Take any fluid limit z and fix t ≥ 0. Assume that
∑

j∈Vi
zj(t) > 0 for

all i. Then zi(t) is differentiable at point t if t > 0, and has a right derivative at point

t if t = 0. Moreover,

z
′

i(t) = λi − ϕi(t)e
−

P

j∈Vi

ϕj(t)

= λi − G̃i(zi(t)), (4)

where zi(t) is the (right) derivative.

Under the assumptions of the Theorem, this differential equation admits a unique

solution.

Fluid limits with an initial condition on the boundary (
∑

j∈Vi
zj(0) = 0 for some i)

are analysed in Section 3.

Proof of Theorem 3. Two cases are possible: either zi(t) > 0, or zi(t) = 0 and
∑

j∈Vi
zj(t) > 0. We treat these two cases separately.

(i) Suppose first that zi(t) > 0. To treat this case, we need the following technical

result.

Lemma 3. There exists C > 0 such that |Gi(x)− G̃i(x)| ≤ min(1, C/xi) if xi ≥ 2.

Proof of Lemma 3. Using that |e−y1 − ey2 | ≤ |y1 − y2| for all y1, y2 ≥ 0, we obtain

|Gi(x)− G̃i(x)| ≤

∣∣∣∣∣ln
(
1−

1∑
k∈Vi

xk

)∣∣∣∣∣

+

∣∣∣∣∣∣
∑

j∈Vi

(
xj ln

(
1−

1∑
k∈Vj

xk

)
+

xj∑
k∈Vj

xk

)∣∣∣∣∣∣
. (5)

For every j, denote yj =
1∑

k∈Vj
xk

. From the inequality | ln(1 − y) + y| ≤
y2

2(1− y)2
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for y ∈ (0, 1) we obtain that

|Gi(x)− G̃i(x)| ≤ yi +
y2i

2(1− yi)2
+
∑

j∈Vi

xjy
2
j

2(1− yj)2
.

The statement of the lemma now follows from the inequalities

yj ≤ 1/xi, xjyj ≤ 1 and yj ≤ 1/2

for all j ∈ Vi.

Assume now that t = 0 (the result for an arbitrary t follows from the self-similarity

of fluid limits). Let x = z(0). Suppose that s < xi. Let k ≤ |xn|s, then W xn

i (k) ≥

xni − k ≥ |xn|(xni /|x
n| − s). Hence, W xn

i (k) ≥ 2 for k ≤ |xn|s, for large enough n.

We need to show that lims→0
zi(s)− zi(0)

s
= λi − G̃i(z(0)). Consider the decompo-

sition

Xn
i (s)−Xn

i (0) =
1

|xn|

⌊|xn|s⌋−1∑

k=0

(
W xn

i (k + 1)−W xn

i (k)
)

=
1

|xn|

⌊|xn|s⌋−1∑

k=0

E

[
W xn

i (k + 1)−W xn

i (k)|W xn

(k)

]

+
1

|xn|

⌊|xn|s⌋−1∑

k=0

(
W xn

i (k + 1)−E[W xn

i (k + 1)|W xn

i (k)]
)

=
1

|xn|

⌊|xn|s⌋−1∑

k=0

(
λi −Gi(W

xn

(k))
)
+

1

|xn|

⌊|xn|s⌋∑

k=1

Dn
k , (6)

where

Dn
k =W xn

i (k)−E
(
W xn

i (k)|W xn

(k − 1)
)
= Ai(k)−λi+qi(k)−E

(
qi(k)|W

xn

(k − 1)
)

with qi(k) = I(Ni(k−1) = 1)
∏

j∈Vi\{i}
I(Nj(k−1) = 0). We have

1

|xn|

∑⌊|xn|s⌋
k=1 (Ai(k)−

λi) → 0 a.s. as n → ∞. So we can apply Theorem VII.3 of Feller [8] (with bk = 1/k)

to deduce that

1

|xn|

⌊|xn|s⌋∑

k=1

(
qi(k)−E

(
qi(k)|W

xn

(k − 1)
))

→ 0 a.s. (7)

as n→ ∞.

It remains to find the limit of the first term in the RHS of equation (6). Decompose

this term as follows:
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1

|xn|

⌊|xn|s⌋−1∑

k=0

(
λi −Gi(W

xn

(k))
)
=

1

|xn|

⌊|xn|s⌋−1∑

k=0

(
λi − G̃i

(
Xn

(
k

|xn|

)))
+ ε(s, n),

where by Lemma 3

|ǫ(s, n)| ≤ C
1

|xn|

⌊|xn|s⌋−1∑

k=0

1

W xn

i (k)
≤ C

1

|xn|

⌊|xn|s⌋−1∑

k=0

1

xni − k
→ 0

as n→ ∞ uniformly in s ≤ xi. Further, from the uniform convergence of Xn to z and

the continuity of G̃ we deduce that

zi(s)− zi(0)

s
= λi − lim

n→∞

⌊|xn|s⌋−1∑
k=0

G̃i

(
z
(

k
|xn|

))

|xn|s
.

Since 1
|xn|

∑⌊|xn|s⌋
k=1 G̃i(z(

k−1
|xn| )) is a Riemann sum of a continuous bounded function, it

converges to
∫ s

0
G̃i(z(u))du, so

lim
s→0

zi(s)− zi(0)

s
= λi − lim

s→0

∫ s

0 G̃i(z(u))du

s
= λi − G̃i(z(0)). (8)

(ii) Now consider the second case, zi(0) = 0 and
∑

j∈Vi
zj(0) > 0. Notice that

G̃i(zi(0)) = 0. In view of equations (6) and (7) it suffices to show that

lim
s→0+

lim
n→∞

1

|xn|s

⌊|xn|s⌋−1∑

k=0

Gi(W
xn

(k)) = 0. (9)

By the assumption, there exists j ∈ Vi such that zj(0) = limn→∞ xnj /|x
n| > α > 0.

Let ε > 0, then there exists n0 such that for all n ≥ n0, x
n
j /|x

n| > α and xni /|x
n| < ε.

Fix 0 < s < α and ε < α. Then for n large enough, W xn

i (k) ≤ ε|xn| + Ai(0, k),

W xn

j (k) ≥ α|xn| − k and

Gi(W
xn

(k)) ≤
W xn

i (k)

W xn

i (k) +W xn

j (k)

≤
ε|xn|+Ai(0, k)

(α+ ε)|xn| − k

By the strong law of large numbers, limt→+∞ Ai(0, t)/t = λi a.s. Let λ̃ > λi. We

may choose |x| and n large enough and then k0 such that for k0 ≤ k ≤ s|xn|,

Gi(W
xn

(k)) ≤
ε|xn|+ λ̃k

(α+ ε)|xn| − k
,
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and

1

|xn|

⌊|xn|s⌋−1∑

k=0

Gi(W
xn

(k)) ≤
k0
|xn|

+
ε

α+ ε− s
+

1

|xn|

⌊|xn|s⌋−1∑

k=0

kλ̃

α|xn| − k

Direct computations show that

lim
n→∞

1

|xn|

⌊|xn|s⌋−1∑

k=0

kλ̃

α|xn| − k
= −λ̃(s+ α ln(1−

s

α
)).

Then

lim sup
n

1

|xn|

⌊|xn|s⌋−1∑

k=0

Gi(W
xn

(k)) ≤
ε

α+ ε− s
− λ̃(s+ α ln(1−

s

α
)) a.s.

Since the last inequality holds for all ε > 0 and λ̃ > λi, we have

lim sup
n

1

|xn|

⌊|xn|s⌋−1∑

k=0

Gi(W
xn

(k)) ≤ −λi(s+ α ln(1 −
s

α
)).

It then follows immediately that

lim
s→0+

lim sup
n

1

|xn|s

⌊|xn|s⌋−1∑

k=0

Gi(W
xn

(k)) = 0.

The proof of Theorem 3 is now complete.

We also need a further result that may be deduced from Theorem 3. Let H = {x ∈

R
K : xi > 0 for all i = 1, . . . ,K} be the interior of the positive orthant.

Lemma 4. Assume that z(0) ∈ H, then either

(i) there exists c such that z(c) = 0 and z(t) ∈ H for all t ∈ (0, c) or

(ii) z(t) remains in H for all t > 0.

Proof of Lemma 4. Restricted on the open set H , the RHS of equation (4) is a

continuous function. Therefore, the solutions of equation (4) are locally uniquely

defined as long as z(t) remains in H . Now, suppose, to the contrary, that t 7→ z(t)

leaves H at time c at a point y = limt→c− z(t) ∈ ∂H\{0}.

Let ai = lim supt→c− φ(z(t)), ai ∈ [0, 1]. Since y 6= 0, there exist i1 and i2 such

that yi1 = 0 and yi2 > 0. The connectivity of G implies that there exists k such
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that yk = 0 and
∑

j∈Vk
yk > 0 (for that, consider any path from i1 to i2). Hence,

ak = 0 and limt→c− Fk(φ(z(t))) = λ > 0, this implies that t 7→ xk(t) increases in a left

neighbourhood of c, which contradicts yk = limt→c− z(t) = 0.

Lemma 4 implies that for an initial condition in H the fluid limit z(t) remains in H

or finally reaches 0 at time c. It also implies that if z(0) = limn x
n/|xn| ∈ H then the

fluid limit is deterministic.

3. Properties of the fluid limit on the boundary

In this section we work with the general case (we no longer make the symmetry

assumptions).

Conjecture 1. We conjecture that all coordinates of any fluid limit z have right

derivatives at point 0 (even if there exists i such that xj = zj(0) = 0 for all j ∈ Vi).

We also conjecture that the right derivative z
′

(0) of a fluid limit {z(t), t ≥ 0} does not

depend on the sequence xn and only depends on x = limn x
n/|xn|. If this is true, then

all fluid limits are deterministic functions.

In this Section, we prove a weaker statement which implies that the boundary of

the positive orthant does not play any role in determining the stability conditions for

the fluid model. Denote

τh = inf{t ≥ 0 : |z(t)| < h}.

Denote also λ∗ = min{λ1, . . . , λK} > 0. Since |z(0)| = 1, maxi zi(0) ≥ 1/K. The

inequality z
′

i(t) ≥ λ∗ − 1 for all i and t also implies that

τ1−ε ≥
ε

K(1− λ∗)
. (10)

Theorem 4. There exist positive constants b and ε0 such that, for any ε ∈ (0, ε0),

mini zi(t) ≥ bε for any t ∈ [cε, τ1−ε) where c = 1/K(1− λ∗).

From the self-similar property of fluid limits, the following corollary is immediate.

Corollary 2. For any h > 0, zi(t) > 0 for all 0 < t < τh and all i.

Lemma 4 and Corollary 2 imply the following.
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Corollary 3. Assume that |z(0)| > 0, then either

(i) there exists c such that z(c) = 0 and z(t) remains in H for all t ∈ (0, c) or

(ii) z(t) remains in H for all t > 0.

We do not present proofs of these statements here as they are rather obvious.

The rest of this Section is devoted to the proof of Theorem 4. We begin with two

technical lemmas.

Lemma 5. There exist positive constants K1 > 1 and K2 such that, for any fluid limit

z, if zi(t) > K1zj(t) for two neighbouring nodes i and j, then z
′

j(t) > K2.

Proof of Lemma 5. The existence of z
′

j(t) is guaranteed by Theorem 3. Since
∑

k∈Vj
zk(t) >

zi(t) > 0, we have

z
′

j(t) > λ∗ −
zj(t)∑

k∈Vj
zk(t)

≥ λ∗ −
zj(t)

zi(t) + zj(t)
> λ∗ −

1

1 +K1

and we may take K1 = 2/λ∗ − 1 and K2 = λ∗/2.

Lemma 6. There exist constants C1 ≥ C2 > 0 such that for any h > 0 one can choose

h1 > 0 such that if |z(0)| ≥ h1 and mini zi(0) ≥ C1h then mini zi(t) ≥ C2h1 for all

t ≤ τh.

Proof of Lemma 6. Denote by D the maximum graph distance in G (the diameter

of G). Put C1 =
1

KKD+1
1

and C2 =
C1

KD−1
1

. We may prove Lemma 6 for h = 1. The

result for an arbitrary h follows from the self-similarity of fluid limits.

It is sufficient to show that for any t < τ1 if mini zi(t) ≥ C1 then there exists

0 < s <∞ such that

min
i
zi(t+ s) ≥ C1 (11)

and

min
i
zi(u) ≥ C2 for all t ≤ u ≤ t+ s. (12)

Indeed, assume that (11)-(12) hold and Lemma 6 is not valid. Then there exists t ≤ τ1

such that mini zi(t) < C2. It then follows from the continuity of fluid limits that there

is a last moment v < t when mini zi(v) ≥ C1. However, it follows from (11)-(12)

that there exists s > 0 such that mini zi(v + s) ≥ C1 and mini zi(u) ≥ C2 for all
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v ≤ u ≤ v + s. Clearly, v + s < t, which contradicts our assumption that v is a last

moment before t when mini zi(v) ≥ C1.

Now let t be any time such that t < τ1 and mini zi(t) ≥ C1. Note that maxi zi(t) ≥

1/N = C1K
D+1
1 since t < τ1. To simplify the notation, assume that z1(t) = maxi zi(t).

Let T be such that z1(t+u) ≥ C1K
D
1 for all 0 ≤ u ≤ T . Again note that z

′

i(u) ≥ λ∗−1

for all i and u. This implies that

T ≥
C1(K

D+1
1 −KD

1 )

1− λ∗
=
C1K

D
1 (K1 − 1)

1− λ∗
. (13)

Let d be the maximum distance in G from node 1. Clearly, d ≤ D. For j = 1, . . . , d,

denote by Aj the set of nodes at distance j from node 1.

We show that there exists 0 < s < T such that (11) and (12) hold. First, we show

that min zi(u) ≥ C2 for all t ≤ u ≤ t + T . Note that zi(u) ≥ C1 for all i ∈ A1 and

t ≤ u < t + T . Indeed, assume that there exist i ∈ A1 and t ≤ u < t + T such that

zi(u) < C1. Then, by continuity, there is a last moment t ≤ u1 < u such that zi(u1) ≥

C1. Lemma 5 implies that z
′

i(u1) ≥ K2 > 0 and hence, there exists time u2 > u1 such

that zi(u2) ≥ C1, but this contradicts our assumption on u1. Using induction and

following the same arguments, we can show that zi(u) ≥ C1/K
j−1
1 for all i ∈ Aj and

t ≤ u ≤ t + T for any j = 1, . . . , d. Hence, mini zi(u) ≥ C1/K
d−1
1 ≥ C1/K

D−1
1 = C2

for all t ≤ u ≤ t+ T .

Let us now show that there exists 0 < s < T such that (11) holds. For every

j = 1, . . . , d, denote by tj the time needed to achieve the level C1K
d−j
1 starting from

the level C1/K
j−1
1 and moving with speed K2. Clearly, tj =

C1(K
d−1
1 − 1)

K2K
j−1
1

. Note that

(11) and (12) hold with s =
d∑

j=1

tj if T ≥
d∑

j=1

tj . Indeed, minj∈A1
zj will achieve the

level C1K
d−1
1 not later than at time t+ t1 and will not become smaller than this level

before time t+ T , since all nodes in A1 are neighbours of node 1 and z1(u) ≥ KD
1 for

all t ≤ u ≤ t + T . Note also that minj∈A2
zj will become greater than C1K

d−2
1 not

later than at time t+ t1 + t2 since it cannot become smaller than C1/K1 before time

t+ t1, and after this time it is either greater than C1K
d−2
1 or grows with a speed of at

least K2 (this follows from Lemma 5 and the fact that any node in A2 has a neighbour

in A1). We can continue these arguments to prove that minj∈Ad
zj will become greater

than C1 not later than at time t+
d∑

i=1

ti if T ≥
d∑

i=1

ti.
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Note that

d∑

i=1

ti =
C1(K

d−1
1 − 1)(1 +K1 + . . .+Kd−1

1 )

K2K
d−1
1

=
C1(K

d−1
1 − 1)(Kd

1 − 1)

K2K
d−1
1 (K1 − 1)

≤
C1(K

d
1 − 1)

K2(K1 − 1)
≤
C1(K

D
1 − 1)

K2(K1 − 1)
. (14)

If we take K2 = λ∗/2 and K1 = 2/λ∗ − 1 then (1 − λ∗)/K2 = K1 − 1. Note also

that in this case K1 ≥ 2. It now follows from (13) and (14) that T ≥
d∑

i=1

ti.

One can see from the proof of Lemma 6 that the following (stronger) result holds.

Lemma 7. For any h1 > 0 there exists ĥ2 > 0 such that for any h2 ≤ ĥ2 there exists

0 < h3 ≤ h2 such that if |z(0)| ≥ h1 and mini zi(0) ≥ h2 then mini zi(t) ≥ h3 for all

t ≤ τh1
.

Remark 1. Lemma 7 is valid with ĥ2 =
h1

KKD+1
1

.

Proof of Theorem 4. The proof of Theorem 4 is similar to that of Lemma 6. Recall

that D is the maximum graph distance of G. Take ε0 such that
K2(K1 − 1)ε

(KD
1 − 1)

≤

1− ε

KKD+1
1

for all ε ≤ ε0 and let a =
K2(K1 − 1)

(KD
1 − 1)

. Then aε ≤
1− ε

KKD+1
1

, and, in view of

Lemma 7 and Remark 1, it is enough to prove that mini zi(cε) ≥ aε.

Note that maxi zi(0) ≥ 1/K. Assume that z1(0) = maxi zi(0). Let T be such that

z1(u) ≥ aεKD
1 for all 0 ≤ u ≤ T . Then z

′

i(t) ≥ λ∗ − 1 implies that

T ≥
1/K − aεKD

1

1− λ∗
=

1−KaεKD
1

K(1− λ∗)
. (15)

Again let d be the maximum distance in G from node 1. For j = 1, . . . , d, denote

by Aj the set of nodes at distance j from node 1. For every j = 1, . . . , d, denote by

tj the time needed to achieve the level aεKd−j
1 starting from the level 0 and moving

with speed K2. Clearly, tj =
aεKd−j

1

K2
. Denote T1 =

D∑
j=1

tj . Note that

T1 =
aε(KD

1 − 1)

K2(K1 − 1)
=

ε

K(1− λ∗)
= cε. (16)

Following the same arguments as in the proof of Lemma 6, we can show that

mini zi(cε) = mini zi(T1) ≥ aε if T1 ≤ T .

It remains to prove that T1 ≤ T . This follows from (15), (16) and the inequality

aε ≤
1− ε

KKD+1
1

.
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Remark 2. Denote by ν(s, h, b) = inf{t ≥ s : |z(t)| < h or mini zi(t) < b} the

time (after moment s) of the first exit from the set {|z| ≥ h}∩{mini zi ≥ b} after time

s. Theorem 4 implies that there exist b > 0 and s ≥ 0 such that τ1−ε = ν(sε, 1− ε, bε)

for any initial condition z(0).

4. Proof of Theorem 2

In this Section we first present a proof of our main stability result and then formulate

its generalisation. Recall that Theorem 1 follows from Theorem 2 and Lemma 2.

Recall also that here we deal with the symmetric case. We need to prove that there

exists a deterministic time t0 such that for all fluid limits, z(t) = 0 for t ≥ t0 a.s.

Lemma 8. If zi(t) > 0 for all i = 1, . . . ,K, then
(∑

i

z2i (t)

)′

≤

(
λ−

e−1

V

)∑

i

zi(t)

and hence, if λ < e−1

V
, (∑

i

z2i (t)

)′

≤ −ε
∑

i

zi(t)

for some ε > 0.

Proof of Lemma 8.. Clearly, it is sufficient to prove the inequality

∑
i

ziϕi exp

{
−
∑
j∈Vi

ϕj

}

∑
k

zk
≥
e−1

V
(17)

where we slightly abuse the notation from (3) by writing zi instead of zi(t) and ϕi

instead of ϕi(t). We can write the LHS of the previous inequality in the form

∑

i

pif(yi)

where pi =
zi∑

k

zk
, yi = −

∑
j∈Vi

ϕj − ln
1

ϕi

and f(z) = ez. Function f is convex

and
∑
i

pi = 1, hence
∑
i

pif(yi) ≥ f(
∑
i

piyi) and

∑
i

ziϕi exp

{
−
∑
j∈Vi

ϕj

}

∑
k

zk
≥ exp



−

∑

i

zi∑
k

zk

∑

j∈Vi

ϕj −
∑

i

zi∑
k

zk
ln

1

ϕi



 . (18)
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Now consider
∑
i

zi∑
k

zk

∑
j∈Vi

ϕj and
∑
i

zi∑
k

zk
ln

1

ϕi

separately:

∑

i

zi∑
k

zk

∑

j∈Vi

ϕj =

∑
i

zi
∑
j∈Vi

ϕj

∑
k

zk
=

∑
j

ϕj

∑
i∈Vj

zi

∑
k

zk
=

∑
j

zj

∑
k

zk
= 1 (19)

(we use the identity ϕj

∑
i∈Vj

zi = zj and the symmetry of the neighbourhood relation:

j ∈ Vi iff i ∈ Vj .)

Note that the logarithmic function is concave. Hence

∑

i

zi∑
k

zk
ln

1

ϕi

≤ ln


∑

i

zi∑
k

zk

1

ϕi


 = ln



∑
i

zi
ϕi

∑
k

zk


 = ln




∑
i

∑
j∈Vi

zj

∑
k

zk


 = lnV. (20)

Inequality (17) follows now from (18), (19) and (20).

Proof of Theorem 2.. Corollary 2 implies that zi(t) > 0 for all i = 1, . . . ,K and all

0 < t < inf{u : z(u) = 0}. Then we can use Lemma 8. Note also that
∑
i

xi ≥
√∑

i

x2i

for any positive values of {xi}. Hence, Lemma 8 implies that

(∑

i

z2i (t)

)′

≤ −ε

√∑

i

z2i (t).

Then 

√∑

i

z2i (t)




′

≤ −ε/2,

and the result follows.

Remark 3. By applying methods of [18], we can get a similar (but less explicit)

stability result in a more general situation. Assume now that the system may be

asymmetric, i.e. that values of λi may differ for different i and the graph G may be

irregular.

Let

M = {µ : µi = pie
−

P

j∈Vi
pj , i = 1, . . . ,K, for some p = (p1, . . . , pK) with pi ≥ 0}.

One can show that the vector (ϕ1, . . . , ϕK) with ϕi =
zi∑

j∈Vi
zj

maximises the

function
K∑
i=1

zi lnµi over all vectors µ ∈M . Based on that, one can obtain the following.
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Theorem 5. Assume that there exists a vector µ ∈ M such that λ < µ component-

wise. Then the Markov chain Wn is positive recurrent.

A proof of Theorem 5 follows the lines of the proof of Theorem 4 in [18].

5. Rate of convergence

In this section, we again consider the symmetric case. We will obtain power rates

of convergence of Wn to its stationary distribution in the total variation norm. We

expect that one can similarly prove the geometric ergodicity of the underlying Markov

chain given the light-tailedness of the distribution of the increments {A(n)}.

Define the total variation distance between distributions π1 and π2 by

||π1(· )− π2(· )|| = sup
|g|≤1

∣∣∣∣
∫
g(y)π1(dy)−

∫
g(y)π2(dy)

∣∣∣∣ .

Theorem 6. Assume that λ < e−1/V and EAi(n)
p+1 < ∞ for some p ≥ 1 and for

all i = 1, . . . ,K and n. Assume also that P(A1(1) = 0, A2(1) = 0, ..., AK(1) = 0) > 0.

Then

lim
n→∞

np||Pn(x, · )− π(· )|| = 0, x ∈ N
K ,

where P
n(x, · ) is the distribution of W x(n) and π(· ) is the stationary distribution of

W .

Proof of Theorem 6. The proof of Theorem 6 is based on the following lemma which

is an analogue of Proposition 5.3 of Dai and Meyn [4].

Lemma 9. Assume that the conditions of Theorem 6 are satisfied. Then, for some

constants c <∞, δ > 0 and a finite set C,

E




τC(δ)∑

n=0

|W x(n)|p


 ≤ c|x|p+1

for any x ∈ N
K , where τC(δ) = min(n ≥ δ :W (n) ∈ C).

Proof of Lemma 9. The proof of Lemma 9 follows the lines of the proof of Proposi-

tion 5.3 of [4].

It follows from Theorem 2 that there exists t0 such that

lim
|x|→∞

W x(|x|t0)

|x|
= 0 a.s.
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Note also that the family of random variables

{
|W x(|x|t0)|

p+1

|x|p+1

}
is uniformly inte-

grable, since

|W x(|x|t0)|
p+1

|x|p+1
≤

(∑|x|t0
m=0

∑K
i=1 Ai(m)

)p+1

|x|p+1
≤ tp+1

0

∑|x|t0
m=0

(∑K
i=1Ai(m)

)p+1

|x|t0

and the family





∑|x|t0
m=0

(∑K
i=1Ai(m)

)p+1

|x|t0





is uniformly integrable. This is guaran-

teed by the existence of EAi(m)p+1 for all i = 1, . . . ,K and for all m. Hence,

lim
|x|→∞

E
[
|W x(|x|t0)|

p+1
]

|x|p+1
= 0.

Choose L such that

E
[
|W x(|x|t0)|

p+1
]
≤

1

2
|x|p+1 (21)

for |x| ≥ L. Define, as in the proof of Proposition 5.3 of [4], the sequence of stopping

times σ0 = 0, σ1 = t(x), and σk+1 = σk + θσk
σ1, k ≥ 1, where t(x) = t0 max(L, |x|)

and θ is shift operator on the sample space. We assume that t0 is an integer. The

stochastic process Ŵk =W (σk) is a Markov chain with the transition kernel

P̂ (x,A) = P(W x(t(x)) ∈ A).

Now (21) implies that

E
{
|Ŵ1|

p+1 − |Ŵ0|
p+1|Ŵ0 = x

}
≤ −

1

2
|x|p+1 + bIC(x),

for the set C = {x : |x| ≤ L} and for some constant b. The Comparison Theorem

(Meyn and Tweedie [13], p. 337) yields that

E

[
k∗−1∑

n=0

|W x(σk)|
p+1

]
= E

[
k∗−1∑

n=0

|Ŵ (k)|p+1

]
≤ 2

{
|x|p+1 + bIC(x)

}
(22)

where k∗ = min(k ≥ 1 : Ŵ (k) ∈ C}. To prove Lemma 9, we first show that for some

constant c0

E

[
σk+1∑

n=σk

|W x(n)|p|Fσk

]
≤ c0W

x(σk)
p+1 (23)

which by the strong Markov property amounts to

E

t(x)∑

n=0

|W x(n)|p ≤ c0|x|
p+1.
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This follows from the fact that

t(x)∑

n=0

|W x(n)|p ≤

t(x)∑

n=0

(
n∑

m=0

K∑

i=1

Ai(m)

)p

≤

t(x)∑

n=0




t(x)∑

m=0

K∑

i=1

Ai(m)




p

a.s., and from our assumption that EAi(m) < ∞ for all i = 1, . . . ,K and for all m.

Substituting (23) into (22), we have

E

[
∞∑

k=0

E

[
σk+1∑

n=σk

|W x(n)|p|Fσk

]
Ik < k∗

]
≤ c|x|p+1.

By Fubini theorem and the smoothing property of the conditional expectation, the

LHS is precisely E
[∑σk∗

n=0(1 + |W x(n)|p)
]
. The proposition now follows from the fact

that σk∗
≥ τC(t0L).

We now apply Proposition 5.4 of [4] with t = 1. In our case, it gives the following

bound:

E {V (W (1))− V (W (0))|W (0) = x} ≤ −f(x) + κ (24)

with V (x) = E
(∑τC(δ)

n=0 |W x(n)|p
)
and f(x) = |x|p.

Further, Lemma 9 implies that V (x) ≤ c|x|p+1. Now (24) yields that

E {V (W (1))− V (W (0))|W (0) = x} ≤ V (x)
p

p+1 + bIC

for the set C = {x : |x| ≤ L} and for some constant b. The result now follows from

Theorem 2.5 of Douc et al. [5].

6. Local stability of fluid limits on the positive orthant

In this Section we investigate the behaviour of the solution to the differential equa-

tion (4). In particular, we show that if the input rate λ is sufficiently small, then the

diagonal is locally unstable.

6.1. Orbits of the fluid limits

Recall that H = {x ∈ R
K : xi > 0 for all i = 1, . . . ,K} is the interior of the

positive orthant and 11 = (1, ..., 1). For z(t) in H , the differential equation (4) may be

restated in a closed form as

z′(t) = F (φ(z(t))), (25)
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with Fi(x) = λ − xie
−

P

j∈Vi
xj . Let ∆ = {x ∈ H : x1 = x2... = xK} be the main

diagonal and Cu = {x ∈ H : |x/|x| − 11/K| ≤ u}, u > 0, Cu a cone with direction ∆.

We note that the main diagonal is an orbit of the equation F (φ(c11)) = (λ− e−1/V )11.

Let A be the adjacency matrix of G and {ν1, ..., νK} its eigenvalues with νi ≤ νi+1.

The spectral gap γ is defined by:

γ = min
i<K

(νK − νi) = νK − νK−1.

Note that since G is (V − 1)-regular, νK = V . The main result of this section is the

following.

Theorem 7. If λ > e−1

V
(1 − γ2

V 2 ), then there exists u > 0 such that, for all solutions

t→ z(t) of equation (25) with the initial condition in Cu,

lim
t→+∞

φ(z(t)) = 11/V.

If λ < e−1

V
(1− γ2

V 2 ), then the diagonal is locally unstable.

Theorem 7 will be proved in the next Subsection.

Corollary 4. Assume that λ > e−1

V
(1− γ2

V 2 ) and that z(t) is a solution of (25). There

exists u > 0 such that if z(0) ∈ Cu, then

(i) if λ < e−1/V , then z(c) = 0 for some c > 0.

(ii) if λ > e−1/V , then z(t) ∼ (λ− e−1/V )t.

Proof of Corollary 4. Let z(t) be the maximal solution with given initial value z(0) ∈

H . From Theorem 7, limφ(z(t)) = 11/V . Since F is continuous in a neighbourhood of

11/V , limt→+∞ z′(t) = (λ − e−1/V )11. If λ 6= e−1/V , then the latter implies that, as t

tends to infinity,

z(t) ∼ (λ− e−1/V )t11. (26)

Then the second statement of the corollary follows. Suppose now that λ−e−1/V < 0.

Then, from (26), z(t) leaves H in finite time. Lemma 4 implies in turn that there exists

c > 0 such that z(c) = 0. So, the first assertion of Corollary 4 is also proved.

6.2. Proof of Theorem 7

The proof of Theorem 7 is an application of the stability theory of differential

equations. It will be given in the series of technical lemmas.
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6.2.1. Spectral analysis. We need to consider the eigenvalues of D(F ◦φ)(x) for x ∈ ∆,

where Df(x) is the differential of f at x. Here F ◦φ is homogeneous of order 0: for all

c > 0, F (φ(cx)) = F (φ(x)). Hence,

D(F ◦ φ)(c11) = c−1D(F ◦ φ)(11).

Since ∆ is an orbit of equation (25), 11 is an eigenvector of D(F ◦φ)(11) associated with

the eigenvalue 0.

Lemma 10. The eigenvalues of D(F ◦φ)(11) are (0, η1, · · · , ηK−1) with ηi = − e−1

V 3 (V −

νK−i)
2 . In particular, ηi < 0 for all i ≥ 1.

Proof of Lemma 10. A direct computation leads to:

(D(F ◦ φ)(11))ij =





− e−1(V−1)
V 2 if j = i,

e−1

V 3 |Vi ∪ Vj | if j ∈ Vi \ {i},

− e−1

V 3 |Vi ∩ Vj | if j 6∈ Vi.

Then D(F ◦ φ)(11).11 = 0. To show this, let M = −eV 3D(F ◦ φ)(11). Using the

equality |Vi ∪ Vj | = 2V − |Vi ∩ Vj |, we deduce that:

(M1)i = V (V − 1)− 2V (V − 1) +
∑

j 6=i

|Vi ∩ Vj | =

K∑

j=1

|Vi ∩ Vj | − V 2 = 0.

Let E denote the identity matrix and A the adjacency matrix of G. Since (A2)ij =

|Vi ∩ Vj |, we have the following decomposition:

M = V 2E − 2V A+A2 = (A− V E)2.

The matrix A is irreducible since G is connected. Thus (A− V E) is an ML-Matrix

(refer to Seneta [16]). In the graph theory, this matrix is called the Laplacian matrix

of G. From Corollary 1 of Theorem 1 in Seneta [16], the spectral radius of A is V .

Theorem 2.6 (d) of [16] implies that dimKer(A − V E) = 1 and that all non-zero

eigenvalues of (A− E)2 are positive reals (recall that the spectrum of A is real).

6.2.2. Orbit of ψ ◦ z. We define:

Σ = {x ∈ H :

K∑

i=1

xi = 1} = H ∩ 〈11, ·〉−1({1}) = ψ(H),
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where ψ(x) = x/|x|. Σ is clearly a C∞-convex manifold of codimension 1. Introduce

the following differential equation on Σ:

y′ = Dψ(y)F (φ(y)) = α(y) (27)

with an initial condition y(0) in Σ. Here α is a C∞(Σ) function and α(y) ∈ Ty(Σ) the

tangent space of Σ at y. The next step is to compare the orbits of equations (27) and

(25). The next lemma asserts that the orbits of the solution of equation y′ = α(y) and

ψ ◦ x are indeed equal (here t 7→ z(t) is a solution of equation (25)).

Lemma 11. Let z(0) belong to H and let z(t) be the maximal solution of equation (25).

Let y(t) be the maximal solution of y′ = G(y), with the initial condition y(0) = ψ(z(0)).

Then y(t) is defined on R+, and there exists an increasing continuous bijective function

µ : R+ → R+ such that

y ◦ µ = ψ ◦ z

.

Proof of Lemma 11. For any initial condition in H , we have F (φ(z(t))) ≤ λ11. This

is clearly true if z(t) ∈ H . If z(t) 6∈ H , then z(t) ∈ ∆ ∩ Hc, by Lemma 4. Thus

F (z(t)) = (λ−1/V e−1)11 ≤ λ11. It follows that |z(t)| =
∑K

j=1 zj(t) ≤ Kλt+
∑K

j=1 zj(0).

Suppose now that z(t) ∈ H for all t. Then the integral
∫∞

0

(∑K
j=1 zj(s)

)−1

ds

diverges. By the intermediate value theorem, we deduce that there exists an increasing

continuous function ν such that

∫ ν(t)

0

ds
∑K

j=1 zj(s)
= t for all t ≥ 0. (28)

In particular,

ν′(t) =

K∑

j=1

zj(ν(t)).

Let w = ψ ◦ z ◦ ν, with w(0) = ψ(w(0)) = y(0). We have

w′(t) = ν′(t)
d

ds
ψ(z(s))

∣∣∣
s=ν(t)

=




K∑

j=1

zj(ν(t))


Dψ(z(ν(t)))F (w(t)).



A Random Multiple Access Protocol 25

The function ψ is homogeneous of order 0 and thus Dψ(cz) = c−1Dψ(z), for all

c > 0. Then

w′(t) = Dψ

(
z(ν(t))∑n

j=1 zj(ν(t))

)
F (w(t))

= G(w(t)).

The solution of the differential equation is unique, therefore w(t) = y(t). The lemma

is proved with µ = ν−1.

6.2.3. Local stability of ψ ◦ z. Clearly, y0 = 11/K is an equilibrium point of equation

(27). In the next lemma we prove that this equilibrium is locally stable.

Lemma 12. If λ > e−1

V
(1− γ2

V 2 ), there exists u > 0 such that, for all solutions t 7→ y(t)

of equation (27) with |y(0)− y0| < u,

lim
t→+∞

sup
y(0)∈Σ:|y(0)−y0|<u

|y(t)− 11/V | = 0.

Proof of Lemma 12. We denote by Dα(y)|Ty(Σ) the differential of α at y restricted

to the K − 1 dimensional subspace Ty(Σ). It is known that if all the eigenvalues of

Dα(y0)|Ty(Σ) have a negative real part, the local stability follows (see, e.g., Coddington

and Levinson [2]). Let D2ψ(y)(·, ·) denote the second differential of ψ at y, seen as a

bilinear mapping. We have

Dα(y) = D2ψ(y)(F (φ(y)), ·) +Dψ(y)D(F ◦ φ)(y). (29)

The first term in (29) is a matrix and its entry (i, j) is equal to

K∑

k=1

∂2ψ(y)i
∂yj∂yk

F (φ(y))k.

Clearly, F (φ(y0)) = (λ− e−1/V )11. Then a straightforward computation gives

D2ψ(y0)(F (φ(y0)), ·) = (λ− e−1/V )(J −KE),

where E is the identity matrix and J is the matrix with all its entries equal to 1. We

also have Dψ(y0) = E − J/K. Finally, equation (29) can be rewritten as

Dα(y0) = (E − J/K)
(
D(F ◦ φ)(y0)− (λ − e−1/V )E

)
.
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The matrix (E−J/K) commutes with all symmetric matrices and has two eigenvalues:

eigenvalue 1 (with multiplicity K−1) and eigenvalue 0 (with multiplicity 1, associated

to the eigenvector 11). By Lemma 10, the eigenvalues of D(F ◦ φ)(y0)− (λ− e−1/V )E

are

µi = −e−1(V − νK−i)
2/V 3 − λ+ e−1/V for 0 ≤ i ≤ K − 1.

The eigenvector associated to µ0 = λ−e−1/V is 11. Thus we have proved that λ−e−1/V

is an eigenvalue of multiplicity 1 for Dα(y0) and that the other eigenvalues are (µi)i≥1.

These eigenvalues have negative real parts if and only if µ1 = −e−1γ2/V 3 − λ +

e−1/V < 0, which is equivalent to λ > e−1(1− γ2/V 2)/V . The vector space generated

by the associated eigenvectors is precisely the tangent hyperplane Ty0
(Σ) = 11⊥, the

hyperplane orthogonal to 11.

Now we can prove Theorem 7. Let |z(0)| ∈ Cu and y(0) = z(0)/|z(0)|. Then, by

Lemmas 11 and 12,

lim
t→+∞

ψ(z(t)) = lim
t→+∞

y(µ(t)) = 11/K.

In particular, φ(z(t)) tends towards 11/V as t tends to infinity.

7. Absence of attraction to the diagonal in one particular case

It has already been pointed out in Section 1.3 and in the previous Section that if λ

is too small, the main diagonal may not be locally stable. In this Section, we present

an example of a graph with locally stable sets of parameters which do not belong to

the main diagonal if λ is sufficiently small.

Consider a graph G with 4 vertices placed on a circle. Number the vertices 1, 2, 3, 4

clockwise and assume that each vertex is linked with its 2 neighbours (so that, for

example, vertex 1 has links with 2 and 4). In this case, K = 4 and V = 3.

For the fluid limits associated with this graph, consider equation (27). It can be

rewritten in the form

y′i(t) =
(
λ− ϕi(t)e

−
P

j∈Vi
ϕj(t)

)
− yi

K∑

k=1

(
λ− ϕk(t)e

−
P

j∈Vk
ϕj(t)

)
, i = 1, . . . ,K.

We are interested in the so-called stable points of the latter system of differential

equations, i.e. points for which the RHS’s of all the equations above are identically 0.
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So if y(0) is such a point, y(t) stays at this point for all t ≥ 0. Clearly, one stable point

is (1/K, . . . , 1/K), which corresponds to the diagonal. However, if λ <
e−1

V

(
1−

γ2

V 2

)

(= 5/27e−1 in our case), then there exist other stable points.

Take y1(0) = y2(0) and y3(0) = y4(0). Since y1(0) + y2(0) + y3(0) + y4(0) = 1, the

equality y3(0) = (1− 2y1(0))/2 holds, and the system of differential equations at time

t = 0 reduces to just one (i.e. any) of them. One can show that, for any λ < 5/27e−1,

the RHS of this equation equals 0 at three different points: at y(1) = (1/4, 1/4, 1/4, 1/4)

and at two others, say y(2) and y(3). One can find approximate values of these points

numerically. For instance, if λ = 0.001, then y(2) ≈ (0.01, 0.01, 0.49, 0.49) and y(3) ≈

(0.49, 0.49, 0.01, 0.01). Numerical results also show that these points are locally stable.

8. Extensions of the model

8.1. Random neighbourhood

In this Subsection we consider a possible extension of our model. Assume there

is a fixed number of points 1, . . . ,K and a set of undirected graphs
{
Gj
}L
j=1

each

having points 1, . . . ,K as its vertices. Assume that at each time n the neighbourhood

relations are given by the graph Gηn where ηn are independent identically distributed

random variables taking the value j with probability pj . The need to consider such a

variability of neigbourhood relations may be justified by, for instance, the fact that a

change of environment conditions may lead to a change of the radius and/or direction

of interactions.

Denote by Vj
i the neighbourhood of the point i in the graph Gj and by V j

i its

cardinality. We assume again that the system is regular in the sense that EV η1

i = V

for all i.

Following the proof of Theorem 3, one can show that the fluid limits of the model

described above satisfy the following differential equation

z′i(t) = λ−

L∑

k=1

pkϕ
k
i (t)e

−
P

j∈V k
i

ϕk
j (t)

where ϕk
i (t) are defined in a natural way. Using the same methods as those used in

the proof of Theorem 2, it can be shown that the system with random neighbourhood

is stable if λ <
e−1

V
.
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8.2. Non-regular graphs with space-inhomogeneous input

Although Remark 3 provides sufficient conditions for stability in this case, the

conditions are not easy to verify. Here we give some other conditions that are also

sufficient for the stability of the system. Assume now that EV η1

i = Vi, and Vi are not

necessarily equal. Put V = max
i
Vi. Assume also that Eξni = λi, so that the input

is “space-inhomogeneous”. Put λ = max
i
λi. Clearly, all the results concerning fluid

limits also hold in this case, and it is easy to see that one can prove the following result.

Theorem 8. The system described above is stable provided λ <
e−1

V
.
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