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Abstract—Network coding promises to bring significant perfor- transmission to the next, the repeated transmission ofaime s
mance improvements to sensor network protocols but algorithms data will not bring new information to the neighbors and in
need to be designed to cope with the often very constrained y, 1 il prevent the propagation of other information. Retic

resources of sensor nodes. Growth Codes proposed by Kamra et . likelv to be in bet th W t d
al. [1] are one such example aimed at improving sensor network scenarios are likely to be in between hese two extremes an

data persistence. The codes use simple coding operations andlave some coherence in the composition of the neighborhood
require comparatively littte memory. However, Growth Codes over time.

are based on the assumption of an extremely dynamic network  |n such cases, it is beneficial to forward and code over
topology and do not perform well in more stable settings. In this information from other nodes with higher probability and to

paper we propose modifications to Growth Codes that are able . th d dd . th b f bol
to achieve good performance over a wider range of static and 'Ncféase e codeword degree (i.e., the number of symbols a

dynamic scenarios. In particular, we investigate changes of how codeword is coded over) more aggressively than in [1]. We
many and which symbols the transmitted information is coded investigate which degree distributions improve the prdigb
over and how the decoding is performed. These modifications are of early decoding, and thus of data recovery, in case of node
analyzed in detail by means of simulations. failures. We further propose algorithms that require ontesy
limited increase of coding complexity and memory usage. Our
claims are supported by extensive simulation results. Hpep
Sensor networks are special purpose networks usually cig-structured as follows. In Section Il we give an overview
cerned with data collection and efficient transport of thaiiad of related work. In Section 11l we look at existing algoritem
to one or several sink nodes. The most important charatiterisbased on network coding from the point of view of codeword
of sensor networks are the constraints imposed by the kimitdegree distributions, and present some modifications tavtBro
resources of sensor nodes in terms of memory, computatioGaldes that can improve performance in more general settings
power, and energy. Network coding [2] has proven to be Section IV provides detailed simulation results for thdedignt
useful tool to improve the performance of such networkalgorithms, and Section V concludes the paper.
Several papers have analyzed the benefits of random network
coding [3] for information dissemination and data persise Il. RELATED WORK
[4]. In particular, the robustness that can be achievedutgito The usefulness of network coding for data storage was
the diversity of available information by coding at intewmliege investigated in [4], where the authors showed that a simple
nodes can be quite important in the fragile environment distribution scheme using network coding and based only on
sensor networks, where node failures can be common. local information can perform almost as well as the case
For practical algorithms, it is important that they are dasd where there is complete coordination among nodes. Similar
with consideration of the aforementioned resource coimitra considerations also apply to sensor networks. The authors o
In this paper we focus on network coding based algorithnis], [6] investigate algorithms for the extreme case where
for data dissemination in sensor networks. We are partigulastorage nodes can only store a single (coded or uncoded)
interested in increasing data persistence in the face ofankt information unit. Data is pre-routed tog(V) of the N storage
failures, wheredata persistences defined as the fraction of nodes and the storage nodes simply combine the incoming
data generated within the network that eventually reaches information with their existing information (i.e., the ®ged
sink. Recently, algorithms such as Growth Codes [1] wemdeword is multiplied with a random coefficient and added
introduced which are particularly suitable for these sdesa to the existing codeword). The algorithm ensures that nodes
The design of Growth Codes is based on the assumpticen decode the: information units of interest by querying
that the network topology changes very rapidly, e.g., due #ocorresponding number of storage nodes. In [7], the authors
link/node failures or mobility. In this case, it makes sensextend this approach by showing that if these conditions are
for nodes to initially mainly disseminate their own data anslightly relaxed, a constant pre-routing degree suffices.
then to gradually code over other data as well, to increaseThe authors of [8] present a simple network coding algorithm
the probability that information survives. However, intgta that achieves optimum performance for broadcast datardisse
scenarios this behavior is detrimental to performance.alsec ination in static and symmetric grid networks. Optimalityré
the set of neighbors does not change significantly from ongeans thatachbroadcast transmission of a node brings one

I. INTRODUCTION



codeword worth of new information teachneighbor. The al- [1l. CODING ALGORITHMS

gorithm progresses iteratively, where the codewords tétted |y this section, we give an overview of network coding
during a given iteration are coded over the codewords redeiVy|gorithms for broadcast, as well as Growth Codes. Spettyfica
during the previous iteration. The coding process ensuigs |ook at codeword degree (i.e., the number of original
that nodes can successively decode information generatedyanhols a transmitted codeword is coded over) required to
neighbors at further distance, i.e., first all 1-hop neigebo ensyre that transmissions 1) bring new information to the
then all 2-hop neighbors, etc. This mechanism provides p@ighbors that receive it, and 2) can be decoded by these
substantial improvement in overhead compared to floodingsighbors immediately with high probability. We then prese

where forwarded packets have usually already been recbivedsome modifications of such algorithms that are able to imgrov
a number of neighbors previously, and thus increase overhegformance in certain conditions.

without bringing new information to those neighbors. The ] ] ] )

mechanism is quite simple, but not specifically tuned to tfe Optimum Coding for Symmetric Topologies

resource constraints of sensor nodes. In particular, thebeu ~ We first give more details of the network coding algorithm

of symbols a codeword is coded over increases with the siiwg broadcasting presented in [8]. Assume a symmetric ndtwo

of the neighborhood from which the symbols originate. of N nodes where each nodehas a single symbok; to
transmit to all other nodes. LeV;(d) be the set of nodes that
are atd-hop distance from nodé For the sake of simplicity,

In contrast, Growth Codes [1] were specifically designegle first discuss the algorithm faW;(1)| = 4, i.e., each node
with these limitations in mind. Sensor nodes send out codgyg exactly four direct neighbors and nodes are placed on a

words that can be coded over multiple original informatiogyig as shown in Fig. 1(a). Thu$V;(d)| = 4d, Vi andd > 1
units. Nodes exchange codewords with their neighbors apdan infinite grid. -

tion, such that, the stored information is coded over moke afie|d F, is used, as presented for example in [10]. The algorithm
more information units over time. Storage space is limit§gtogresses in iterations, during which nodes first transmit
and newly received codewords will overwrite older ones. Tgydewords to their neighbors and in turn receive codewords
recover information, a data collector node has to retriéde tfrom their neighbors. More specifically, in each iteratibn
stored information units of a sufficient number of sensoresodeach node sends out a set of codeworgs:). Let S;(k) be

and then decode. The number of original information unitstfe information subspace spanned by the codewords received
stored codeword is coded over is called codeword degree. Tfenodei in iteration k,

authors propose to gradually increase the codeword degdtiee w )
the amount of received information, hence the name “Growth  Si(k) = span(Y;(k)|j € Ni(1)) for k> 1
Codes”. This codeword degree distribution optimizes senso S;(0) = span(x;).

B e o oo o . st s el e node willonce broadeast 1 oun symbet)
J y 9 x; } uncoded to all neighbors. Because of symmetry, each node

Fr:gtb?glrgr.nliggijggselgr: ihr:ggvgﬁ\%e?nl?ﬁ;?ishees tgﬁnm:gv irgceives four symbols and can decode the information coedai
y 9 {n_its direct neighborhood.

formation to the neighbors, while a low degree increases theIn the next iterationt — 2. each node transmits 2 random
probability that the information can be decoded immedjate{lectors froms, (1), i.e. codéd over the one-hop informatiah (

upon reception, thus decreasing the likelihood that nodés ; - o
be left with undecodable information in case parts of the;eenV\éymbOIS) received previously. In addition, we have that

network fail. dim(S;(1)) = 4
dim(S;(1) N Si(1)) < 2 V4 leN;(1),5#L

A scheme that uses a codeword degree distribution thatHach node will thus receive 8 linearly independent codegord
between those of the broadcasting algorithm and of Growthded over the original information of nodes that are at most
Codes is analyzed in [9]. The nodes send out codeworalsa two-hop distance. Since all the one-hop information as
that have a degree uniformly distributed between one and thell as the original packet; is already available at node
maximum possible degree (i.e., coding over all the avalatthe 8 received codewords (together with the already auailab
information). The authors argue that the algorithm faaiéis information) allow each nodéto decode all:;, j € N;(2), as
the removal of obsolete information units from the sensdiiscussed in greater detail in [8]. In general, during iiera
network. Its performance is investigated by means of sitimrla % > 1, a node: will send k& codewords coded over thHk —
for static uniformly random network topologies. Howevdret 1) symbols contained in it§k — 1)-hop neighborhood (i.e.,
algorithm is designed for a very specific setting where dl¥;(k)| = k). It will in turn receive 4k codewords from its
nodes observe the same phenomenon (i.e., they produce dinect neighbors, which allows it to decode the informatadn
same data), no communication between nodes takes place, tedik nodes in itsk-hop neighborhood.
all transmissions are single hop directly to the data cbtlac  Since in the generic iteratiof a node transmitg packets,

node. it will take S0~} j = -1 transmissions per node to reach




the end of iteratiork — 1. Due to symmetry, each node will at © Current node
the same time have (received and) decdded 0 © 1-hop neighborhool 5 5 O O
. @ 2-hop neighborhood
r=2k(k — 1) O @® O|0 3-hop neighborhood©O @ @ -

_ O® 0 e O . O @ O O-@~0
codewords. Hence, is the total number of codewords decoded O @ O ®/ © @ O
by a node up to and including iteration— 1. In addition, O @ Qneig%ms@ ® O
codewords are always coded ovell symbols decoded in O @ O @ O © @ Qneig%rs' O
the previous iteration, and thus the degree of the codewords Bnegbm. o . - O 012ngghb0rs. O .
transmitted in iteratiort corresponds to the number of original 15 neighbors = ' OO0 O O '
information vectors contained in th{& — 1)-hop neighborhood O : 18 neighbors

from which the codewords are created,

degy) =4(k = 1) ¥y € Yilk). Since GC initializes the memory with the node’s own symbol
The degree at step (previous equation) can equivalently beand randomly picks codewords to be transmitted from memory,
written as a function of- as follows: the probability of transmitting own information is inithglvery
degy) = 2(Var 1 —1) Vy e Yi(k). giagraggdtehﬁgrg?dually decreases as the memory is filled with
Thus, the degree of the codewords grows with the square foot oWhen a node receives a codeword that does not already
the number of decoded packets. This allows nodes to decedeiitglude the node’s own symbol, it may decidextor the code-
formation from other nodes at successively increasingudegt. word with its own symbol and store the combined information.
Individual codewords cannot be decoded immediately, biyt onlhis increases the degree of the codeword by one. On the one
after all other codewords for the sarkéop neighborhood have hand, it also increases the probability that when this coddéw
been received. is transmitted it provides innovative information. On thbey
Similar considerations also hold for regular topologiethwi hand, more codewords and more operations are necessary to
IN;(1)] = A for A > 2 (under the constraint that th& decode it (i.e., it is more likely that the codeword cannot be
allows a symmetric topology). In particular, we consideg thdecoded). If the codeword cannot be decoded immediately, it
case where the topology is a regular tiling of polygons (sguais stored and the node attempts to decode it later when more
hexagon), or where an increased transmission range alldgysnbols are available. Whether a node is permitted to inereas
nodes to reach a higher number of neighbors with a dirgbge degree is determined by a degree distribution whichreasu
transmission, e.g., the 1-h@mnd 2-hop neighbors of the nodethat nodes can immediately decode the received codewotls wi
shown in Fig. 1(a). In the general case= A**-1) and the high probability.
codeword degree scales with In [1], the following degree distribution is proposed. For
1 the first R, = [&-1] symbols, codewords of degree 1 (i.e.,
dedy) =A(k—1) = 5(\/ A2 +8rA—A) VyeY;(k). uncoded symbols) are most likely to allow successful dewpdi
H EN—-1
A possible example is given in Fig. 1(b), where the grid iIn general, after decoding of, = | %55 | symbols (for
hexagonal. In this case the number of neighbors for each noilegc old,i.r;.g; ]\%]Ssdgv‘ggz ?; gﬁc?vrveeedtol saerﬁ dmooustt clzjcfgciwc:?drs of
is again constant and equal t» = 6. Moreover, as can be degreek when it has decoded betwedti_; and R, symbols.

easily checked by inspecting the figure, we have thatktiie .
neighborhood of a given tagged node contains exadtly — The degree of a cod_ewo_ryito be transmitted after symbols
pave been decoded is given as

[Ni—1] + A = kA nodes. In the special case of a circula

Fig. 1. Nodes on (a) a square grid and on (b) a hexagonal grid.

network or infinite line network, the number of neighbors sloe d N+
not increase with distance and the codeword degree is thus edy) = N —r|"
constant.

The corresponding analysis is based on the assumption that
B. Growth Codes all symbols have thesameprobability of being contained in

For the sake of simplicity, let us again assume that each &fcodeword of a certain degree. Clearly, this assumption onl
the N nodes in the network has a single symbol (codeworHP'dS if no<_jes encounter other nodes with unl_fo_rm probighili
to transmit. The available storage space at a node is limité§- the neighborhood of a node when transmitting a codgwor
With Growth Codes (GC) [1], each node initializes the wholl$ Uncorrelated with the neighborhood during previous sran
storage with its own symbol. Whenever a new codeword fRISSIONS. I_n less random scenarios, coding performande wil
received, the node stores it at a random position in memoR# Sub-optimal.
overwriting the previously stored information. To trangn@ ¢ piscussion on the Degree Distributions

node randomly picks a codeword from memory and sends it out. . . o
yp y In Section Il1I-A and 11I-B we discussed degree distribugon

1Each node, up to and including iteratign- 1, will receive **-1) packets for random Iine?-r co_ding and GFQWth Codes, respectivelg Th
from each of its4 neighbors. former strategy is suitable for static networks, whereadatter
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is designed to be effective in the random encounter scenario2)
As can be observed from Fig. 2, up to a certain valuer of

the degree is larger with the network coding strategy thah wi
GC. We shall observe that the encoding processes in these two
cases also differ as in random linear coding the codeworls ar
formed from a number of symbols in the node’s memory and
not by simply adding the node’s own symbol. This has the
effect of increasing the codeword diversity. Also, the aegr
curves intersect for a large number of recovered symbolsias o
analysis for the network coding case is based on the asspmpti

of an

infinite grid, whereas the Growth Code distribution has

knowledge about the total numbeé¥ of original symbols in
the network. Including this knowledge in the analysis foe th
network coding case would lead to a similar increase of the
degree as approachesV.

We note that there is a substantial difference between net-

work

coding and GC in terms of how the degree is increased

for an increasing-. This reflects the different scenarios (static

vs.random encounter) for which the related distributions were 3

designed. In addition, actual networks are likely to be Irezit

completely static nor dynamic in the sense of [1]. For these

intermediate cases, distributions lying between thecs(aigt-

work coding) and highly dynamic (Growth Codes) case might

be a better choice. According to this intuition, in Fig. 2 weoa
plot the two heuristically derived distributiony'5 and r/13.
These distributions will be considered for the simulatieauits
presented in the remainder of this paper.

D. Modifications to Growth Codes

To improve the performance of GC in more general settings
than the random encounter scenario in [1], we investigate th

following modifications to the original GC algorithm:
1) Multi-Codeword Encoding (MCE): To increase the

mixing of information within a neighborhood, we allow

nodes to combine (i.exor) arbitrary codewords they

4)

have in memory. The encoding processes implemented by

GC and MCE follow the same rules except for the choice

of which information symbols have to be combined
together. In both algorithms, a node at first randomly
picks a codeword from its storage,. According to GC,

the node adds its own information unit tg (if allowed

by the degree distribution and if this information unit is
not already included im;). With MCE, instead, the node
randomly picks a further codeworg from its memory
and adds it toc;. Subsequently, the node continues to
add new codewords;, ¢y, . . ., all randomly picked from

its storage and all different from each other, until the
allowed codeword degree is reached. We stress that in
static networks, or in networks with moderate mobility,
adding the node’s own symbol to all the codewords sent
is of little use. In fact, this symbol is unlikely to be
innovative (after its first transmission) when the node’s
neighborhood does not change over time. We finally
observe that MCE simply states how codewords are to
be combined together and, as such, can be used with any
degree distribution.

Gaussian Elimination (GE): We further test whether
using Gaussian elimination instead of the simpler decoder
D described in [1] improves performance. In essence,
decoder D only uses already decoded symbols for the
decoding of the received information in a way similar
to that of the message passing decoder in [11]. Gaussian
elimination, instead, builds an encoding matrix according
to the codewords locally stored in the node’s memory
and tries to invert it to retrieve the original symbols.
Gaussian elimination is the optimal decoding method
once the encoded codewords are given. Nevertheless, we
shall observe that for large networks its complexity can be
an issue due to the number of operations associated with
matrix inversion. In [1], all the nodes store the received
codeword in their own storage, while the sink node is
the only device able to decode symbols. With Gaussian
Elimination all nodes can locally decode as soon as their
local encoding matrix has full rank.

) Aggressive degree distribution: As indicated by the

analysis in Section IlI-A, a more aggressive degree
distribution is needed for optimal performance in static
scenarios. In fact, GC increases the encoding degree
rather slowly in order to give optimal performance in
highly dynamic network settings. In the results reported
in the following sections, we consider the degree distri-
bution given by the heuristie/13 in Fig. 2, which gave
excellent results in less dynamic scenarios. We will use
this distribution in order to obtain the performance of
our new schemes. In addition, we will also see how GC
performs when we replace its degree distribution with
this heuristic.

Decreased transmission probability for own informa-
tion: We compare the GC strategy, where the whole
memory is initialized with the node’s own symbol to
a strategy where this symbol is stored only once. Ac-
cordingly, received codewords as well as the node’s own
symbol have the same probability of being picked for



transmission. « Uniformly random encounters scenario: Whenever two

The above modifications were used to define a new algorithm N°des meet, they exchange one codeword. Here, node
and some of them were tested on GC to see whether it could "€ighborhoods are independent across subsequent obser-
be improved by means of slight changes. Specifically, with vations. Growth Codes are specifically designed for this
the term Modified Growth Codes (MGC), we mean the GC  YP€ Of very dynamic (and sparse) network.
scheme where we consider Multi-Codeword Encoding (MCE) * Mobile scenario: Nodes move according to the random-
and Gaussian Elimination (GE) for the encoding and decod- Waypoint mobility model. We consider a love (— 4
ing, respectively. In the following sections MGC is compgare ~ M/S) as well as a highl( — 20 m/s) mobility scenario.
against plain GC, which does not have these two features. In 1€ average node density is set4ar 8 neighbors per
addition, both GC and MGC are studied for the standard (see transmission range. _ _
Section 11I-B) codeword degree distribution (GC/MGC, stan * Static scenario:Nodes are static and are placed on a grid
dard) as well as the aggressive degree distribution (GC/MGC ~ N€twork, again withd and 8 neighbors per transmission
aggressive), to isolate the impact of changing the codeword '2N3€.
degree. For the aggressive distribution, in this paper vaptad The simulation results have been obtained using a custom
the heuristicr/13 (see Fig. 2), where- is the cumulative C++ simulator. It provides an ideal (collision-free) MAG/&,
number of recovered symbols at a node. We observe that a maith a sequential scheduling of tasks. It is noted that with G
in-depth analysis of suitable degree distributions is ssagy the sink is the only node that can decode information symbols
to properly tune the codeword degree distribution accgrdin While with MGC all nodes can potentially decode as well (if
the network dynamics. We leave this study for future researdheir storage allows).

We further observe that the available memory at a node
(i.e., the number of symbols it can store) has an impact @h
the diversity of the transmitted information. A large megnor Next, in order to gain some understanding on the perfor-
allows nodes to code over a more diverse set of codewortsnce of the basic GC scheme, we compare it against random
which makes it more likely to send innovative codewords wheretwork coding and a mixture of network coding and Growth
the neighbors already have most of the information avalabCodes. We consider a uniformly random encounters scenario.
(i.e., after a number of transmissions have been performelipr network coding, we use a field size of two (i.e., packets
However, a large memory also increases the probability afe combined using simpleor ), and each available codeword
initially (mainly) transmitting the node’s own symbol, a<CG has a probability 0f.5 of being included in a new packet to be
initializes all the available memory with it. This can harnsent. With the mixed algorithm, the first packets are trattechi
performance in more static settings, where the node’s owith GC. Then, after the number of received innovative ptcke
symbol is unlikely to be innovative after its first transniigs reaches a certain threshold, the algorithm switches to orktw
In this respect, we note that increasing the maximum dedreecoding. Note that this might require additional informatio
the transmitted codewords beyond a certain threshold does about the total number of symbols in the network (for a proper
bring significant performance benefits in our simulatiorisgs setting of the threshold).
and we therefore limit it tal0 for all algorithms. This limits ~ The performance of the algorithms is shown in Fig. 3, where
coding and decoding complexity as well as packet size. Ndtee termnumber of codewords transmitteddicates the total
that, with this additional constraint the Gaussian elifiora number of encoded packets sent per node (averaged over all
decoder can be implemented at a very low complexity ambdes). The same metric will be considered for all remaining
makes optimal decoding a viable solution for sensor devicegaphs. Notably, when switching from GC to network coding
Also, the increase in complexity and memory consumptidhere is a sudden increase in the codeword degree, which
for all of the remaining modifications to GC that we proposprevents immediate decoding, until a sufficient number ghhi
here is comparatively low and the proposed algorithms can tbegree codewords have been received. For this reason, the
implemented on resource constrained sensor hardware suclgraphs for network coding and the mixed algorithms show a

Mixing Network Coding and Growth Codes

Crossbow motes. flat phase immediately followed by a phase where the number
of recovered symbols increases sharply. On average, sthnda
IV. SIMULATION RESULTS GC takes aroun@50-300 transmitted codewords to recover all

information, while the mixed codes only require betwddn

Our reference scenario consists of a sensor network afd 200 codewords. The lower the switching threshold, the
N = 100 nodes, each having one information unit (sensdaster the codes achieve the maximum packet delivery ratio,
reading) to transmit via broadcast. As performance metridsut the lower the delivery ratio during the initial (flat) e
we analyze the average number of symbols recovered and e experiments show that using higher degree codewords
average codeword degree, that we plot as a function of tparticularly helps in the final part of the simulation. If weigch
number of transmitted symbols (which roughly correspomds to higher degree codewords wh&h% of the packets have
simulation time). For the simulation, we consider threéetléfint been recovered, decoding performance is always above fthat o
settings, starting from a very dynamic scenario and endiitly wGC, resulting in @0% reduction in the number of codewords
a static network: required for full recovery. However, network coding mixes
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Fig. 3. Threshold-Based Mixed Codes compared to Growth Cotte€oding Fig. 4. Low storage size compared to large storage size forstiwedard
and Network Coding, in the uniformly random encounters sgena degree distribution in the uniformly random encounters aden

MGC | GC | Gain (%)
26

Storage 10, standard distl 170 | 230 intermediate numbers of recovered codewords. Neveriheles

Storage 100, standard distrip 170 | 250 32 the codes are able to achieve full recovery at roughly theesam
TABLE | time as with unlimited storage. When storage space is scarce,

GAINS ACHIEVED BY MGC IN THE UNIFORMLY RANDOM ENCOUNTERs  larger fraction of it will contain high degree codewords &wads
SCENARIC. the end of the simulation, which increases the probability o

sending out innovative codewords. In contrast, a very large
buffer will still contain the node’s own symbol a number of
together a significantly larger number of packets to achietienes, as well as many low degree codewords.
this performance. In Table I, we show the gains achieved by MGC in this sce-
In the following sections, we analyze the light-weight modinario, in terms of number of transmitted codewords to recove
fications discussed in Section IV. We will start our inveatign  all symbols. We remark that, since Gaussian Eliminatiorois n
with the uniformly random encounters scenario, we will ®ibsthat effective in this scenario, these gains are mainly dubé
quently consider mobile networks with low and high mobilityuse of Multi-Codeword Encoding (MCE).

and, finally, we will present results for static networks. _ )
C. Mobile Scenario

B. Uniformly Random Encounters Scenario Two different cases of random-waypoint mobility are con-
We first compare GC and MGC in the uniformly randonsidered: low mobility with minimum and maximum speeds of
encounters scenario for which GC is designed. In this ggtti2 m/s and4 m/s, respectively, and high mobility with minimum
the degree distribution of Growth Codes, referred to heta@s and maximum speeds @f) m/s and20 m/s, respectively. Here,
standard degree distributigms the best possible also for MGC.we only present results for the low mobility scenario with
We will then consider the standard degree distribution fathb a node density o8 neighbors per transmission range. The
GC and MGC for the results shown in this section. Accordingerformance of thel neighbors case is similar to that of the
to this distribution, nodes initially send uncoded symbsith  high density scenario except that the curves are shiftetigo t
high probability, then the degree is increased rather slowlight (as fewer nodes receive innovative information perkea
up to a certain threshold and is finally increased sharpisansmission). In addition, results for the high mobilitgse
when almost all codewords have been recovered. It is notek very similar to those obtained for the uniformly random
that in the uniformly random encounters scenario Gaussiancounters scenario.
Elimination does not significantly improve performanceftaes First of all, we observe that with the standard degree dis-
low degree of the codewords created by GC almost alwaihution and a small storage size @ symbols, both GC
allows immediate decoding with a message passing algorittamd MGC are only able to decode aroud@40 symbols out
[11]. of 100 (Fig. 5). This happens since with the standard degree
In Fig. 4, we compare GC and MGC for a large storagdistribution codewords initially have a low degree. In didaf,
that can hold all available packets as well as for a smalldre available storage is frequently overwritten due to itimééd
storage size ofl0 codewords. With the small storage, bothmemory. Hence, information is lost faster than it can speeadi
GC and MGC perform worse but the latter still gains over thihis prevents completion of the recovery process. Alsohis t
former. A smaller storage size hinders a sufficient “miximg” case too few symbols are recovered to switch to higher degree
information and results in a small reduction of performaftze codewords and the average degree of the transmitted codgwor
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Fig. 5. Symbols recovered (left) and actual codewords degigtet) for MGC and GC in the mobile network setting with minimapeed m/s and maximum
speedd m/s, storage sizes dfd and 100 packets, standard and aggressive degree distributions.

MGC | GC | Gain (%) MGC | GC | Gain (%)
Storage 10, aggressive distrip 17 20 15 Storage 10, aggressive distrib 20 100 80
Storage 100, standard distrib 17 30 43 Storage 100, standard distrib 70 230 70
TABLE I TABLE Il
GAINS ACHIEVED BY MGC IN THE LOW MOBILITY SCENARIO. GAINS ACHIEVED BY MGC IN THE STATIC NETWORK SCENARIQ

is very close to one, as shown in the right graph of Fig. 5.4f thacross subsequent transmissions, sending the same uncoded
available storage is unlimited (e.gz 100 in this case), both information multiple times will obviously waste resources
GC and MGC recover all symbols, but MGC outperforms GGimilarly, sending low degree codewords usually provides i
roughly by a factor of2. This gain is mainly due to the usenovative information only to some of the neighbors. MGC with
of Multi-Codeword Encoding (MCE). Again, GC is not able tadhe aggressive distribution and small storage requiresrdero
achieve the theoretical distribution of codeword degregs;e of magnitude fewer codeword transmissions than GC, even if
the large buffer contains many low degree codewords and @&T is granted a much larger storage space. The performance
can only increase the degree by one by adding the node’s ogfrthe original GC with storagé00 can however be improved.
symbol. In contrast, the degrees of MGC closely match the particular, the performance of GC increases if all codelso
desired distribution, as shown in the right graph of Fig. 5. in the storage have the same probability of being included in

As expected, the aggressive degree distribution for thdl sma transmitted codeword, as we show in Fig. 7. Nevertheless,
storage case increases codeword degrees faster and thush#eperformance still remains well below that of the alduoris
creases the performance gap between GC and MGC. Mevith our aggressive degree distribution. In Table Ill, wensh
importantly, with the aggressive distribution, GC and MGGhe gains achieved by MGC in terms of transmitted codewords
can both recover all symbols even with a small buffer ab recover all source symbols.

10 packets. Moreover, although higher degree codewords ar\g gynected, the standard GC degree distribution does not
used, for all algorithms the number of codewords that canngh for static scenarios. In this case a more aggressite-dis
be immediately decoded is negligible. From these resulés, W o, js instead more efficient as it increases the proigi

can see that In scenarios t.hat more clos'ely. reflect ,re,auv‘,’oﬂansmitting innovative information at each transmisgioand.
network dynamics, the original GC has significant diffi@8li 555 Growth Codes profit less than MGC from using a more
in achieving good performance when the node memory iggressive distribution and this is due to their coding gssc

limited. These problems are even more pronounced in stgfitty .t always adding the node’s own symbol to the codeword
scenarios, for which GC admittedly was not designed. Indlahl, ¢ang largely limits the achievable benefits.

Il, we show the gains achieved by MGC in the low mobility i . .
scenario in terms of number of transmitted codewords neededVe finally stress that, assuming a small storage size, the

for recovering all symbols. degree distribution sh_ou_ld be _aggressive in orde_r to _aehiev
) ) good performance. This is particularly true for static sters
D. Static Scenario with low density. What happens is that due to buffer limitaio

In the static topology case, as shown in Fig. 6, MGC suleid symbols are discarded from the node’'s memory and, if no
stantially outperforms GC with both the aggressive anddgtedh  sufficient mixing of information is performed beforehaniley
degree distributions. In case the neighborhood does naotgghamay be lost permanently. The aggressive distribution, tteage
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Fig. 6. Symbols recovered and degree distribution for MGC @fdin the static scenario. We analyze performance for stosags of10 and 100 codewords

and for both standard and aggressive degree distributions.
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Fig. 7. Symbols recovered for the original GC and GC where \atit®ls

have the same probability of being included in the transmittedewords.
Both algorithms use a standard degree distribution with eageosize ofl00
codewords.

with our MCE encoding rule, ensures a proper mixing of the4]
symbols in memory such that the information will survive eve

in the presence of memory limitations.

V. CONCLUSIONS

restrictions on how codewords are generated. This prewaents
sufficient mixing of information and can substantially incpa
the performance.

While our algorithms show quite promising performance,
they only give first insights into improving the design of
Growth Codes. A more thorough analysis on how to adapt the
codeword degree distribution to the specific dynamics of the
network (and how to “measure” these dynamics) is necessary.
An equally important avenue for future research is how tostdj
the probability of including own information into the enamt
symbols.

REFERENCES

[1] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growtbd€s:
Maximizing Sensor Network Data Persistence, AGM SIGCOMM Pisa,
Italy, Sep. 2006.

[2] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network imfoation flow,”
IEEE Trans. on Information Theoryol. 46, no. 4, pp. 1204-1216, July
2000.

[3] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “Onrittomized

Network Coding,” in41st Annual Allerton Conference on Communication

Control and ComputingMonticello, IL, US, Oct. 2003.

S. Acedanski, S. Deb, M. Medard, and R. Koetter, “How g@dandom

linear coding based distributed networked storageMétcod Riva Del

Garda, ltaly, Apr. 2005.

[5] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubimus
Access to Distributed Data in Large-Scale Sensor Networkeugh
Decentralized Erasure Codes,” ACM/IEEE IPSN Nashville, CT, US,
Apr. 2006.

[6] ——, “Decentralized Erasure Codes for Distributed Netiwenl Storage,”

IEEE/ACM Trans. on Networkingrol. 14, no. S, pp. 2809-2816, June

In this paper we proposed several modifications to the
Growth Codes presented in [1], in order to increase their]
performance in static or mobile networks where the node’Es]
neighborhood varies slowly across subsequent transmissi
epochs. We proposed a new algorithm, named Modified Growth
Codes (MGC), and we demonstrated its good performance. %
particular, MGC was able to outperform standard Growth Gode
in all simulation settings. The more static the scenari@, tiuo]
larger the performance gains. In our simulations we obskerve
that when the buffer size is limited, standard GC could net
achieve the intended codeword degree distribution duedo t

2006.

——, “Distributed Fountain Codes for Networked Stordgm IEEE
ICASSP Toulouse, France, May 2006.

J. Widmer, C. Fragouli, and J.-Y. L. Boudec, “Low-complgxenergy-
efficient broadcasting in wireless ad-hoc networks usirtgrok coding,”
in NetCod Riva del Garda, Italy, Apr. 2005.

D. Wang, Q. Zhang, and J. Liu, “Partial Network Coding:€biny and
Application in Continuous Sensor Data Collection,” IWQoS Yale
University, New Haven, CT, US, June 2006.

P. A. Chou, T. Wu, and K. Jain, “Practical network codingn 41st
Allerton Conf. Communication, Control and Computimdonticello, IL,
US, Oct. 2003.

M. Luby, “LT Codes,” in43rd Ann. Symp. on Fundations of Computer
Science Vancouver, Canada, Nov. 2002.



