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Abstract—Network coding promises to bring significant perfor-
mance improvements to sensor network protocols but algorithms
need to be designed to cope with the often very constrained
resources of sensor nodes. Growth Codes proposed by Kamra et
al. [1] are one such example aimed at improving sensor network
data persistence. The codes use simple coding operations and
require comparatively little memory. However, Growth Codes
are based on the assumption of an extremely dynamic network
topology and do not perform well in more stable settings. In this
paper we propose modifications to Growth Codes that are able
to achieve good performance over a wider range of static and
dynamic scenarios. In particular, we investigate changes of how
many and which symbols the transmitted information is coded
over and how the decoding is performed. These modifications are
analyzed in detail by means of simulations.

I. I NTRODUCTION

Sensor networks are special purpose networks usually con-
cerned with data collection and efficient transport of that data
to one or several sink nodes. The most important characteristics
of sensor networks are the constraints imposed by the limited
resources of sensor nodes in terms of memory, computational
power, and energy. Network coding [2] has proven to be a
useful tool to improve the performance of such networks.
Several papers have analyzed the benefits of random network
coding [3] for information dissemination and data persistence
[4]. In particular, the robustness that can be achieved through
the diversity of available information by coding at intermediate
nodes can be quite important in the fragile environment of
sensor networks, where node failures can be common.

For practical algorithms, it is important that they are designed
with consideration of the aforementioned resource constraints.
In this paper we focus on network coding based algorithms
for data dissemination in sensor networks. We are particularly
interested in increasing data persistence in the face of network
failures, wheredata persistenceis defined as the fraction of
data generated within the network that eventually reaches the
sink. Recently, algorithms such as Growth Codes [1] were
introduced which are particularly suitable for these scenarios.
The design of Growth Codes is based on the assumption
that the network topology changes very rapidly, e.g., due to
link/node failures or mobility. In this case, it makes sense
for nodes to initially mainly disseminate their own data and
then to gradually code over other data as well, to increase
the probability that information survives. However, in static
scenarios this behavior is detrimental to performance. In case
the set of neighbors does not change significantly from one

transmission to the next, the repeated transmission of the same
data will not bring new information to the neighbors and in
turn will prevent the propagation of other information. Realistic
scenarios are likely to be in between these two extremes and
have some coherence in the composition of the neighborhood
over time.

In such cases, it is beneficial to forward and code over
information from other nodes with higher probability and to
increase the codeword degree (i.e., the number of symbols a
codeword is coded over) more aggressively than in [1]. We
investigate which degree distributions improve the probability
of early decoding, and thus of data recovery, in case of node
failures. We further propose algorithms that require only avery
limited increase of coding complexity and memory usage. Our
claims are supported by extensive simulation results. The paper
is structured as follows. In Section II we give an overview
of related work. In Section III we look at existing algorithms
based on network coding from the point of view of codeword
degree distributions, and present some modifications to Growth
Codes that can improve performance in more general settings.
Section IV provides detailed simulation results for the different
algorithms, and Section V concludes the paper.

II. RELATED WORK

The usefulness of network coding for data storage was
investigated in [4], where the authors showed that a simple
distribution scheme using network coding and based only on
local information can perform almost as well as the case
where there is complete coordination among nodes. Similar
considerations also apply to sensor networks. The authors of
[5], [6] investigate algorithms for the extreme case where
storage nodes can only store a single (coded or uncoded)
information unit. Data is pre-routed tolog(N) of theN storage
nodes and the storage nodes simply combine the incoming
information with their existing information (i.e., the received
codeword is multiplied with a random coefficient and added
to the existing codeword). The algorithm ensures that nodes
can decode thek information units of interest by querying
a corresponding number of storage nodes. In [7], the authors
extend this approach by showing that if these conditions are
slightly relaxed, a constant pre-routing degree suffices.

The authors of [8] present a simple network coding algorithm
that achieves optimum performance for broadcast data dissem-
ination in static and symmetric grid networks. Optimality here
means thateachbroadcast transmission of a node brings one



codeword worth of new information toeachneighbor. The al-
gorithm progresses iteratively, where the codewords transmitted
during a given iteration are coded over the codewords received
during the previous iteration. The coding process ensures
that nodes can successively decode information generated at
neighbors at further distance, i.e., first all 1-hop neighbors,
then all 2-hop neighbors, etc. This mechanism provides a
substantial improvement in overhead compared to flooding,
where forwarded packets have usually already been receivedby
a number of neighbors previously, and thus increase overhead
without bringing new information to those neighbors. The
mechanism is quite simple, but not specifically tuned to the
resource constraints of sensor nodes. In particular, the number
of symbols a codeword is coded over increases with the size
of the neighborhood from which the symbols originate.

In contrast, Growth Codes [1] were specifically designed
with these limitations in mind. Sensor nodes send out code-
words that can be coded over multiple original information
units. Nodes exchange codewords with their neighbors and
combine received codewords with the existing local informa-
tion, such that, the stored information is coded over more and
more information units over time. Storage space is limited
and newly received codewords will overwrite older ones. To
recover information, a data collector node has to retrieve the
stored information units of a sufficient number of sensor nodes
and then decode. The number of original information units a
stored codeword is coded over is called codeword degree. The
authors propose to gradually increase the codeword degree with
the amount of received information, hence the name “Growth
Codes”. This codeword degree distribution optimizes sensor
network data persistence under node failure, as it allows to
decode the joint information of any subset of nodes with high
probability. Intuitively, a high degree increases the probability
that transmissions are innovative in that they bring new in-
formation to the neighbors, while a low degree increases the
probability that the information can be decoded immediately
upon reception, thus decreasing the likelihood that nodes will
be left with undecodable information in case parts of the sensor
network fail.

A scheme that uses a codeword degree distribution that is
between those of the broadcasting algorithm and of Growth
Codes is analyzed in [9]. The nodes send out codewords
that have a degree uniformly distributed between one and the
maximum possible degree (i.e., coding over all the available
information). The authors argue that the algorithm facilitates
the removal of obsolete information units from the sensor
network. Its performance is investigated by means of simulation
for static uniformly random network topologies. However, the
algorithm is designed for a very specific setting where all
nodes observe the same phenomenon (i.e., they produce the
same data), no communication between nodes takes place, and
all transmissions are single hop directly to the data collection
node.

III. C ODING ALGORITHMS

In this section, we give an overview of network coding
algorithms for broadcast, as well as Growth Codes. Specifically,
we look at codeword degree (i.e., the number of original
symbols a transmitted codeword is coded over) required to
ensure that transmissions 1) bring new information to the
neighbors that receive it, and 2) can be decoded by these
neighbors immediately with high probability. We then present
some modifications of such algorithms that are able to improve
performance in certain conditions.

A. Optimum Coding for Symmetric Topologies

We first give more details of the network coding algorithm
for broadcasting presented in [8]. Assume a symmetric network
of N nodes where each nodei has a single symbolxi to
transmit to all other nodes. LetNi(d) be the set of nodes that
are atd-hop distance from nodei. For the sake of simplicity,
we first discuss the algorithm for|Ni(1)| = 4, i.e., each node
has exactly four direct neighbors and nodes are placed on a
grid as shown in Fig. 1(a). Thus,|Ni(d)| = 4d, ∀i andd ≥ 1
in an infinite grid.

For the coding, random linear network coding over a finite
field Fq is used, as presented for example in [10]. The algorithm
progresses in iterations, during which nodes first transmit
codewords to their neighbors and in turn receive codewords
from their neighbors. More specifically, in each iterationk,
each node sends out a set of codewordsYi(k). Let Si(k) be
the information subspace spanned by the codewords received
by nodei in iterationk,

Si(k) = span(Yj(k) | j ∈ Ni(1)) for k ≥ 1

Si(0) = span(xi) .

Initially, each node will once broadcast its own symbolYi(1) =
{xi} uncoded to all neighbors. Because of symmetry, each node
receives four symbols and can decode the information contained
in its direct neighborhood.

In the next iterationk = 2, each nodei transmits 2 random
vectors fromSi(1), i.e., coded over the one-hop information (4
symbols) received previously. In addition, we have that

dim(Si(1)) = 4

dim(Sj(1) ∩ Sl(1)) ≤ 2 ∀ j, l ∈ Ni(1), j 6= l.

Each node will thus receive 8 linearly independent codewords
coded over the original information of nodes that are at most
at a two-hop distance. Since all the one-hop information as
well as the original packetxi is already available at nodei,
the 8 received codewords (together with the already available
information) allow each nodei to decode allxj , j ∈ Ni(2), as
discussed in greater detail in [8]. In general, during iteration
k > 1, a nodei will send k codewords coded over the4(k −
1) symbols contained in its(k − 1)-hop neighborhood (i.e.,
|Yi(k)| = k). It will in turn receive 4k codewords from its
direct neighbors, which allows it to decode the informationof
the 4k nodes in itsk-hop neighborhood.

Since in the generic iterationj a node transmitsj packets,
it will take

∑k−1
j=1 j = k(k−1)

2 transmissions per node to reach



the end of iterationk − 1. Due to symmetry, each node will at
the same time have (received and) decoded1

r = 2k(k − 1)

codewords. Hence,r is the total number of codewords decoded
by a node up to and including iterationk − 1. In addition,
codewords are always coded overall symbols decoded in
the previous iteration, and thus the degree of the codewords
transmitted in iterationk corresponds to the number of original
information vectors contained in the(k−1)-hop neighborhood
from which the codewords are created,

deg(y) = 4(k − 1) ∀ y ∈ Yi(k).

The degree at stepk (previous equation) can equivalently be
written as a function ofr as follows:

deg(y) = 2(
√

2r + 1 − 1) ∀ y ∈ Yi(k).

Thus, the degree of the codewords grows with the square root of
the number of decoded packets. This allows nodes to decode in-
formation from other nodes at successively increasing distance.
Individual codewords cannot be decoded immediately, but only
after all other codewords for the samek-hop neighborhood have
been received.

Similar considerations also hold for regular topologies with
|Ni(1)| = ∆ for ∆ > 2 (under the constraint that the∆
allows a symmetric topology). In particular, we consider the
case where the topology is a regular tiling of polygons (square,
hexagon), or where an increased transmission range allows
nodes to reach a higher number of neighbors with a direct
transmission, e.g., the 1-hopand 2-hop neighbors of the node
shown in Fig. 1(a). In the general case,r = ∆k(k−1)

2 and the
codeword degree scales with

deg(y) = ∆(k − 1) =
1

2
(
√

∆2 + 8r∆ − ∆) ∀ y ∈ Yi(k).

A possible example is given in Fig. 1(b), where the grid is
hexagonal. In this case the number of neighbors for each node
is again constant and equal to∆ = 6. Moreover, as can be
easily checked by inspecting the figure, we have that thek-th
neighborhood of a given tagged node contains exactly|Nk| =
|Nk−1| + ∆ = k∆ nodes. In the special case of a circular
network or infinite line network, the number of neighbors does
not increase with distance and the codeword degree is thus
constant.

B. Growth Codes

For the sake of simplicity, let us again assume that each of
the N nodes in the network has a single symbol (codeword)
to transmit. The available storage space at a node is limited.
With Growth Codes (GC) [1], each node initializes the whole
storage with its own symbol. Whenever a new codeword is
received, the node stores it at a random position in memory,
overwriting the previously stored information. To transmit, a
node randomly picks a codeword from memory and sends it out.

1Each node, up to and including iterationk−1, will receive k(k−1)
2
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Fig. 1. Nodes on (a) a square grid and on (b) a hexagonal grid.

Since GC initializes the memory with the node’s own symbol
and randomly picks codewords to be transmitted from memory,
the probability of transmitting own information is initially very
high and then gradually decreases as the memory is filled with
other codewords.

When a node receives a codeword that does not already
include the node’s own symbol, it may decide toxor the code-
word with its own symbol and store the combined information.
This increases the degree of the codeword by one. On the one
hand, it also increases the probability that when this codeword
is transmitted it provides innovative information. On the other
hand, more codewords and more operations are necessary to
decode it (i.e., it is more likely that the codeword cannot be
decoded). If the codeword cannot be decoded immediately, it
is stored and the node attempts to decode it later when more
symbols are available. Whether a node is permitted to increase
the degree is determined by a degree distribution which ensures,
that nodes can immediately decode the received codewords with
high probability.

In [1], the following degree distribution is proposed. For
the first R1 =

⌈

N−1
2

⌉

symbols, codewords of degree 1 (i.e.,
uncoded symbols) are most likely to allow successful decoding.
In general, after decoding ofRk =

⌈

kN−1
k+1

⌉

symbols (for
k = 1, ..., N ), codewords of degreek + 1 are most useful for
decoding. Thus, a node is allowed to send out codewords of
degreek when it has decoded betweenRk−1 andRk symbols.
The degree of a codewordy to be transmitted afterr symbols
have been decoded is given as

deg(y) =

⌊

N + 1

N − r

⌋

.

The corresponding analysis is based on the assumption that
all symbols have thesameprobability of being contained in
a codeword of a certain degree. Clearly, this assumption only
holds if nodes encounter other nodes with uniform probability,
i.e., the neighborhood of a node when transmitting a codeword
is uncorrelated with the neighborhood during previous trans-
missions. In less random scenarios, coding performance will
be sub-optimal.

C. Discussion on the Degree Distributions

In Section III-A and III-B we discussed degree distributions
for random linear coding and Growth Codes, respectively. The
former strategy is suitable for static networks, whereas the latter
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Fig. 2. Codeword degree vs. number of decoded symbols for a network of
sizeN = 100.

is designed to be effective in the random encounter scenario.
As can be observed from Fig. 2, up to a certain value ofr
the degree is larger with the network coding strategy than with
GC. We shall observe that the encoding processes in these two
cases also differ as in random linear coding the codewords are
formed from a number of symbols in the node’s memory and
not by simply adding the node’s own symbol. This has the
effect of increasing the codeword diversity. Also, the degree
curves intersect for a large number of recovered symbols as our
analysis for the network coding case is based on the assumption
of an infinite grid, whereas the Growth Code distribution has
knowledge about the total numberN of original symbols in
the network. Including this knowledge in the analysis for the
network coding case would lead to a similar increase of the
degree asr approachesN .

We note that there is a substantial difference between net-
work coding and GC in terms of how the degree is increased
for an increasingr. This reflects the different scenarios (static
vs. random encounter) for which the related distributions were
designed. In addition, actual networks are likely to be neither
completely static nor dynamic in the sense of [1]. For these
intermediate cases, distributions lying between the static (net-
work coding) and highly dynamic (Growth Codes) case might
be a better choice. According to this intuition, in Fig. 2 we also
plot the two heuristically derived distributionsr/5 and r/13.
These distributions will be considered for the simulation results
presented in the remainder of this paper.

D. Modifications to Growth Codes

To improve the performance of GC in more general settings
than the random encounter scenario in [1], we investigate the
following modifications to the original GC algorithm:

1) Multi-Codeword Encoding (MCE): To increase the
mixing of information within a neighborhood, we allow
nodes to combine (i.e.,xor) arbitrary codewords they
have in memory. The encoding processes implemented by
GC and MCE follow the same rules except for the choice

of which information symbols have to be combined
together. In both algorithms, a node at first randomly
picks a codeword from its storage,c1. According to GC,
the node adds its own information unit toc1 (if allowed
by the degree distribution and if this information unit is
not already included inc1). With MCE, instead, the node
randomly picks a further codewordc2 from its memory
and adds it toc1. Subsequently, the node continues to
add new codewordsc3, c4, . . . , all randomly picked from
its storage and all different from each other, until the
allowed codeword degree is reached. We stress that in
static networks, or in networks with moderate mobility,
adding the node’s own symbol to all the codewords sent
is of little use. In fact, this symbol is unlikely to be
innovative (after its first transmission) when the node’s
neighborhood does not change over time. We finally
observe that MCE simply states how codewords are to
be combined together and, as such, can be used with any
degree distribution.

2) Gaussian Elimination (GE): We further test whether
using Gaussian elimination instead of the simpler decoder
D described in [1] improves performance. In essence,
decoder D only uses already decoded symbols for the
decoding of the received information in a way similar
to that of the message passing decoder in [11]. Gaussian
elimination, instead, builds an encoding matrix according
to the codewords locally stored in the node’s memory
and tries to invert it to retrieve the original symbols.
Gaussian elimination is the optimal decoding method
once the encoded codewords are given. Nevertheless, we
shall observe that for large networks its complexity can be
an issue due to the number of operations associated with
matrix inversion. In [1], all the nodes store the received
codeword in their own storage, while the sink node is
the only device able to decode symbols. With Gaussian
Elimination all nodes can locally decode as soon as their
local encoding matrix has full rank.

3) Aggressive degree distribution: As indicated by the
analysis in Section III-A, a more aggressive degree
distribution is needed for optimal performance in static
scenarios. In fact, GC increases the encoding degree
rather slowly in order to give optimal performance in
highly dynamic network settings. In the results reported
in the following sections, we consider the degree distri-
bution given by the heuristicr/13 in Fig. 2, which gave
excellent results in less dynamic scenarios. We will use
this distribution in order to obtain the performance of
our new schemes. In addition, we will also see how GC
performs when we replace its degree distribution with
this heuristic.

4) Decreased transmission probability for own informa-
tion: We compare the GC strategy, where the whole
memory is initialized with the node’s own symbol to
a strategy where this symbol is stored only once. Ac-
cordingly, received codewords as well as the node’s own
symbol have the same probability of being picked for



transmission.

The above modifications were used to define a new algorithm
and some of them were tested on GC to see whether it could
be improved by means of slight changes. Specifically, with
the term Modified Growth Codes (MGC), we mean the GC
scheme where we consider Multi-Codeword Encoding (MCE)
and Gaussian Elimination (GE) for the encoding and decod-
ing, respectively. In the following sections MGC is compared
against plain GC, which does not have these two features. In
addition, both GC and MGC are studied for the standard (see
Section III-B) codeword degree distribution (GC/MGC, stan-
dard) as well as the aggressive degree distribution (GC/MGC,
aggressive), to isolate the impact of changing the codeword
degree. For the aggressive distribution, in this paper we adopt
the heuristicr/13 (see Fig. 2), wherer is the cumulative
number of recovered symbols at a node. We observe that a more
in-depth analysis of suitable degree distributions is necessary
to properly tune the codeword degree distribution according to
the network dynamics. We leave this study for future research.

We further observe that the available memory at a node
(i.e., the number of symbols it can store) has an impact on
the diversity of the transmitted information. A large memory
allows nodes to code over a more diverse set of codewords
which makes it more likely to send innovative codewords when
the neighbors already have most of the information available
(i.e., after a number of transmissions have been performed).
However, a large memory also increases the probability of
initially (mainly) transmitting the node’s own symbol, as GC
initializes all the available memory with it. This can harm
performance in more static settings, where the node’s own
symbol is unlikely to be innovative after its first transmission.
In this respect, we note that increasing the maximum degree of
the transmitted codewords beyond a certain threshold does not
bring significant performance benefits in our simulation settings
and we therefore limit it to10 for all algorithms. This limits
coding and decoding complexity as well as packet size. Note
that, with this additional constraint the Gaussian elimination
decoder can be implemented at a very low complexity and
makes optimal decoding a viable solution for sensor devices.
Also, the increase in complexity and memory consumption
for all of the remaining modifications to GC that we propose
here is comparatively low and the proposed algorithms can be
implemented on resource constrained sensor hardware such as
Crossbow motes.

IV. SIMULATION RESULTS

Our reference scenario consists of a sensor network of
N = 100 nodes, each having one information unit (sensor
reading) to transmit via broadcast. As performance metrics,
we analyze the average number of symbols recovered and the
average codeword degree, that we plot as a function of the
number of transmitted symbols (which roughly corresponds to
simulation time). For the simulation, we consider three different
settings, starting from a very dynamic scenario and ending with
a static network:

• Uniformly random encounters scenario:Whenever two
nodes meet, they exchange one codeword. Here, node
neighborhoods are independent across subsequent obser-
vations. Growth Codes are specifically designed for this
type of very dynamic (and sparse) network.

• Mobile scenario: Nodes move according to the random-
waypoint mobility model. We consider a low (2 → 4
m/s) as well as a high (10 → 20 m/s) mobility scenario.
The average node density is set to4 or 8 neighbors per
transmission range.

• Static scenario:Nodes are static and are placed on a grid
network, again with4 and 8 neighbors per transmission
range.

The simulation results have been obtained using a custom
C++ simulator. It provides an ideal (collision-free) MAC layer,
with a sequential scheduling of tasks. It is noted that with GC
the sink is the only node that can decode information symbols,
while with MGC all nodes can potentially decode as well (if
their storage allows).

A. Mixing Network Coding and Growth Codes

Next, in order to gain some understanding on the perfor-
mance of the basic GC scheme, we compare it against random
network coding and a mixture of network coding and Growth
Codes. We consider a uniformly random encounters scenario.
For network coding, we use a field size of two (i.e., packets
are combined using simplexor), and each available codeword
has a probability of0.5 of being included in a new packet to be
sent. With the mixed algorithm, the first packets are transmitted
with GC. Then, after the number of received innovative packets
reaches a certain threshold, the algorithm switches to network
coding. Note that this might require additional information
about the total number of symbols in the network (for a proper
setting of the threshold).

The performance of the algorithms is shown in Fig. 3, where
the termnumber of codewords transmittedindicates the total
number of encoded packets sent per node (averaged over all
nodes). The same metric will be considered for all remaining
graphs. Notably, when switching from GC to network coding
there is a sudden increase in the codeword degree, which
prevents immediate decoding, until a sufficient number of high
degree codewords have been received. For this reason, the
graphs for network coding and the mixed algorithms show a
flat phase immediately followed by a phase where the number
of recovered symbols increases sharply. On average, standard
GC takes around250-300 transmitted codewords to recover all
information, while the mixed codes only require between110
and 200 codewords. The lower the switching threshold, the
faster the codes achieve the maximum packet delivery ratio,
but the lower the delivery ratio during the initial (flat) phase.
The experiments show that using higher degree codewords
particularly helps in the final part of the simulation. If we switch
to higher degree codewords when95% of the packets have
been recovered, decoding performance is always above that of
GC, resulting in a50% reduction in the number of codewords
required for full recovery. However, network coding mixes
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MGC GC Gain (%)
Storage 10, standard distrib 170 230 26
Storage 100, standard distrib 170 250 32

TABLE I
GAINS ACHIEVED BY MGC IN THE UNIFORMLY RANDOM ENCOUNTERS

SCENARIO.

together a significantly larger number of packets to achieve
this performance.

In the following sections, we analyze the light-weight modi-
fications discussed in Section IV. We will start our investigation
with the uniformly random encounters scenario, we will subse-
quently consider mobile networks with low and high mobility
and, finally, we will present results for static networks.

B. Uniformly Random Encounters Scenario

We first compare GC and MGC in the uniformly random
encounters scenario for which GC is designed. In this setting,
the degree distribution of Growth Codes, referred to here asthe
standard degree distribution, is the best possible also for MGC.
We will then consider the standard degree distribution for both
GC and MGC for the results shown in this section. According
to this distribution, nodes initially send uncoded symbolswith
high probability, then the degree is increased rather slowly
up to a certain threshold and is finally increased sharply
when almost all codewords have been recovered. It is noted
that in the uniformly random encounters scenario Gaussian
Elimination does not significantly improve performance, asthe
low degree of the codewords created by GC almost always
allows immediate decoding with a message passing algorithm
[11].

In Fig. 4, we compare GC and MGC for a large storage
that can hold all available packets as well as for a smaller
storage size of10 codewords. With the small storage, both
GC and MGC perform worse but the latter still gains over the
former. A smaller storage size hinders a sufficient “mixing”of
information and results in a small reduction of performancefor

intermediate numbers of recovered codewords. Nevertheless,
the codes are able to achieve full recovery at roughly the same
time as with unlimited storage. When storage space is scarce,a
larger fraction of it will contain high degree codewords towards
the end of the simulation, which increases the probability of
sending out innovative codewords. In contrast, a very large
buffer will still contain the node’s own symbol a number of
times, as well as many low degree codewords.

In Table I, we show the gains achieved by MGC in this sce-
nario, in terms of number of transmitted codewords to recover
all symbols. We remark that, since Gaussian Elimination is not
that effective in this scenario, these gains are mainly due to the
use of Multi-Codeword Encoding (MCE).

C. Mobile Scenario

Two different cases of random-waypoint mobility are con-
sidered: low mobility with minimum and maximum speeds of
2 m/s and4 m/s, respectively, and high mobility with minimum
and maximum speeds of10 m/s and20 m/s, respectively. Here,
we only present results for the low mobility scenario with
a node density of8 neighbors per transmission range. The
performance of the4 neighbors case is similar to that of the
high density scenario except that the curves are shifted to the
right (as fewer nodes receive innovative information per packet
transmission). In addition, results for the high mobility case
are very similar to those obtained for the uniformly random
encounters scenario.

First of all, we observe that with the standard degree dis-
tribution and a small storage size of10 symbols, both GC
and MGC are only able to decode around30-40 symbols out
of 100 (Fig. 5). This happens since with the standard degree
distribution codewords initially have a low degree. In addition,
the available storage is frequently overwritten due to the limited
memory. Hence, information is lost faster than it can spreadand
this prevents completion of the recovery process. Also, in this
case too few symbols are recovered to switch to higher degree
codewords and the average degree of the transmitted codewords
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Fig. 5. Symbols recovered (left) and actual codewords degree(right) for MGC and GC in the mobile network setting with minimumspeed2 m/s and maximum
speed4 m/s, storage sizes of10 and100 packets, standard and aggressive degree distributions.

MGC GC Gain (%)
Storage 10, aggressive distrib 17 20 15
Storage 100, standard distrib 17 30 43

TABLE II
GAINS ACHIEVED BY MGC IN THE LOW MOBILITY SCENARIO.

is very close to one, as shown in the right graph of Fig. 5. If the
available storage is unlimited (e.g.,≥ 100 in this case), both
GC and MGC recover all symbols, but MGC outperforms GC
roughly by a factor of2. This gain is mainly due to the use
of Multi-Codeword Encoding (MCE). Again, GC is not able to
achieve the theoretical distribution of codeword degrees,since
the large buffer contains many low degree codewords and GC
can only increase the degree by one by adding the node’s own
symbol. In contrast, the degrees of MGC closely match the
desired distribution, as shown in the right graph of Fig. 5.

As expected, the aggressive degree distribution for the small
storage case increases codeword degrees faster and thus de-
creases the performance gap between GC and MGC. More
importantly, with the aggressive distribution, GC and MGC
can both recover all symbols even with a small buffer of
10 packets. Moreover, although higher degree codewords are
used, for all algorithms the number of codewords that cannot
be immediately decoded is negligible. From these results, we
can see that in scenarios that more closely reflect real-world
network dynamics, the original GC has significant difficulties
in achieving good performance when the node memory is
limited. These problems are even more pronounced in static
scenarios, for which GC admittedly was not designed. In Table
II, we show the gains achieved by MGC in the low mobility
scenario in terms of number of transmitted codewords needed
for recovering all symbols.

D. Static Scenario

In the static topology case, as shown in Fig. 6, MGC sub-
stantially outperforms GC with both the aggressive and standard
degree distributions. In case the neighborhood does not change

MGC GC Gain (%)
Storage 10, aggressive distrib 20 100 80
Storage 100, standard distrib 70 230 70

TABLE III
GAINS ACHIEVED BY MGC IN THE STATIC NETWORK SCENARIO.

across subsequent transmissions, sending the same uncoded
information multiple times will obviously waste resources.
Similarly, sending low degree codewords usually provides in-
novative information only to some of the neighbors. MGC with
the aggressive distribution and small storage requires an order
of magnitude fewer codeword transmissions than GC, even if
GC is granted a much larger storage space. The performance
of the original GC with storage100 can however be improved.
In particular, the performance of GC increases if all codewords
in the storage have the same probability of being included in
a transmitted codeword, as we show in Fig. 7. Nevertheless,
the performance still remains well below that of the algorithms
with our aggressive degree distribution. In Table III, we show
the gains achieved by MGC in terms of transmitted codewords
to recover all source symbols.

As expected, the standard GC degree distribution does not
work for static scenarios. In this case a more aggressive distri-
bution is instead more efficient as it increases the probability of
transmitting innovative information at each transmissionround.
Also, Growth Codes profit less than MGC from using a more
aggressive distribution and this is due to their coding process.
In fact, always adding the node’s own symbol to the codeword
to send largely limits the achievable benefits.

We finally stress that, assuming a small storage size, the
degree distribution should be aggressive in order to achieve
good performance. This is particularly true for static scenarios
with low density. What happens is that due to buffer limitations
old symbols are discarded from the node’s memory and, if no
sufficient mixing of information is performed beforehand, they
may be lost permanently. The aggressive distribution, together
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Fig. 6. Symbols recovered and degree distribution for MGC andGC in the static scenario. We analyze performance for storagesizes of10 and100 codewords
and for both standard and aggressive degree distributions.
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Fig. 7. Symbols recovered for the original GC and GC where all symbols
have the same probability of being included in the transmittedcodewords.
Both algorithms use a standard degree distribution with a storage size of100
codewords.

with our MCE encoding rule, ensures a proper mixing of the
symbols in memory such that the information will survive even
in the presence of memory limitations.

V. CONCLUSIONS

In this paper we proposed several modifications to the
Growth Codes presented in [1], in order to increase their
performance in static or mobile networks where the node’s
neighborhood varies slowly across subsequent transmission
epochs. We proposed a new algorithm, named Modified Growth
Codes (MGC), and we demonstrated its good performance. In
particular, MGC was able to outperform standard Growth Codes
in all simulation settings. The more static the scenario, the
larger the performance gains. In our simulations we observed
that when the buffer size is limited, standard GC could not
achieve the intended codeword degree distribution due to the

restrictions on how codewords are generated. This preventsa
sufficient mixing of information and can substantially impact
the performance.

While our algorithms show quite promising performance,
they only give first insights into improving the design of
Growth Codes. A more thorough analysis on how to adapt the
codeword degree distribution to the specific dynamics of the
network (and how to “measure” these dynamics) is necessary.
An equally important avenue for future research is how to adjust
the probability of including own information into the encoded
symbols.
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