
Spurious TCP Timeouts in 802.11 Networks
David Malone, Douglas J. Leith, Anshuman Aggarwal, Ian Dangerfield

Abstract— In this paper, we investigate spurious TCP timeouts
in 802.11 wireless networks. Though timeouts can be a problem
for uploads from an 802.11 network, these timeouts are not
spurious but are caused by a bottleneck at the access point.
Once this bottleneck is removed, we find that spurious timeouts
are rare, even in the face of large changes in numbers of active
stations or PHY rate.

I. INTRODUCTION

In wired networks, transmission delay is approximately
fixed and much of the variability in round-trip times (RTTs)
comes from queueing delay. In WiFi networks, retransmissions
due to collisions and changing channel conditions are the
norm and this additional variable delay has raised concerns
for those running TCP over wireless networks. For example,
Figure 1 shows a time history of the measured service time
(time between enqueueing of packet at WiFi driver and its
successful transmission) of a TCP data packet at an 802.11
station. Clearly, this component of the RTT alone is highly
variable, and leads to the concern that poor tracking of the
RTT could lead to spurious TCP timeouts.

Spurious timeouts have been reported in cellular wireless
links [1], but the situation for 802.11 links is less clear.
Although 802.11 “hot-spot” operation is ubiquitous, few mea-
surements appear to be available of TCP timeout behaviour in
hot-spot/office environments. Previous work on 802.11 links
has been confined to the impact of artificial channel impair-
ments e.g. to emulate the impact of mobility and changes in
access point (AP) association.

This paper uses experimental measurements to investigate
the role of TCP timeouts in 802.11 infrastructure mode
WLANs. We show explicitly that the unfairness demonstrated
in [2] between flows can be attributed to TCP timeouts, mainly
due to TCP ACK losses at the AP buffer, caused by the MAC
assigning too few transmission opportunities to TCP ACKs
queued at the AP. We also demonstrate that once the AP has
sufficient access to the medium to transmit TCP ACKs, TCP
timeouts are rare.

II. RELATED WORK

Problems of TCP timeouts in mobile/cellular environments
have been studied, for example in [1]. Possible causes for long
delay spikes include moving out of radio coverage, handover
between cells and yielding to high priority traffic. [3] reports
on measurements from a relatively early GPRS setup, where
most problems seem to be associated with mobile connec-
tions and automatic link adaption. The results of passively

1Work supported by Science Foundation Ireland grant IN3/03/I346 and
Cisco Systems. The authors are with the Hamilton Institute, National Univer-
sity of Ireland, Maynooth, Co. Kildare, Ireland.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20

dr
ai

n
tim

e
(m

s)

time (s)

drain time
scaled queue size

Fig. 1. Measured service time (time between enqueueing of packet at WiFi
driver and its successful transmission) of a TCP data packet at an 802.11
station. Four stations uploading through an AP.

monitoring live GPRS/UMTS networks are shown in [4], [5].
Both actually identify a low rate of spurious timeouts in live
networks. Techniques have been proposed to reduce spurious
timeouts, such as [6] where random delay was artificially
added by the network to the RTT was explored as a way to
increase the timeout. In [7] this technique was explored in the
context of 802.11 networks with bursty outages simulated by
dropping n consecutive packets out of every 100, and found
to be sometimes beneficial. While these long delays might
occur in a network with mobility, it seems that they might be
less common in the sort of hot-spot/office environment where
802.11 is often deployed today.

Various modifications to TCP have been suggested that
could make it more robust in wireless environments. [8]
outlines the Eifel Algorithm, a system for avoiding problems
associated with spurious timeouts and spurious retransmits,
which can be implemented using the TCP Timestamp header.
F-RTO [9] is a different scheme which avoids unnecessary re-
transmissions after a spurious timeout. Schemes to compensate
for other phenomena such as non-congestion loss (e.g. [10])
and sudden changes in bandwidth (e.g. [11]) have also been
proposed.

As we will see, timeouts due to the limited number of
transmission opportunities of the access point can be important
in 802.11. The problems of a slow return path for TCP ACKs is
well-known as an issue for TCP [12]. In [2] we demonstrated
a simple fix for this problem in WLANs by prioritising TCP
ACKs using the 802.11e EDCF.

III. TESTBED SETUP

The 802.11e wireless testbed is configured in infrastructure
mode. It consists of a desktop PC acting as an access point,
15 PC-based embedded Linux boxes based on the Soekris
net4801 [13] and one desktop PC acting as client stations.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 7, 2009 at 12:16 from IEEE Xplore. Restrictions apply.

Hardware model spec
1× AP Dell GX 260 2.66Ghz P4
15× STA Soekris net4801 266Mhz 586
1× measurement STA Dell GX 270 2.8Ghz P4
1× dummynet host Dell GX 260 2.0Ghz P4
WLAN NIC D-Link DWL-G520 Atheros AR5212

TABLE I

TESTBED HARDWARE SUMMARY

parameter value parameter value
total buffering 39 packets MAC Preamble long
interface tx queue 19 packets MAC Data rate 11Mbps
driver tx queue 20 packets MAC ACK rate 11Mbps
dummynet queue 100 packets MAC Retries 11

TABLE II

TESTBED PARAMETERS SUMMARY

The PC acting as a client records measurements for each of
its packets, but otherwise behaves as an ordinary client station.
All systems are equipped with an Atheros 802.11b/g PCI card
with an external antenna. The system hardware configuration
is summarised in Table I. All nodes, including the AP, use
a Linux 2.6.8.1 kernel and a version of the MADWiFi [14]
wireless driver modified to allow us to adjust the 802.11e
CWmin, and TXOP parameters. All of the systems are
also equipped with a 100Mbps wired Ethernet port, which
is used for control of the testbed from a PC. Specific vendor
features on the wireless card, such as turbo mode and multi-
rate retries, are disabled. All of the tests are performed using
the 802.11b physical maximal transmission rate of 11Mbps
with RTS/CTS disabled and the channel number explicitly set.
Since the wireless stations are based on low power embedded
systems, we have tested these wireless stations to confirm
that the hardware performance (especially the CPU) is not
a bottleneck for wireless transmissions at the 11Mbps PHY
rate used. As noted above, a desktop PC is used as a client
to record the per-packet statistics. This is to ensure that there
is ample disk space, RAM and CPU resources available so
that collection of statistics not impact on the transmission of
packets. The configuration of the various network buffers and
MAC parameters is detailed in Table II.

Note that we use a buffer size of 39 packets, which is
smaller than the default for the MadWiFi driver. There are
two main reasons for this. First, as we will see, it is relatively
easy to end up with round trips of 200m to above 1000ms with
this modest buffer size. The upper end of this scale is likely to
result in performance that is unacceptable to users for reasons
other than TCP timeouts. Increasing buffering only adds to
these problems. Second, by reducing the buffer size we may
observe more TCP congestion epochs, thus giving a clearer
picture of TCP’s behaviour over a number of timescales.

The topology used is shown in Figure 2. We generate TCP
uploads using Iperf, which run from the stations on the left to
the host running dummynet [15] on FreeBSD 6.2. The AP and
stations are configured as an infrastructure mode network. The
AP is connected to the dummynet host by 100Mbps ethernet.
Dummynet is used to emulate propagation delays in the wired
path. In the experiments presented here an extra 10ms of delay

Dummynet

STAs

AP

Fig. 2. Topology of testbed.

is introduced as packets enter and leave the dummynet host,
for a total of 20ms extra RTT. We have explored other values
and seen similar results.

The testbed is not in isolated radio environment, and is
subject to the usual impairment seen in an office environment.
However, the channel has been selected to be orthogonal to
other active 802.11 networks that are nearby.

Several software tools are used within the testbed to gen-
erate network traffic and collect performance measurements.
While many different network monitoring programs and wire-
less sniffers exist, no single tool provides all of the functional-
ity required and so we have used a number of common tools
including tcpdump[16]. We also used the Linux TCP Probe
module [17] to record estimates of round-trip times on the
TCP receiver. Network management is carried out using ssh
over the wired network.

We will consider the network delay associated with winning
access to transmission opportunities in an 802.11 WLAN. This
is split into the queueing delay and the MAC access delay
(associated with the contention mechanism used in 802.11
WLANs). The MAC layer delay, i.e. the delay from a packet
becoming eligible for transmission (reaching the head of the
hardware interface queue) to final successful transmission,
can range from a few hundred microseconds to hundreds of
milliseconds, depending on network conditions. We used the
techniques similar to those in [18] to measure MAC delay and
queueing delay.

It is interesting to note that for some experiments with larger
numbers of stations, network contention is sufficient to make
ARP an unreliable protocol. This is because ARP depends on
broadcast packets, which are not acknowledged in 802.11, and
are consequently not retransmitted at the MAC layer. When the
collision probability becomes high, if the ARP tables are not
initialised, then it is possible that all ARP level retransmissions
will fail and consequently it will be impossible to establish a
TCP connection. As we are focusing on TCP issues, we used
static ARP entries to avoid this problem. However, this does
raise concerns about the performance of ARP in a congested
802.11 environment.

IV. WITHOUT PRIORITISED TCP ACKS

As described in [2], when there are n active TCP uploads
sending data packets from different stations in an infrastructure
mode network, the AP must return n/2 TCP ACKs to the
stations (assuming delayed ACKing). On average, the MAC
distributes transmission opportunities evenly when the network

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 7, 2009 at 12:16 from IEEE Xplore. Restrictions apply.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

Fig. 4. RTTs for a flow with F-RTO enabled. Four upload flows.

is saturated, so when n > 2 there is queueing and loss of TCP
ACKs at the AP.

Consider a situation with 4 TCP uploads beginning at the
same time, each on a different station. Figure 3(a) shows the
observed RTTs at one station. Two different instances are
shown. On the left we see that the station has been unlucky
and lost some packets early on, it experiences a TCP timeout
and never recovers over the 120s of the experiment. On the
right, the station has no problems.

Figure 3(b) shows the corresponding queue lengths observed
at the access point in both these experiments. We see that, for
practical purposes, the queue at the access point is always
full, resulting in substantial losses of ACK packets. In both
experiments, few other losses are seen in the system. No
packets are dropped at the station due to excessive MAC retries
and less than a tenth of a percent are dropped at the access
point due to excessive MAC retries. In fact, few packets see
more than five retries. Thus, the timeouts we observe in this
case are not spurious: no matter now long the station waits,
it will not receive the TCP ACK that it is expecting. The
timeouts are in the class of timeouts related to the loss of an
entire flight of TCP ACKs.

Figure 3(a) also shows a curve comparing an estimated
round-trip timeout (RTO) to the actual RTT observed. We
calculate this timeout using the traditional smoothed round-
trip time, srtt ← 7/8srtt + 1/8rtt, and variability rttvar =
3/4rttvar + 1/4|delta|. The round-trip timeout shown is
srtt + max(200ms, 4rttvar). This estimator is close to the
those used in both FreeBSD and Linux, and accounts for
delayed acking by allowing at least 200ms. We observe that in
the case where the station has been lucky and has a reasonable
number of packets in flight, it is not timing out, despite the
substantial loss of TCP ACKs.

We note that the loss of TCP ACKs can be so severe that
even an advanced timeout recovery mechanism such as F-
RTO cannot gracefully deal with the issue. In Figure 4, we
see the round-trip times of a flow with F-RTO enabled. The
flow initially stalls because the SYN ACK packet is lost, this
is followed by several small timeouts (where F-RTO should
improve performance) followed later by a long timeout.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 100 150 200 250 300 350 400

O
bs

er
ve

d
F

re
qu

en
cy

Clearance (ms)

priotised overhead
unpriotised overhead

Fig. 6. Observed distribution of clearance between RTO and RTT with and
without TCP ACK prioritisation.

V. WITH PRIORITISED TCP ACKS

In this section, we prioritise the transmission of TCP ACKs
using 802.11e functionality. We increasing the AIFS of TCP
data transmited by stations by 4 slots and decrease the CWmin
of the TCP ACKs transmitted by the AP to 4. In [2] we
saw that this prioritisation resulted in much fairer sharing of
bandwidth between TCP uploads. Note that the parameters of
this ACK prioritisation scheme are fixed and do not depend on
the number of uploads. We again consider 4 uploading TCP
flows without F-RTO. Figure 5 shows the typical behaviour.

The queue occupancy at the AP, shown on the right of
Figure 5, now remains short; the queue never overflows and
rarely has more than 10 packets in it. Losses of packets due
to excessive MAC retries remain at a similarly low level
as before. The round-trip times shown on the left are still
noisy. However, compared to Figure 3, there may be slightly
more clearance between the observed round-trip times and the
round-trip timeout. Figure 6 shows the observed distribution
of RTO−RTT. Though the means are similar, without TCP
ACK prioritisation the distribution is broader with longer tails,
confirming more variable behaviour in this case. Note that
neither distribution gets close to negative overhead, suggesting
that spurious timeouts situations should be rare in either
situation.

Even though we see no spurious timeouts in practice, it is in-
teresting to consider the reason for this difference in variability.
Some of the spikes present in Figure 3 may be caused by bursts
of ACK losses, and these would not be present in Figure 5.
The shorter queue occupancy may also make the RTT easier to
track: the contribution of ACK queueing to the round-trip time
in the first case is the sum of twenty random service times,
whereas it is the sum of a considerably smaller number when
ACKs are prioritised because queue occupancy is lower. This
is illustrated in figure 7, which plots the drain time for TCP
ACK packets arriving at the AP is both without and with ACK
priorisation (on the left and right respectively). Unsurprisingly,
the drain times are much shorter when ACKs are prioritised,
the range of the prioritised graph is sixteen times smaller than
the prioritised one. Their variability is reduced too. We also
show the queue length, scaled to be on a similar range to the
drain time. In both cases queue length is correlated with drain

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 7, 2009 at 12:16 from IEEE Xplore. Restrictions apply.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 20 40 60 80 100 120

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

(a) RTTs observed by a TCP flow when ACKs are not prioritised. On the left, the flow repeatedly times out.
On the right, the flow manages to keep packets in flight.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120

A
P

 D
riv

er
 Q

ue
ue

 O
cc

up
an

cy

time (s)

Observed Driver Queue

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120

A
P

 D
riv

er
 Q

ue
ue

 O
cc

up
an

cy

time (s)

Observed Driver Queue

(b) AP driver queue occupancy when ACKs are not prioritised. The queue is full of TCP ACKs at most times.

Fig. 3. Measurements of RTT and queue occupancy. Four upload flows.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120

A
P

 D
riv

er
 Q

ue
ue

 O
cc

up
an

cy

time (s)

Observed Driver Queue

Fig. 5. RTTs for a flow and AP driver queue occupancy when ACKs are prioritised. Four upload flows.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20

dr
ai

n
tim

e
(m

s)

time (s)

drain time
scaled queue size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20

dr
ai

n
tim

e
(m

s)

time (s)

drain time
scaled queue size

Fig. 7. Drain time for ACKs at the AP. On the left we have no TCP ACK prioritisation, on the right TCP ACKs are prioritised.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 7, 2009 at 12:16 from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20

dr
ai

n
tim

e
(m

s)

time (s)

drain time
scaled queue size

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

dr
ai

n
tim

e
(m

s)

time (s)

drain time
scaled queue size

Fig. 8. Drain time for data packets at a station. On the left we have no TCP ACK prioritisation, on the right TCP ACKs are prioritised.

time, but there is substantial noise due to the random MAC
service. The corresponding drain time measurements for the
data stations are shown in Figure 8. As we expect, the drain
time for the data stations increases when we prioritise TCP
ACK packets at the AP. With fewer timeouts, TCP flows can
grow their cwnd to fill the interface buffer.

While the foregoing measurements are for a single network
condition (four upload flows), we observe very similar be-
haviour across a wide range of conditions.

VI. IMPACT OF CHANGING TRAFFIC CONDITIONS

The foregoing section considers a fixed network condition
(number of flows, link rate etc). In this section we consider
the impact of changes in network condition on TCP timeout
behaviour. We begin by considering changes in the number of
active stations. In 802.11, the available service time is shared
between the active stations. If, for example, the number of
active stations doubles, then the available service per station
roughly halves, and so the apparent time to serve a packet
should approximately double. This change in service time
could have a significant impact on the queueing delay for both
TCP data packets and ACKs, resulting in a large change in
round-trip time.

Consider an infrastructure mode network with ACKs pri-
oritised as described in Section V. We begin with 4 flows,
and at 120s we add either 4, 8 or 12 flows. We monitor the
RTTs of one flow. F-RTO is enabled. As we can see from
Figure 9, there is a substantial change in the observed RTT
from around 200ms (4 flows) to about 400ms (4+4 flows),
600ms (4+8 flows) and 900–1000ms (4+12 flows), so the RTT
is increasing roughly as we expect.

The collision probability is also increasing (the monitor
station observes 18% for 4 stations to 35% for 8, 47 % for 12
and 54% for 16 stations), which will be a source of additional
delay beyond the linear increase that we expect and increased
variability of round trip times. Even with these high collision
probabilities, less a tenth of a percent of packets are dropped
at either the station or access point.

Does this sudden change of network conditions cause any
problems for TCP ? Figure 10 shows a close up of the RTT
history for one flow just after the additional flows are added.
We see that the RTO threshold adapts quickly and has enough
slack that it does not actually ever fall below the observed

RTT, though it does come close at a number of points. Note
that the RTT samples seem widely spaced on this scale, but
this is to be expected, as the RTT is a substantial fraction of
one second.

There are no timeouts in the measurements shown. There is
one instance where cwnd is reset in the 4+4 experiment just
before the packet at 128.86s. This is caused by a packet which
is lost because the interface queue is full, and then the later
retransmitted packet is also lost because the interface queue is
again full. We see that the flow recovers promptly from these
losses.

Another source of variability in wireless networks that is not
usually present in wired networks is a change in the physical
rate used to transmit data. The time to transmit a 1500 bytes of
payload increases by roughly 11ms when the PHY rate drops
from 11Mbps to 1Mbps. Figure 11 shows a similar test to
that shown above, but instead of introducing extra flows, we
now change the rate used to transmit packets at all stations
at 120s. From left to right we show 11Mbps→5.5Mbps,
11Mbps→2Mbps and 11Mbps→1Mbps. The changes in the
RTT’s mean and variability are immediately obvious.

Again, there are no timeouts in our measurements, as can
be confirmed by the close up shown in Figure 12. In the
experiment where the rate was dropped to 1Mbps, note that
there is an event that causes a noticeable gap in the RTT
history at 140s. In fact, this event is not a timeout, but a loss.
Inspection of the packet trace reveals that the retransmission
is driven by duplicate ACKs.

All stations changing rate at the same time is an unusual
event. It seems unlikely that the rate adaption schemes operat-
ing on each station might all decide to change rate at the same
time. Changing from 11Mbps→1Mbps is also particularly
severe, as rate adjustments are usually by no more than a
factor of two. However, we see that the TCP RTO estimation
is able to deal with this eventuality.

VII. CONCLUSION

Though TCP timeouts can be a problem in 802.11 networks,
in our setup these timeouts are not spurious, but instead
due to congestion on the ACK path. Even if we introduce
sudden increases in RTT, by adding stations to the network or
making large changes to the PHY rate, TCP’s retransmission
mechanisms seem to be able to adapt.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 7, 2009 at 12:16 from IEEE Xplore. Restrictions apply.

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 120 140 160 180 200

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 120 140 160 180 200

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 120 140 160 180 200

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

Fig. 9. Beginning with 4 flows, the impact on RTT of adding 4, 8 and 12 flows.

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 122 124 126 128 130

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 122 124 126 128 130

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 122 124 126 128 130

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

Fig. 10. Close up of the impact on RTT of adding 4, 8 and 12 flows.

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 120 140 160 180 200

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 120 140 160 180 200

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 120 140 160 180 200

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

Fig. 11. Beginning with 4 flows with a PHY rate of 11Mbps, the impact of switching to 5.5Mbps, 2Mbps and 1Mbps.

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 122 124 126 128 130

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 122 124 126 128 130

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 122 124 126 128 130

R
T

T
 (

m
s)

time (s)

Observed RTT for monitored STA
rto

Fig. 12. Close up of the impact of switching to 5.5Mbps, 2Mbps and 1Mbps.

We would also like to expand this work in several directions.
We have focused on combinations of TCP uploads, as we
expect this situation to be most challenging for 802.11 and
TCP. We expect downloads to behave well, because of the
absence of a bottle neck on the ACK path. Combinations of
uploads and downloads may be interesting, because uploads
can out-compete downloads unless measures are taken to
restore fairness [2].

As we noted earlier, we have used buffer settings that limit
the overall RTT to levels which users are likely to find accept-

able. It could be interesting to consider the behaviour of the
RTO estimators as buffer size grows. We also note that buffer
sizing for TCP in WLANs is an interesting question in itself
[19], and is not subject to the usual rules of thumb because of
the long term and short term variations in transmission times
that we have seen in this paper. The investigation in this paper
has been limited to long-lived flows, and further investigation
of short-lived flows is planned, as completion times of request-
response traffic is important to also consider.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 7, 2009 at 12:16 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Gurtov, “Making TCP robust against delay spikes,” University of
Helsinki, Tech. Rep. C-2001-53, November 2001.

[2] A. Ng, D. Malone, and D. Leith, “Experimental evaluation of TCP
performance and fairness in an 802.11e test-bed,” in ACM SIGCOMM
Workshops, 2005.

[3] J. Korhonen, O. Aalto, A. Gurtov, and H. Lamanen, “Measured perfor-
mance of GSM, HSCSD and GPRS,” in Proc. IEEE ICC, 2001.

[4] F. Vacirca, T. Ziegler, and E. Hasenleithner, “An algorithm to detect
TCP spurious timeouts and its application to operational UMTS/GPRS
networks,” Computer Networks, vol. 50, no. 16, pp. 2981–3001, 2006.

[5] F. Ricciato, F. Vacirca, and P. Svoboda, “Diagnosis of capacity bottle-
necks via passive monitoring in 3G networks: An empirical analysis,”
Computer Networks, vol. 51, no. 4, pp. 1205–1231, 2007.

[6] T. E. Klein, K. K. Leung, R. Parkinson, and L. G. Samuel, “Avoiding
spurious TCP timeouts in wireless networks by delay injection,” in Proc.
IEEE GLOBECOM, November 2004.

[7] G. Fotiadis and V. Siris, “Improving TCP throughput in 802.11 WLANs
with high delay variability,” in Proc. ISWCS, 2005.

[8] R. Ludwig and R. H. Katz, “The eifel algorithm: making TCP robust
against spurious retransmissions,” ACM/SIGCOMM Computer Commu-
nication Review, vol. 30, no. 1, 2000.

[9] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: an enhanced
recovery algorithm for TCP retransmission timeouts,” ACM/SIGCOMM
Computer Communication Review, vol. 33, no. 2, 2003.

[10] V. Subramanian, K. K. Ramakrishnan, S. Kalyanaraman, and L. Ji,
“Impact of interference and capture effects in 802.11 wireless networks
on TCP,” in Proc. WiTMeMo, August 2006.

[11] J. Zhang, J. Korhonen, S. Park, and D. Pearce, “TCP quick-adjust by
utilizing explicit link characteristic information,” in To appear PAEWN,
2008.

[12] T. Lakshman, U. Madhow, and B. Suter, “Window-based error recovery
and flow control with a slow acknowledgement channel: a study of
TCP/IP performance,” in Proc. IEEE INFOCOM, 1997.

[13] “Soekris engineering,” http://www.soekris.com/.
[14] “Multiband Atheros driver for WiFi (MADWiFi),” http://sourceforge.net/

projects/madwifi/, r1645 version.
[15] L. Rizzo, “Dummynet: a simple approach to the evaluation of network

protocols,” ACM/SIGCOMM Computer Communication Review, vol. 27,
no. 1, 1997.

[16] V. Jacobson, C. Leres, and S. McCanne, “tcpdump,” http://www.
tcpdump.org/.

[17] “TCP probe,” http://www.linux-foundation.org/en/Net:TcpProbe.
[18] I. Dangerfield, D. Malone, and D. Leith, “Experimental evaluation

of 802.11e EDCA for enhanced voice over WLAN performance,” in
International Workshop On Wireless Network Measurement (WiNMee),
2006.

[19] T. Li and D. Leith, “Buffer sizing for TCP Flows in 802.11e WLANs,”
IEEE Comms Let, To Appear.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 7, 2009 at 12:16 from IEEE Xplore. Restrictions apply.

