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Abstract—We provide a simple and accurate analytical model

for infrastructure IEEE 802.11 WLANs. Our model applies if
the cell radius, R, is much smaller than the distance,R.s, up
to which carrier sensing is effective. The conditionR.s >> R Telco/LANyRouter
is likely to hold in a dense deployment of Access Points (APs) g ’
where, for every client or station (STA), there is an AP very
close to the STA such that the STA can associate with the AP
at a high Physical (PHY) rate. We develop a scalabledl level
model for such WLANs with saturated AP and STA queues as
well as for TCP-controlled long file transfers. The accuracyof
our model is demonstrated by comparison withns-2 simulations.
We also demonstrate how our analytical model could be appla:
in conjunction with a Learning Automata (LA) algorithm for
optimal channel assignment. Based on the insights provideldy
our analytical model, we also propose a simple decentralize
algorithm which provides static channel assignments that are
Nash equilibria in pure strategies for the objective of maximizing
normalized network throughput in as many steps as there are
channels. In contrast to prior work, our approach to channel
assignment is based on théhroughput metric.

Index Terms—throughput modeling, fixed point analysis, chan-
nel assignment algorithm, Nash equilibria, learning autonata
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[. INTRODUCTION Fig. 1. A multi-cell infrastructure WLAN: DCF is used only rfo

This paper is concerned withfrastructure modenireless ﬁgmiﬁlfﬁﬂgﬂsoﬂhfstgfafaﬁgsbfciﬁgigmcf C’:)?]‘:]eeﬁ;mm&g
Local Area Networks (WLANSs) that use the Distributed Co- the Internet through a local server and a LAN router.
ordination Function (DCF) Medium Access Control (MAC)
protocol as defined in the IEEE 802.11 standard [1]. Such
WLANS contain a number of Access Points (APs). Each clieiit two closely located co-channel cells can suppress each
station (STA) associates with exactly one AP. Each AP, alolmgher’s transmissions via carrier sensing and interferé wi
with its associated STAs, definescall. Each cell operates each other’s receptions causing packet losses. Thus, ibapac
on a specific channel. Cells that operate on the same charta#i sometimes degrade with increased AP density [3], [4].
are calledco-channel Thus, in our setting, DCF is used onlyClearly, effective planning and management are essemfial f
for single-hopcommunication within the cells, and the STAsachieving the benefits of dense deployments of APs [2]. It
can access the Internet only through their respective APsis been demonstrated that a dense deployment of APs, along
which are connected to the Internet by a high-speed wirelimgth careful channel assignment and user association @ontr
local area network. Figufg-1 depictsraulti-cell infrastructure can enhance the capacity by as much as 800% [2]; but the
WLAN. technique has been tested on a small Bcalarge-scale

To support the ever-increasing user population at highssacc#VLANs are difficult to plan and manage since good network
speeds, WLANs are resorting to dense deployments of APsgineering models are lacking.
where, for every STA, there exists an AP close to the STA Much of the earlier work on modeling WLANs deals with
with which the STA can associate at a high Physical (PH¥jngle-AP networks or the so-calleingle cells[5], [6], [7].
rate [2]. However, as the density of APs increases, cellssizEhe existing performance analyses of multi-cell WLANs
become smaller and, since the number of non-overlappitig., WLANs consisting of multiple APs) are mostly based
channels is limitdli co-channel cells become closer. Nodesither on simulations or small-’medium-scale experiments

1For example, the number of non-overlapping channels in18@gg is 3 2In [2], to provide connectivity at high PHY rates, 24 APs weleployed
and that in 802.11a is 12. in an area which could have been covered by a single AP at a kbW rate.
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[3l, [4], [2]. Studying large-scale WLANs by simulationsSectior{1V, we provide our network model and summarize our
and experiments is both expensive and time-consuming, It k&y modeling assumptions. The analytical model is develope
therefore, important to develop an analytical understagndiin Section[f. In Sectio_VI, we validate our model by
of such WLANSs in order to derive insights into the systensomparing withns-2 simulations. In Sectiob VI, we apply
dynamics. The insights thus obtained can be applied: @ur model to compare three different channel assignments
to facilitate planning and management, and (ii) to develdpr a 12-cell network and discuss how our model can be
efficient adaptive schemes for making the WLANelf- applied for optimal channel assignment in small networks
organizingand self-managingln this paper, we first develop usingexhaustive searchn Sectior VIIl, we demonstrate how
an analytical model for 802.11-based multi-cell WLANs andur analytical model could be applied along with Learning
then apply our model to the task of channel assignment. Automata (LA) algorithms for optimal channel assignment.
We propose a decentralized algorithm in Secfioh X which
Contributions: We make the following contributions: quickly provides static channel assignments. We conclade i
« We identify a condition, which we call th@airwise Section[X. Proofs of important results can be found in the
Binary DependencéPBD) condition, under which multi- appendices at the end of the paper.
cell WLANs can be modeled at theell level(see A% in
Section1V). Il. RELATED LITERATURE
« We develop a scalable cell level model for multi-cell Modeling of multi-hop ad hoc networkis closely related
WLANSs with arbitrary cell topologies(Section V). to that of multi-cell WLANSs. In both cases, thedden node

« We extend the single cell TCP analysis [of [8] to multipl@nd theexposed nodproblems[[18] are known to be the two

interfering cells (Sectioh V-B). main capacity-degrading factors. Multi-hop ad hoc network

« We demonstrate how our model could be applied iand multi-cell WLANs are much harder to model than single

conjunction with a Learning Automata (LA) algorithmcells precisely because of the presence of hidden and expose
for optimal channel assignment (Sectlon V). nodes. In particular, since each node evolves in a different

» Based on the insights provided by our analytical modedpecific way, one needs to model the system antiee level

we propose a simple decentralized algorithm which cd8], [10], or at thelink level [11], [12], i.e., the activities of
provide faststatic channel assignments (Section IX). every single node or link and the interactions among them
need to be modeled.

Unlike the node levelmodels [[9], [10] or thelink level ~ In the context of CSMA based multi-hop packet radio
models [11], [12] reported earlier in the context ofulti- networks, Boorstyn et al! [9] proposed a Markovian model
hop ad hocnetworks, our cell level model does not requiravith Poisson packet arrivals and arbitrary packet lengstrieli
modeling the activities of every single node (resp. linkjuF, butions. Wang and Kar [11] adopted the node level Boorstyn
the complexity of our cell level model increases with th&odel to develop a link level model for 802.11 networks and
number of cells rather than the number of nodes (resp. linksjudied the fairness issues. As a simplification, they assum
However,our model can account for the number of nodes i@ fixed contention windowGaretto et al.[[10] extended the
each cell which may differ across the ceNse argue that the Boorstyn model to multi-hop 802.11 networks. They computed
PBD condition is likely to hold in a dense deployments of AP#ie packet loss probabilities and the throughputs per node
(see Sections Il and 1VJA). Hence, our cell level model cagccounting for the details of the 802.11 protocol. In paitc,
be applied to obtain dirst-cut understanding of large-scalethey incorporated the evolution of contention windows, ahhi
WLANS. was missing in[[11], by applying the analysis lof [7]. However

Our cell level model is based on the channel contenti@n direct application of the Boorstyn model required two
model of Boorstyn et al.[]9] and the transmission attempifferent activation rates, namely,andg, which complicated
model of [7]. Thus, our approach is similar to that bf|[10]their model (see the discussion following Equatidn 2). We
However, we provide a cleaner treatment by modifying thdevelop a cleaner model by slightly modifying the Boorstyn
model of [9] to make it suitable for 802.11 networks (seeontention model and making it particularly suitable fo280L
the discussion following Equatidd 2). We also provide newetworks.
insights. In the context of multi-cell infrastructure WLANS, Nguyen

Our channel assignment algorithm provides assignmemtsal. [14] proposed a model for dense 802.11 networks. To
that areNash equilibria in pure strategiefor the normalized keep their interference analysis tractable, they assuniied a
network throughput maximizatioobjective (see Sectidn 1X). the APs in the WLAN to be operating on the same channel.
Furthermore it provides an assignment in odly — 1 steps Recently, Bonald et all_[15] applied the concept of “exduasi
whereM denotes the number of available channels. In contrasgion” to model a multi-AP WLAN as a network of multi-
to prior work, our approach to channel assignment is baseddass processor-sharing queues with state-dependeriteserv
the throughput metriqsee the last paragraph in Sectioh II). rates. The concept of “exclusion domains” has also been

The remainder of this paper is organized as follows. lapplied in [12] to study the long-term fairness propertiés o
Section[l, we discuss the related literature. In Seclidh lllarge networks. The concept of exclusion says that, among
we provide the motivation for our simple cell level model. Ira set of neighboring links, at most one can be active at any



point of time. As argued in_[12] and [15], exclusion can be
enforced in 802.11 networks by the RTS/CTS mechanism.
However, suppression of interferers by RTS/CTS is not perfe
because: (1) RTS frames can also collide and they must be
retransmitted to enforce exclusion, (2) the overheads due t
RTS/CTS and the capacity wastage due to RTS collisions
might be significant, especially at high data rates [16], and
hence, must be accounted for, and most importantly, (3)
RTS/CTS cannot completely eliminate hidden node collision
since nodes that cannot decode the CTS frames may collide
with DATA frames that are longer than the Extended Inter
Frame Space (EIFS). Thu®xclusion” is strongly dependent
on the RTS/CTS mechanism and is, essentially, a modeling
approximation which ignores the possibility of hidden node
collisions We also ignore hidden node collisions to develop
our model. However, our model can be applied either with the Fig- 2. A dense AP network: Small circular areas represeft ce
. . . . with radius R. APs are shown as tiny circles at the centers of the

Basic Access mechanism or with the RTS/CTS mechanism. cells. The big circular disk represents the area coverech&ycarrier

Several techniques exist for improving the throughput and sensing rangez. of one of the APs. Observe that, wiff.s >> R,
fairness in WLANSs. ‘Channel assignment’ is performed at the other cells are either almost completely coved or almostcovered

. . . . at all through carrier sensing.

planning stage and dynamic techniques such as ‘power con-
trol’, ‘tuning of carrier sense threshold’, ‘channel svhiteg’
and ‘user association control’ can be applied during ndtwor ) o ) ) )
operation. Extensive literature exists on these techsigsee, ransmitter T is within a small distanc& from its receiver
e.g., [13]’ [1"7], [18], [1()], [20], [2]_]’ [22], [23] and the ‘R,,.a node ‘I that |S-bey0nd-a dlStanCEcs from ‘T’ (l.e.,-
references therein). In this paper, we focus only on chanfelidden nodgis unlikely to interfere with ‘R’, and (2) if
assignment. Much of the existing work on channel assighi?de-1 in Cell-1 can sense the transmissions by Node-2 in
ment proposes to minimize the global interference power G€!l-2, then it is likely that all the nodes in Cell-1 can sens
maximize the global Signal to Noise and Interference Rat}Be transmissions from all the nodes in Cell-2 and vice versa
(SINR) without taking into account the combined effect o€~ W& may assume thaiodes belonging to the same cell
the PHY and the MAC layers. Due to carrier sensing, nod@é‘ve an identical view of thg rest pf thg network and interact
in 802.11 networks get opportunity to transmit only a frati With the rest of the network in an identical manner
of time which must be accounted for when computing the The assumption that the AP and all its associated STAs have
global interference power or SINR. Such an approach is foud@ identical view of the network has been applied in a dense
only in [17] where the authors propose to maximize a quantif§P setting [2] where the authors approximate STA statistics
called “effective channel utilization”. In reality, enders are Dby statistics collected at the APs for efficiently managinejit
more interested in the “throughputs” and, ideally, the ofije network. We adopt this idea of|[2] to develop an analytical
should be to maximize thsum utility of throughputs. To our model. We identify the locations of the STAs with the locaso
knowledge, a throughput based approach which accounts @brtheir respective APs, and treat a cell as a single entity,
PHY-MAC interaction does not exist. In this paper, we firsﬁhus yleldlng a scalableell levelmodel. Unlike a node level
develop a simple and accurate throughput model for mulfirodel, the complexity of a cell level model increases with
cell WLANs and then apply our model for the task of channéhe number of cells rather than number of nodes. A simple

assignment. cell level model is particularly suitable for the task of ohal
assignment since channels are assigned to cells rathetahan
[1l. M OTIVATION FOR A CELL LEVEL MODEL nodes. The foregoing simplification is extremely usefulhet t

In a dense deployment of APs with denser user populatid??,twork planning sta_1ge when the locations of the STAs are not
it seems practically impossible to apply a node or a link llev&nOWn but the locations of the APs and the expected number
model for planning and managing the network. However, v USers per cell might be known. Furthermore, since much of
can exploit a specific characteristics of dense deploymeats (he traffic in today's WLANSs is downlink, i.e., from the APs

R denote the maximum AP-STA distance and /2t denote to the STAs, a large fraction of channel time is occupied by
the carrier sensing ranggi.e., R, is the distance up to which transmissions from the APs. It is then reasonable to assign

carrier sensing is effectile We observe thatR., >> R is channels based only on the topology of 'Fhe APs and the
likely to hold in a dense deployment of APs where, for evefgXPecteéd number of users per cell assuming that the users
STA, there is an AP very close to the STA. Wit >> R, are located close to their respective APs.

the network model can be simplified as follows: (1) since any The appropriate locations for placing the APs can be
decided using standard RF tools and tbteysical topology

3precise definition of carrier sensing range can be found®h 4hd [13]. of the APs can be determined. Given the physical topology



of the APs and a channel assignment, we can obtain thiewhich must be within R.; of a receiver ‘R’, will also be
logical topology, i.e., the topology of the co-channel APsithin R, of the transmitter ‘T’ if the PBD condition holds.
corresponding to every channel. Given a logical topology, oHence, either (i) ‘I' can start transmitting at the same time
analytical model can predict the cell throughputs accagntias ‘T’ causingsynchronouscollisions at ‘R’, or (ii) ‘I’ gets

for the expected number of users per cell. The cell throutthpsuppressed by T's RTS (or DATA) transmission followed by
thus obtained can provide tlgoodnesf the assignment to R's CTS (or ACK) transmission since CTS and ACK frames
a channel assignment algorithm based on which the algoritlame given higher priority through SIFS<(DIFS < EIFS).
can determine detter channel assignment. Given the logicalhus, if the PBD condition holds, nodes do not require daferr
topology with the new channel assignment, our model cdny EIFS; deferral by DIFS would suffice. We assume that
provide the modified feedback and this procedure can bentention for medium access always begins after defeyral b
repeated several times to arrive at an optimal assignment. ?AFS and we do not model the impact of EIFS.

explain this approach in Sectidn_MIlIl where we apply our

model in conjunction with Learning Automata (LA) basedv.- ANALYSIS OF MULTI-CELL WLAN'S WITH ARBITRARY
algorithms for optimal channel assignment. CELL TOPOLOGY

In this section, we develop a cell level model for WLANs

] ) ) . that satisfy the PBD condition. We provide a generic model
Based on our earlier discussion, we assume that smulgq,]—d demonstrate the accuracy of our model by comparing

neous transmissions by nodes that are farther ®anfrom i, simulations of specific cell topologies pertaining {@:
each other results in successful receptions at their m‘zﬂecplanned networks with linear or hexagonal layout of celés(s
receivers. We also assume that simultaneous transmissip@re@@» and (ii) unplanned networks with aeit
by nodes that are withik.; always lead to packet Iosses|ayout of cells (see Figurg 3{d)). We index the cells by

at their respective receivers, i.e., we ignore the possibil positive integers, 2, - - -, N, in some arbitrary fashion where
of packet captureWe say that two nodes amependenif  genotes the number of cells. Two completely dependent

they are withinR.,; otherwise, the two nodes are said to bgy_channel cells are said to besighbours Note thattwo
independentTwo cells are said to be independent if eVer¥ompletely dependent cells operating on different chanae
node in a cell is independent w.r.t. every node in the othgg: neighbors(see A2). LetW' = {1,2,-- , N} denote the
cell; otherwise, the twq cells are said to be depgndent. Tt of cells andV; (C ) denote the set of neighboring cells
depeqdent cel!s are said to bempletely depepdenﬁ evVery of Celli (i € N). Note thati ¢ A;. The key to modeling
node in a cell is dependent w.r.t. every node in the other cgllg ce| level contention is the cell levebntention graphg
In this broad setting, our key assumptions are the following,hich is obtained by representing every cell by a vertex and
A.1 Only non-overlapping channels are used. joining every pair of neighbors by an edge. Figures|B@aj}3(d
A.2 Cells operating on different channels are independentiso depict the contention graphs corresponding to eadh cel
A.3 Associations of STAs with APs are static. This impliesopology.

that the number of STAs in a cell is fixed. In Section[V-A, we model the case where nodes are in-
A.4 Pairwise Binary Dependence (PBD)Any pair of cells finitely backlogged and are transfering packets to one oemor

is either independent or completely dependent. nodes in the same cell using UDP connection(s). Notice that
A.5 The STAs are so close to their respective APs that packgfigle-hop direct communications among the STAs in the same

losses due to channel errors are negligible. cell without involving the AP are also allowed. In SectiorBy-
A.6 The EIFS deferral has been disabled in the sense that extend to the case when STAs download long files through

medium access always starts after a Distributed Inteheir respective APs usingersistentTCP connections.
Frame Space (DIFS) deferral.

IV. NETWORK MODEL AND ASSUMPTIONS

] ) - ) A. Modeling with Saturated MAC Queues
A. Discussion of the PBD Condition and Assumptidd A.6 B )
Due to the PBD condition, nodes belonging to the same cell

The PBD condition is crucial to the analytical model beinﬂave an identical view of the rest of the network. When one

dgveloped in this paper. It in_cludes the pc_>ssibi|ity thab Whode senses the medium idle (resp. busy) so do the other nodes
given co-channel cells can be independent, i.e., two conafla

S in the same cell and we say that a cell is sensing the medium
cells can be S0 far_apart that activities in one cell do NRie (resp. busy). Since the nodes are saturated, wheneedr a
affect the activities in the othe_r cell. However, if ‘V_VO _eell senses the medium idle, all the nodes in the cell decrement
are dependent, the PBD condition rules out the possibliy t their back-off counters per idle back-off slot that elapses
only a subset of nodes in one cell can sense a subset of notﬂ

&f local mediurfl and we say that the cell is in back-
in the other cell. We note that, in a dense deployment of APosﬁ ;
. ! o . If the nodes were not saturated, a node with an empt
due to small cell radiu® and R., >> R, the PBD condition W " w Py

Id hold. at least imatelv. The PBD dition i MAC queue would not count down during the “medium idle”
would hoid, at feast approximately. 1he condition 'S\ﬁ?riods. We say that a cell transmits when one or more nodes
geometric property that enables modeling at the cell leve

since, if the PB.D condition holds, the relative Ic_>cat|ons of 4Nodes belonging to different co-channel cells can haveufit views of
the nodes within a cell do not matteAlso, any interferer the network activity.



O O Q G Q Q Q Q G subsets of neighboring cells can attempt together. Thiddvou

allow us to compute the collision probabilities accounting
for synchronous inter-cell collisions. We combine the abov
through a fixed-point equation and compute the throughputs
@ (b) : . ) : )
using the solution of the fixed-point equation.
Q Q The above two-stage approach is basedlon [10]. However,

O O 4 3 Q Q our model of transmission attempt process is simpler (see
the discussion following Equationl 2) and the closed-form

O Q Q ‘%2 Q Q Q expressions for collision probabilities and cell througtsthat

7 we derive are new. We define the followind [7]:

1
O O > n; := number of nodes in Cell-
2/ 3 6 7

© B; := (transmission) attempt probability (over the back-off
slots) of the nodes in Cell-

d
@ ~; := The collision probability as seen by the nodes in Gell-

Fig. 3. Examples of multi-cell systems: (a) four linearlyagéd co-channel (Conditioned on an attempt being made)
cells, (b) five linearly placed co-channel cells, (c) sevemagonally placed

co-channel cells, and (d) seven co-channel cells with aitramnp cell topology. More precisely, IetAl(i) and Ol(i) denote the cumulative
The cell level contention graphs have also been shown whheralark dots . . .
represent the cells. Neighbors have been joined by edgesexample (), Number of attempts and collisions of a node (any node) in-Cell

the pairs{1, 2}, {2,3} and{3, 4} are dependent and the pafs,3}, {1,4} i up to the thel'” back-off slot boundary. Then, the attempt
and{2,4} are independent. probability 3; and the (conditional) collision probability; of
the node are defined as:

in the cell transmit(s). When two or more nodes in the same . Al(i) . Cl(i)
cell transmit, arintra-cell collision occurs. Bi == lim =

. . : . . 100 s A0

Consider Figurg 3(h). There are periods during which all the !
four cells are in back-off. We model these periods, when noneNote thatg; is the attempt probability of the nodes in Cell-
of the cells is transmitting, by the stafie where ® denotes ;, irrespective of whether the nodes in the other cells can
the empty set The system remains in State until one or also attempt. This is a simplification and can be viewed as
more cell(s) transmit(s). When a cell transmits, its ne@kb an extension to thelecoupling approximatiomntroduced in
sense the transmission after a propagation delay and tfiey d¢5]. Using the decoupling approximation and the analysis in
medium access. We then say that the neighborsblreked [7], the attempt probability; of the nodes in Celi; Vi € A,
due to carrier sensing. However, two neighboring cells caan be related to; as
start transmitting together before they could sense edudr'st
transmissions resulting isynchronous inter-celtollisions. K
Note that intra-cell collisions are always synchronous and g, — G(yi) == Lty 47 (1)

K3 /YZ

hidden node collisions are mostisynchronousDue to the bo +Yiby -+ Yok A+ b

PBD condition, there cannot be hidden node collisions. where K denotes theetry limit andby, 0 < k < K, denotes
We observe that a cell can be in one of the three statg$e mean back-off sampled aftercollisions.
(i) transmitting, (ii) blocked, or (iii) in back-off. Modelg  The First Stage: When Celli and some (or all) of its
the synchronous |nter—cell_coII|S|ons requires a disctete neighboring cells are in back-off their (cell level) attemp
s!otted model. However, thIS Would_requwe a large Stat@epaprocesses compete until one of the cells, say, Gell- €
since the cells change the_lr states in an asynchronous mangge {i}, transmits. Since, we ignore inter-cell collisions in
For example, consider Figufe 3(a) and suppose that Cefla first stage, the possibility of two or more neighboring
1 starts transmitting and blocks Cell-2 after a propagatios attempting together is ruled out. Thus, the first stage
delay. However, Cell-3 is independent of Cell-1 and cant stgj¢ 5,y model is similar to the exclusion model proposed in
transmlttlng at any instant durmg Cell-1's transmlsstShus,_ [15] and [12]. When Celk- wins the contention, we say that
the evolution of the system is partly asynchronous (Sin¢€nas pecomeactive When Celli becomes active, it gains
state transitions occur asynchronously) and partly SYOT@US e control over its local medium by immediately blocking it
(since both inter-cell and intra-cell collisions are swm’mug). neighboring cells that are not yet blocked. We assume tleat th
To capture both, we follow &wo-stageapproach. In the first e ntil Cells goes from the back-off state to the active state

stage, we ignore inter-cell collisions and assume thatdihoc js exnonentially distributed with meag. The activation rate
due to carrier sensing is immediate. We develop a continuoys;q given by :
X3

time model along the lines of_[9] to obtain the fraction
of time each cell is transmitting/blocked/in back-off. In the 1—(1—B)m
second stage, we obtain the fractionstiftsin which various Ai= ——

)

g



whereo denotes the duration of a back-off slot (in seconds)
and1 — (1 — g;)™ is the probability that there is an attempt
in Cell-i per back-off slot. Notice that we have converted
the aggregate attempt probability in a cell per backsbdit

to an attempt rate over back-daffne Also notice that, our
assumption of exponential “time until transition from theck-

off state to the active state” is the continuous time anatogfu
the assumption of geometric “number of slots until attempt”
in the discrete time models dfl[6] and| [7].

Discussion 5.1:In [10], the authors use an unconditional
activation rate\ over all times as well as a conditional
activation rateg over the back-off times and relate the two
rates through a throughput equation which makes their model
unnecessarily complicated. The activation rate our model
is conditional on being in the back-off state. Thus, we use a
single activation rate and our model is much simpler thah tha Fig- 4. The CTMC describing the cell level contention for floer

- . . . linearly placed cells given in Figufe 3[a).
of [10]. Our modified approach can also be applied to simplify
the node level model of [10]. ]
When Celli becomes active, its neighbors remain blocke

Qre also irtd4 join the set 4) at a rate);. Similarly, Cell,

due to Cellé until Cell-i’s transmission finishes and an |dIeZ. € A, leaves the setd (and its neighboring cells that are

DIFS period elapses. The active periods of Gedke of mean qlocked only due to Celi-leave the sef.4) to join the set

d”ra“o.”i;- When Ce”%. becomes active through a Succe.SSﬂ?/{A at a rateu;. In summary, the procedsA(¢), ¢ > 0} has the
transmission (resp. an intra-cell coII|_S|on) Its nelgkd)cafrr?a|n structure of a Continuous Time Markov Chain (CTMC). This
t_)IOCked due to C?Ii-.for asuccess timd’, (resp. acollision CTMC contains a finite number of states and is irreducible.
time TCE' Hence’m is given by Hence, it is stationary and ergodic.
The set of all possible independent sets which constitutes
1 (mﬂi(l - ﬂi)ni1> @) the state space of the CTMLA(t),t > 0} is denoted byA.
7% L — (1= g ° For a given contention grapbd can be determined. For the
N (1 ~niBi(l = ﬂi)m—l) T @) topology given in Figur¢ 3(p), we hawe’ = {1,2,3,4} and
1= (1= )™ ¢ A = {2, {1},{2},{3},{4},{1,3},{1,4},{2,4}} where we
i1 recall that® denotes the empty set. The CTMCL(¢),¢ > 0}
where% is the probability that Celi-becomes corresponding to this example is given in Figlife 4. It can be
active tr}rgu(glh_aﬂé&clcess given that it becomes active checked that the transition structure of the CTNA(?), ¢ >
' Or} satisfies the Kolmogorov Criterion for reversibility (see

Due to carrier sensing, at any point of time, only a s : G
. - 124]). Hence, the stationary probability distributiafid), A €
A (c N) of mutually independent cells can be aCtIViA, satisfies the detailed balance equatiofisz U,

together, i.e.,A must be anndependent sefof vertices) of
the contention grapy. From the cell level contention graph .
we can determine the set of celi that get blocked due to m(A)A; = m(AU{i})pi,
A, and the set of cellé/4 that remain in back-off. Note that 5 the stationary probability distribution has the form
A, B4 andl/4 form a partition of\/, i.e., A, B4 andi/4 are
pairwise disjoint andV' = AU B4 UU4.

m(A) = <

We take A(t), i.e., the setd of active cells at time, as the
state of the multi-cell system at tinte It is worthwhile now
to mention thansensitivityresult of Boorstyn et al[ 9] which

11 pi> m(®), (VA€ A) (4)

€A

NEDY) ; ; P
says that the product-form solution provided by their mOdé\g]r?r:qplja.ti_orl\” and(®) is determined from the normaliza
is insensitive to the packet length distribution and degen
only on the mean packet lengths. Applying their insengitivi
argument, we take the active periods of Gelle be i.i.d Z m(A) =1 ()
exponential random variables with megn Then, at any time AeA

t, the next state and the rate of transition to the next stateGsnvention:A product]] over an empty index set is taken to
completely determined by the current staté). For example, be equal to 1.

Cell-j, j € Uy, joins the setd (and its neighboring cells that The Second StageWe now compute the collision proba-

5 . , bilities ~,’s accounting for inter-cell collisions. Note that
For theBasic Accesgresp.RTS/CT$mechanism{s corresponds to the

ime DATA-SIFS-ACK-DIFS (resp. RTS-SIFS-CTS SIFS-DARIFS-ACK- IS conditional on an attempt being made by a node in Cell-
DIFS) andT. corresponds to the time DATA-DIFS (resp. RTS-DIFS). 1. Hence, to computey;, we focus only on those states in



. ZAGA: 1€EUA T‘—(A) 1 - (1 - ﬁi)ni_l HJGNI :jGHA(l - Bj)n]

Vi (Vi e N) (6)
ZAGA: €U W(A)
which Cell< can attempt. Clearly, Cellcan attempt in State-
A iff it is in back-off in StateA, i.e., iff i € U4. In all B
such states a node in Céllean incur intra-cell collisions ©i = i On, singlecel
due the other nodes in Cell-Furthermore, some (or all) of _ (1+ pi)Ai O, singlecell (10)

Cell-i’s neighbors might also be in back-off in State-If A

a neighboring cell, say, Cejl- j € N;, is also in back-off and ©; divided by n; gives the per node throughpdt in

in State:A, i.e., if j € Uy, then a node in Cell-can incur Cell-, i.e.,§; = (2— (packets/sec).

inter-cell collisions due to the nodes in Cg¢ll-The collision Discussion 5.2:Equatior 1D is justified as follows. If Cell-

probability~; is then given by Equatidd 6 (appears at the top @ indeed independent of every other cell in the networks it i

the next page). A formal derivation of Equatioh 6 is providedever blocked and does not incur inter-cell collisions. The

in Appendix[A. we haver; =1 and©; = O, singiecer- HOWeVer, in general,
Fixed Point Formulation: Equation$ 246 ang; := A— can Cell-i gets blocked due to its neighbors for a fraction of time

express they;’s as functions of only thes;’s. Together with 1 — z; and remains unblocked for a fraction of time. The

Equatior1, they yield aiv-dimensional fixed point equationtimes during which Celi-is unblocked consists only of the

where we recall thaiV is the total number of cells. Th&- back-off slots and the activities of Celby itself. We approxi-

dimensional fixed point equation can be numerically soleed mate the aggregate throughput of Cglbver the times during

obtain the collision probabilities;’s, the attempt probabilities which it is unblocked, by©,,; singiccen aNd Oy, singlecell

Bi's and the stationary probabilities(.A)’s. In all the cases multiplied with z; gives the aggregate throughgit of Cell-

that we have considered, the fixed point equations yieldedthe multi-cell network. ]

unigue solutions. Clearly, Equatior_I0 is an approximation since the time
Calculating the Throughputs: The stationary probabilities wasted in inter-cell collisions have been ignored. Howgver

of the CTMC {/A(t),t > 0} can provide the fraction of time we prefer to keep the approximation because: (1) it is quite

x; for which Cell4 is unblockedA cell is said to be unblocked accurate when compared with the simulations (see Section

when it belongs to eithed or U4 4. Thus,Vi e N, V), and (2) it can be efficiently computed sin€s,, singiecen
follows from a single cell analysis and the as well asA;’s
T = Z m(A). (7) can be computed using efficient algorithmsl[25].

Complexity of the Model: In general, obtaining the state
space.A by searching for all possible independent segts

Definition 5.1: Let G;, « € N, denote the subgraph obtainedould be computationally expensive and the complexity grow
by removing Cell: and its neighboring cells iV; from the exponentially with the number of vertices in the contention
contention graply. For a given contention graph, let A be graph [25]. For realistic topologies, where connectivitythe

Ac A :icAuU

defined as follows: contention graph is related to distance in the physical ogw
efficient computation of4 is possible up to several hundred
vertices in the contention graph [25]. Thus, a cell level glod
A= Z (H pi) @) s extremely helpful in analyzing large-scale WLANs with
Ae A \ieA hundreds of cells since, unlike a node level model, eaclexert

Let A; denote theA corresponding to the subgragh. m N the contention graph now represents a cell.

An important observation which facilitates the computatio L-2r9e p Regime: Let 5 (resp.s;) denote the number of
of the z;’s is given by the following theorem. Maximum Independent SetSMISs) of G (resp. G;) (see
Theorem 5.1:The fraction of timex; for which Cell4 is Definition[5.1). Then, from Equatiorid 8 afdl 9, we observe

unblocked is given by that, asp; — oo, Vi € N, we havex; — % The quantity
(._.).
1 7 Ai . i = 71
Z; = %a VieN. (9) * Gni,singlecell

can be interpreted as the throughput of Geltormalized with
respect to Celk’s single cell throughput. Thus, as — oo for
all s € NV, the cells that belong to every MIS of the contention
graph obtain normalized throughput 1 and the cells that do no

Proof: See AppendiXB.
Let ©; denote the aggregate throughput of Geita given
multi-cell network and 1e©,,, singiccen denote the aggregate
throughput of Celk if it was an isolated cell containing

g nOd?S- Both®; and enusin.qlecell are in paCketS/SeC' We 6A maximum independent set of a graph is an independent sheajraph
approximate9; by having maximum cardinality.



TABLE | . L
SINGLE CELL RESULTS. COLUMNS 2-3 CORRESPOND Ton SaTuraten  condition holds. Nodes were randomly placed within thescell

NODES. COLUMNS 4-7 CORRESPOND TOT CP DowNLOADS WITHR STAs  The saturated case was simulated with high rate CBR over

n | sl 932 VAP T A AR 03T 6AT UDP connections. For the TCP case, we created one TCP
(pkts/sec) (pkts/sec) | (pkts/sec) || download connection per STA. Each TCP connection was fed
% . 0%86 g%-;i 8-82;2 8-8222 igg-gé igg-gg by an FTP source with the TCP source agent attached directly
3701077 23609 1 0.0533 1 00586 | 45609 75653 to the AI_D to emulate a local proxy server. T_he AP buffer
4 | 0.1473| 176.63 | 0.0528 | 0.0586 | 456.17 256.53 and the timeouts were set large enough to avoid buffer losses
5 [ 0.1812| 140.29 | 0.0531| 0.0586 | 456.05 456.53 and timeout expirations. The EIFS deferral and the delayed
6 102100 11589 | 0.0530] 0.0586] 456.10 | 456.53 [ ACK mechanism were disabled. Each case was simulated 20
7 | 0.2348| 9843 | 0.0536| 0.0586| 456.88 | 456.53 . h ¢ t simulated time” h
8 [ 0.2565| 8535 | 0.0531| 0.0586| 45607 | 45653 || UMES, each run for 200 sec of “simulated time . We report the
10 | 0.2927 67.11 | 0.0531| 0.0586| 456.02 456.53 results for “Basic Access”. Similar results were obtaingthw

“RTS/CTS”. We took 11 Mbps data rate and packet payloads
of 1000 bytes. The functionfSolve() of MATLAB was used

belong to any MIS obtain normalized throughput O. SimilafrOr solving theN-d!menS|onaI fixed point qquatlon.
Table[] summarizes the results for a single cell. Columns

observations have also been made_ i [11]. We further obsery:
that, asp; — oo for all i € A, only an MIS of cells can be Y3 (resp. 4-7) correspond to the saturated case (resp. TCP

download case) witm saturated nodes (resp. 1 AP and

active at any point of t.'me since cells thgt do not belqng thAs). The analytical results for the saturated case were
any MIS are never active. Since an MIS is always active, a

pi — oo for all ¢ € N, the normalized network throughput o%_taineo! usingL[7] a_md that for the TCP case were obtained
using [8]. These single cell results obtained from known
N analytical models serve as the basis of our multi-cell tesul
O := in (11) The analytical throughputs per-node (resp. of AP) in Column
i=1 3 (resp. Column 7) multiplied with the;’s obtained from our
is equal to the cardinalityt(G) of an MIS of G. a(G) is also multi-cell analysis provid_e the analytical throughputs-pede
called theindependence numberf G. Notice thata(G) is a (resp. of AP) in the multi-cell cases (see Equafioh 10).

measure ofpatial reusein the network. A. Results for the Saturated Case

B. Extension to TCP Traffic Tables IFIM summarize the results for the example multi-
We now extend the analysis of Sectibn V-A to the morgell cases depicted in Figurgés_3[a)-B(c), respectivelyerwh
realistic case when users access a local proxy server @Rch cell containa saturated nodes. Taldld V summarizes the
persistentTCP connections. Our extension is based on ttigsults for the example case given in Figure 3(d) when Cell-
single cell TCP-WLAN interaction model of[8]. The modell < i < 7, containsn; = i + 1 saturated nodes. Quantities

proposed in[[B] has been shown to be quite accurate whendgnoted with a subscriptsim” (resp. “ana”) correspond
the local proxy server is connected with the AP by a relajivefo results obtained fronms-2 simulations (resp. fixed point
fast wired LAN such that the AP in the WLAN is the bottle-analysis). In each case,. represents the throughput per-node
neck, 2) every STA has singlepersistent TCP connection, 3)0btained by taking; — oo, Vi € N. We report only the mean
there are no packet losses due to buffer overflow, 4) the T@a’lues for our simulation results. The 99% confidence iratlsrv
timeouts are set large enough to avoid timeout expiratiores dvere observed to be within 5% of the mean values.
to Round Trip Time (RTT) fluctuations, and 5) the delayed We show the plots corresponding to Tablé V in Figures
ACK mechanism is disabled. We keep the above assumpti@h@ndl6 which compare the collision probabilityand the
in this paper. throughput per nodé, respectively. In Figurels] 5 ard 6, we
In [8], the authors propose to model a single cell havingso show the relevant single cell results obtained fromeTab
an AP and an arbitrary number of STAs with long-lived TChB i.e., we show the results we would have obtained had the
connections by an “equivalent network” which consists of geven cells been mutually independent. Referring Tabis |1
saturated AP and a single saturated STA. “This equivaleditd Figure$15 and 6, we make the following observations:
saturated model greatly simplifies the modeling probleresin©O-1.) Collision probabilities (resp. throughputs) in the multi-
the TCP flow control mechanisms are now implicitly hiddegell scenarios are always higher (resp. lower) than theeeorr
and the total throughput can be computed using the satoratf@@onding single cell values (see Figuirés 5 lahd 6) because (a)
analysis” [8]. Using the equivalent saturated model of {Bg inter-cell collisions can be significant, and (b) due to iistell
analysis of Sectiof VZA can be applied to the case of persistd®locking, cells get opportunity to transmit only a fractioh

TCP connections witln; = 2,Vi € NV, time.
0-2.) Our analytical model is quite accurate (less than 10%
VI. RESULTS AND DISCUSSION error in most cases) in predicting the collision probaikeit

We carried out simulations usintg-2[26]. We created the and throughputs. However, our model always over-estimates
example topologies given in Figufe 3(a)-3(d). We chose cefle throughputs since the time wasted in inter-cell calfisi
radii and the distances among the cells such that the PBBve been ignored. Ignoring inter-cell collisions in thestfir



TABLE I

RESULTS FOR THEFOUR LINEARLY PLACED CELLS GIVEN IN FIGURE 04 : :
[BTA))wHEN EACH CELL CONTAINS n = 5 NODES e
le cell -~
Cell Vsim Yana Osim Oana (2 035 e 1
index (pkts/sec) | (pkts/sec)| (pkts/sec)
1 0.2351 | 0.2399 94.48 97.41 93.53 03 1
2 0.3005 | 0.3146 41.21 46.66 46.76 2
3 0.2999 | 0.3146 41.66 46.66 46.76 g oxsf 1
4 0.2359 | 0.2399 93.99 97.41 93.53 é
TABLE Il £ 02p 1
RESULTS FOR THEFIVE LINEARLY PLACED CELLS GIVEN IN FIGURE °
[BB)WwHEN EACH CELL CONTAINS . = 5 NODES 015 | 1
Cell Vsim Yana Osim Oana Oco o1r ]
index (pkts/sec) | (pkts/sec)| (pkts/sec) s g
1 [01882] 0.1897| 129.35 | 131.35 | 140.29 005 o S e s
2 0.3321 | 0.3975 8.69 8.64 0 Cell Index
3 0.1892 | 0.1925 123.35 126.41 140.29
4 0.3321 | 0.3975 8.72 8.64 0 Fig. 5. Comparing collision probability; for the example scenario
5 0.1884 | 0.1897| 129.31 131.35 140.29 in Figure[3(d) when Celi; 1 <4 < 7, containsn; = i + 1 saturated
nodes.
TABLE IV
RESULTS FOR THESEVEN HEXAGONALLY PLACED CELLS GIVEN IN ‘ ‘ ‘
FIGURE[3(C)]WHEN EACH CELL CONTAINS . = 10 NODES 350 | "5'25;'3;\‘53:; = |
infinite p appvo_ximalicn
Cell Vsim Yana esirn eana 900 300 - ot el b
index (pkts/sec) | (pkts/sec)| (pkts/sec) 3
1 0.2335 | 0.8896 0.003 0.02 0 é 250 - 1
2 0.3045 | 0.3158 31.97 32.35 33.56 g
3 0.3061 | 0.3158 31.93 32.35 33.56 g 200 - 1
4 0.3055 | 0.3158 32.05 32.35 33.56 s
5 0.3054 | 0.3158 31.86 32.35 33.56 %: 150 B
6 0.3070 | 0.3158 32.00 32.35 33.56 E)
7 0.3058 | 0.3158 31.95 32.35 33.56 "E 100 - B
TABLE V | |
RESULTS FOR THESEVEN ARBITRARILY PLACED CELLS GIVEN IN %
FIGURE[S(D)]WHEN CELL-i, 1 <4 < 7 CONTAINSn; =i + 1 NODES
0

Cell ng Ysim Yana Osim Oana 0o Cell Index
index ¢ (pkts/sec) | (pkts/sec)| (pkts/sec) ] ) ]
1 7 | 0.0669 ] 00666 32066 37576 349.94 Flg'é'ﬁ. Comparr]lng éhr&)u?hgu't <pe7r noﬂff(_)r the Exgmgl)le stcentago
2 3 | 0.1163| 0.1163| 216.19 | 219.65 | 236.09 In d'gurelz@ when Cetl; 1 <@ < 7, containsn; =+ 1 saturate
3 4 | 0.2764| 0.3280| 12.48 12.97 0 nodes.
q 5 | 0.3105| 0.3318 | 34.29 40.20 76.76
5 6 | 0.2505| 0.2585 | 83.77 84.92 77.26 S
6 7 | 0.3574 | 0.3787 | 28.67 32.40 32.81 distributions. For example, compare Tallégs Il . ell
7 8 | 0.3062] 0.3139| 56.87 59.21 56.90 || and Cell-4 severely get blocked if Cell-5 is introduced te th

four cell network given in Figurg 3(a).
stage of the model also over-estimates the fraction of tin®6.) The throughput of a cell cannot be accurately determined
spent in back-off. Thus, the collision probabilities arscal hased only on theumberof interfering cells. Consider, for
over-estimated. example, Figurgl5. Cell-3 and Cell-4 each have two neighbors
0-3.) The relative mismatch between the analytical model amiit their per node throughpugsare quite different. In partic-
the simulation is observed to be the worst for cells that iemaylar, §, > 65 even thoughns = 4 < ny = 5. This is due to
blocked most of the time. For example, consider the first rogiell-7 which blocks Cell-6 for certain fraction of time dog
of Table[IM which corresponds to Cell-1 in Figyre 3(c). Sinc@hich Cell-4 gets opportunity to transmit whereas Cell-# an
Cell-1 is dependent with respect to every other cell, it mista Cell-2 are almost never blocked and Cell-3 is almost always
very few attempt opportunities in the simulations. Thug thplocked due to Cell-1 and Cell-2. Thugpology plays the

corresponding simulation results have been averaged evgr ey role and heuristic methods based only on the number of
few samples and are not reliable. neighbors would fail

0-4.) Our analytical model correctly identifies the severel

blocked cells and works well with either equal or unequal- Results for the TCP Download Case

number of nodes per cell. Referring Columns 4-7 of Tablé | it can be seen that The
0O-5.) Throughput distribution among the cells can be very uikP statistics does not change with the number of STAs. Also,
fair even over long periods of time. Furthermore, introdtutt O-7.) The collision probability of the AP in a single cell with
of a new co-channel cell can drastically alter the throughpany number of STAs is approximately equal to the collision



TABLE VI

RESULTS FOR THEAP CORRESPONDING TOFIGURE[3(A)JWHEN EACH 03 : :
CELL CONTAINS 1 APAND n = 5 STAS o) £
le cell -~
Cell | Yoim, AP | Yana,AP | Osim,aP | bana,apP 2 oz | e ]
index (pkts/sec) | (pkts/sec)| (pkts/sec)
1 0.1038 0.1033 306.33 318.73 304.35 5
2 0.1560 0.1574 153.16 169.18 152.18 2 ozr M ]
3 0.1555 0.1574 153.06 169.18 152.18 3
4 0.1038 0.1033 306.41 318.73 304.35 & sl ]
TABLE VI 5 :3
RESULTS FOR THEAP CORRESPONDING TOFIGURE[3(B)] WHEN EACH % ol )
CELL CONTAINS 1 APAND . = 5 STAS
Cell Ysim,AP Yana,AP esim,AP eana,AP 900 0.05 1 ‘ ‘ :2: a
index (pkts/sec) | (pkts/sec)| (pkts/sec)
1 0.0728 | 0.0775 | 38121 | 387.16 | 456.53 0 o O - O B : g
2 0.1793 | 0.1950 75.16 85.62 0 o e T
3 0.0744 0.0832 340.24 346.47 456.53
g 83;22 83332 378512135 388576126 452 =3 Fig. 7. Comparing collision probabilityy for the example scenario
: : : : : in Figure[3(d) when each cell contains an AP ane- 5 STAs. STAs
TABLE VIII are downloading long files through their respective APs qiSiCP
RESULTS FOR THEAP CORRESPONDING TOFIGURE[3(D)]WHEN EACH connections.

CELL CONTAINS 1 APAND n = 5 STAS
600

T T
ns-2 simulation ——1

lytical E37<303
_Ce” VYsim,AP Yana,AP Gsim,AP Gana,AP Oco infinite p approa;?nyaltllct;
index (pkts/sec) | (pkts/sec)| (pkts/sec) 500 - single cell -

0.0610 0.0670 421.70 425.83 456.53
0.0604 0.0670 421.92 425.83 456.53
0.2010 0.2528 33.79 38.50 0

0.1561 0.1685 141.80 156.41 152.18
0.0987 0.1028 317.39 329.06 304.35
0.1551 0.1644 158.55 172.64 152.18
0.1061 0.1099 301.15 314.10 304.35

300

~N| O O B W[ N -

200 |

AP Throughput (packets/sec)

100 |

probability in a single cell with two saturated nodeshis
can be verified by comparing Columns 4 and 5 with Row 2
Column 2 in Tablé]l.
0-8.) The AP throughput does not change with the number of Fig. 8. Comparing throughput per nodefor the example scenario
STAs. In fact, the AP throughput with any number of STAs is i Figure[3(d) when each cell contains an AP ang- 5 STAs. STAs
. . .. are downloading long files through their respective APs qiSiCP

equal to the per node throughput in a single cell containit  .onnections.
saturated nodes with payload siZgcr-paratlrcr ici
whereLrcp_para and Lrcp—_ ack denote the size of TCP
DATA and TCP ACK packets. on the number of interfering APs but also on the fraction

Observationg-7 and O-8 are well-known and they form of time when the neighboring APs can cause collisions. In
the basis for the equivalent saturated model bf [8]. Obsienva general, collision probability does not grow as twice the
O-7 has led to the conclusion inl[3] that the collision probabilkumber of interfering APs.
ity of the nodes in a WLAN containing: mutually interfering ~ Referring Tabled VI-VIIl we extend the validity of the
(i.e., dependent) APs is equal to the collision probability equivalent saturated model of [8] as follows:
a single cell containin@m saturated nodes. Tables]VI-MIII O-10.) The equivalent saturated model bf [8] proposed in the
summarize the AP statistics for the topologies in Fig{ireg,3( context of a single cell, preserves its desirable propgrtie.,
[3(®) and[3(d), respectively. Since the AP statistics dods rib predicts the AP statistics quite well when extended to a
change with the number of STAs, we report the results withulti-cell WLAN that satisfies the PBD condition.
n = 5 STAs in each case. We show the plots corresponding to
Table[VIN in Figures[Y and]8 which compare the collisior Variation withp
probability v and the throughput per nodg respectively.  Till now, we have discussed the results corresponding to
Referring Table§ VI-VIIl, and Figurels] 7 ard 8, we concludghe payload size of 1000 bytes. We now examine how the
that the foregoing observations for the saturated case cafésults vary with the payload size. Figufés 9 10 depéct th
over to TCP-controlled long file transfers as well. Furtherey variation with payload size of analytically computed csitin
we generalize the conclusion off [3] as follows: probabilities and normalized cell throughputs, respetyivfor
0-9.) The collision probability in a WLAN depends, not onlythe seven cell network of Figufe 3[d) when each cell contains

Cell Index
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03 shown is the cell level contention graph assumed for the oré&tw
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Payload Size in bytes

- ation of collis babilities with pavioadze for th become independent if they are assigned different channels
£ 0. yanaton o i:OF;;LO%%)aWLgﬁSeggh peioats o I and the corresponding edge will be missing in the logical
saturated nodes. contention graph. Our objective is to determine the best,

among the three assignments, in terms of the normalized
n network throughpu® (see Equatioh11) and the fairness index
o o reported in [[2F7]. Considering fairness at the cell levek th
08 R fairness indexJ is given by [27]

.
07 p= 8=

. _
N(ZL, 2?)

1(’*_4 —

)

0.4

Normalized Cell Throughput

03

where we recall that; is the normalized throughput of Cell-
7. Note that,0 < J < 1, and higher values of imply more
. fairness.

0 50 1000 150 2000 250 3000 3500 4000 4500 5000 Observe that co-channel cells in the first assignment have
PayoadSienbtes topology as in Figurd 3(R). There are three subsystem of
Fig. 10. Variation of normalized cell throughputs with pagdl size co-channel cells each consisting of four cells. The infinite
for the seven cell network in Figufe_3]d) when each cell dosta p approximation predicts that, the two cells at the middle
n = 10 saturated nodes. (resp. at the end) for each subsystem of co-channel cells
would obtain normalized throughpuat % (resp. = %). The

n = 10 saturated nodes. From Figuids 9 10, we 0bseln\;(g"rmalized network throughput for the first assignmené is
that: and the fairness index i6.45. In the second assignment,

; . 1 :
0O-11.) The results are largely insensitive to the variation iﬁaCh Ci" r(])btalnhs norfmahﬁed throughputg. The nqrmgl|zr]ed
payload size. Moreover, as the payload size increases, e Vor ,t roug put for the secon as&gnmentl_ 1an t_e
normalized cell throughputs become closer to the normliz irness index id. Thus, the fairness has attained its maximum

throughputs under the infinite approximation, i.e., they in the second assignment. However, this assignment is not

become closer tor; = 2y = l.as = 0.2y = g = desirable since® for this assignment is onl¢ of © in the

L as = #7 = 2. Hence, except for very small payloaoflrst_as&gnment.Inthle third assignment, each cell obtains
alized throughputs 5. The normalized network throughput

37 3
or the third assignment i§ and the fairness index is equal

sizes, the infinitep approximation can be expected to provid
fairly accurate predictions. Furthermore, for sufficigriirge . ) i

y P yrierg to 1. Clearly, the third assignment is the best one among the
three.

payload sizes, we hav@ ~ a(G).
VII. A SIMPLE DESIGN EXAMPLE The above design example indicates that for relatively

We consider a 12-cell network as shown in Figuré 11 arminaller networks, we could apply our analytical model to
apply our throughput model to compare three different cenrexamine all possible assignments. The infipitgpproximation
assignments as shown in Figufes 12(a)-12(c). Notice theat #tould provide fairly accurate comparisons among the assign
“logical” contention graphs for the three assignments ig- Fi ments and the fixed point analysis could be applied to obtain
ures[12(g)-12(t) are different from the “physical” content more accurate comparisons. However, the fixed point arslysi
graph of the network shown in Figute]11 which is based amould require more computation. Furthermore, any objectiv
the physical separation among the cells. Two dependerst ceither than the ones taken above could be considered.

0.2

0.1

0
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@ () © and apply the. z_; algorithm which consists of the following
steps [[28]:

Fig. 12. Comparing three channel assignments for a 12-etllork: The . . ) )
“logical” cell level contention graph are also shown for assignment. 1. Begin withp; ; € (0,1),Vie N,j=1,2,--- , M, such

thatp, - 1 = 1, wherel is the M-dimensional vector
with all components equal to 1.
VIIl. A PPLYING THEANALYTICAL MODEL ALONG WITH A 2. Update the probability vectors of cellVi € N, as
LEARNING ALGORITHM

In the 12-cell network of Figurle 11, with 3 non-overlapping
channels, we need to examifé® possibilities to determine pi(k+1) =p;(k) +b U(C(k))(‘sci(k) _pi(k)) ’
the optimal assignment. It is also not clear if the normalize . . .
network throughput for the 12-cell network can be actually ~ Whered; denotes thel/-dimensional probability vector
more than 6 with some other assignment. Under the infinite  With unit mass on Channgland0 < b < 1.
p approximation, the maximum value @ is equal to the  The parameteb is called thelearning parameteror the
maximum independence number over all possible logical castepsize parametewhich determines the convergence prop-
tention graphs. Clearly, the problem of finding an assigrntmeerties of the algorithm; with smallér convergence is slower
that maximize® is NP-hard and, in general, it is not desirabléut the algorithm may not converge to the desired optimum
to examine all the possibilities. if b is not small enough[[28]. Notice that, to ensure non-
We now demonstrate how our analytical model could beegativity of the probability vectors after every updatehwi
applied along with a Learning Automata (LA) algorithmany b € (0,1), the sum utility U must satisfy0 < U < 1.
called the Linear Reward-Inactiofl._;) algorithm [28] to To maximize® = Zfil x;, we take theaverage normalized
obtain optimal channel assignments. For every ¢efl N/, network throughput
we maintain an}M -dimensional probability vectop, where
M denotes the number of available channels. The learning 1 XN
algorithm proceeds in steps. Lét= 0,1,2,--- be the step Ug == ~ sz (13)
indices. At each step, a channel is selected for Céll: € N, i=1

according to the probability distribution as the sum utilityU. Note that,0 < Ug < 1. Other utility

functions can also be considered provided that U < 1.
p;(k) = (pi,l(k)vpi,z(k), e ,pi,M(k)), Define
where
P = (p17p27 e 7pN)

pi,;(k) == the probability that Channgl-is selected for

Cell- at stepk. Using the terminology of[[28], the super vect® will

be called astrategy for the channel assignment problem.
Let c¢(k) = (ci(k),ca(k),--- ,cN(k)) be the channel A strategy P such that,vi € N, p;; = 1 for some j,
assignment at step, where j= 1, 2,---, M, will be ca!led apure strategy A strategyP
that is not a pure strategy is calledrixed strategyUnder the
L algorithm,{P(k), k > 0} is a Markov process with the
ci(k) = the channel selected for Cellat stepk. pure strategies as the only absorbing states. Thus, iniggact
the Li_; algorithm always converges to a pure strategy rather
than to a mixed strategy [28]. Furthermore, by Theorem 4.1
of [28], the Lr_; algorithm always converges to one of the
Nash equilibria Thus, in practice, channel assignment by the
Lg_; algorithm always provides an assignmetitwhich is
one of theNash equilibria in pure strategieis the sense that

Ue) = 3 ulai(c)), (12) U(e") > Ule),

=1

Given a channel assignmenf we can obtain the logical
contention graphg(c) and applying our throughput model,
we can compute the normalized throughputc) of every
cell ¢ with the assignment. We define thesum utilityfor an
assignment by

wherew(-) is some suitably definemhcreasing concavéunc- for all ¢ that differs fromc* by exactly one element, i.e.,
tion. For a givenu(-), we compute the sum utility at stép changing the channel of one of the cells in the assignraént
by does not increase the utility.
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Fig. 13. Evolution of the average normalized network thiqug Fig. 14. Evolution of the average normalized network thiqug
Ug under theL p_; algorithm with A/ = 3 channels and = 0.01 Ug with M = 2 channels,b = 0.01, andp;; = p;2 = 0.5, i =
for the 12-cell network in Figure11. 1,2,---,7 for the 7-cell example in Figufe 3{d). In this example, the

Lgi_ 1 algorithm converges to a global optimum.

A. Results for Channel Assignment by thg_; Algorithm
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il |
il

Figure [I3 shows the evolution of the average normal-
ized network throughpul/g under theLr_; algorithm with
M = 3 channels andb = 0.01 for the 12-cell network
in Figure[I1. We bagan with uniformnbiasedprobability
vectorsp, = (+,1 1), Vi € N. The algorithm converged

0.6
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3733
to the assignment; = ¢ = ¢cg = l,¢4 = ¢7 = ¢c12 =
. 02
3,3 = ¢c3 = ¢c5 = cg = ci9g = €11 = 2. Notice that
_ 2 i S
Ug coverges t.O§.WhICh cor_responds t® = 8. It can be | EvobionofAvrage Neork gt ——
verified that this is the maximum pOSSIbIe value tlatcan %0 7000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Iteration

take for the given network with 3 channels. We found that
the L_R*I_ algorithm glways_ CO”Verg?S toa gIObaI_IY optimum Fig. 15. Evolution of the average normalized network thiqug
solution if started with uniform unbiased probability vect Ug with M = 2 channelsp = 0.01, andpi1 = pi> = 0.5, i =
and ifb is sufficiently small. However, starting with probability ~ 1,2, -+ , 7 for the 7-cell example in Figufe 3{d). In this example, the
. . . . L r_ 1 algorithm converges to a local optimum.

vectors that are highlpiasedtowards some assignment or if

b is not small enough we do not obtain a globally optimum
solution. We demonstrate this through Figured 14-17 for the

7-cell example in FigurE 3(H) witti/ = 2 channels. IX. A SIMPLE AND FAST ALGORITHM FOR MAXIMIZING
AGGREGATETHROUGHPUT

Begining with unbiased probability vectors ahe- 0.01 the
algorithm may converge to a global optimum with ©) = We observe that thé ;_ ; algorithm takes a large number of
1 or © = 7 (Figure[I4). In Figuré_15, we show that, withiterations to converge and guarantees covergence onlysh Na
b = 0.01, the algorithm may also converge to a solution thaquilibria. The Linear Reward-Penalty. £_p) algorithm of
is not a global optimum. In fact, for the case in Figlré 1922] and thesimulated annealinglgorithm of [23] guarantee
the algorithm converges to the Nash equilibriegin= ¢c; = convergence to a globally optimum solution as the number
cs = c¢ = 1,c3 = cqy = ¢y = 2. With b = 0.001, and begining of iterations goes to infinity. Agreedyversion of simulated
with unbiased uniform probability vectors, we observed thannealing algorithm in[[23] is relatively faster but stifikes
the algorithm always converges to a global optimum. With large number of iterations to converge and guarantees
b = 0.001, the algorithm converges to a global optimum eveconvergence only to locally optimum solutions. To maximize
when we begin with probability vectors biased towards thtte normalized network throughp® we now propose a
assignment; = co =c¢5 = cg = 1,¢3 = ¢4 = ¢; = 2 (Figure simple and fast decentralized algorithm which can be easily
[1d). However, when the initial probability vectors are High implemented in real networks. We form a contention graph
biased towards the assignment=c; = c5 = ¢ = 1,¢3 = G in which every completely dependent pair of cells are
cy = ¢7 = 2, the algorithm converges to the biased assignmemighbors (since we have not yet assigned channels) and our
which is not a global optimum (Figufe 11.7). objective is to transfornG to G(¢) by an assignment so



after M — 1 steps. Then, we have = Z;‘i}l Nj+a(Gr-1)

1 | since, for anyj, 1 < j < M —1, cells that have been assigned
WWWMM_ Channelg, are independent. Suppose now that the channel
of a cell on Channej; ;7 # M, is changed to Channél-
k # j. Then the aggregate normalized throughput of the cells
on Channelf decreases by 1 but the aggregate normalized
o8 fit throughput of the cells on Channklean increase by at most
1. Hence,© cannot increase. Suppose that the channel of a
04 cell on Channeld/ is changed to Channél-1 <1 < M — 1.
Clearly, the cell on Channél{ is dependent w.r.t. at least one
02 of the cells on Channdlsince theN; cells that are already
on Channel; 1 <1 < M -1, form a maximal independent
0 ,_ Evolution of Average Network Thioughput —+— set. Hence, the aggregate normalized throughput of the cell
0 50000 100000 150000 200000 250000 .
Heraton on Channel- does not change but the aggregate normalized
throughput of the cells on Chann&f- can only decrease.

Fig. 16. Evolution of the average normalized network thigug Hence,® cannot increase by changing the channel of one
Ug with M = 2 channels,b = 0.001, andp11 = p21 = p32 = fth I
paz = ps1 = pe1 = pr2 = 0.8 for the 7-cell example in Figufe 3{d).  © the cells. u

In this example, thel g_ ; algorithm converges to a global optimum.
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Implementation: MISA can be implemented in a decentral-
ized manner as follows. APs sample random back-offs using a
contention window/ and contend for accessing the medium
using Channel-1. When an AP wins the contention it keeps
transmitting broadcast packets separated by Short Insanér
Space (SIFS) for some duratidh >> ¢W where we recall
os Fif that o is the duration of a back-off slot. This emulates the
infinite p situation since and AP after wining the contention
04 does not relinquishes the control over its local medium. We
had observed that, ag — oo, Vi € N, only the cells that
02 belong to an MIS obtain non-zero normalized throughputs.
But this holds only in arensemble averagsense. If an AP,

. . Evolution of Average Network Throughput —+— after wining the contention, does not relinquishes the rabnt

0 10000 20000 30000 40000 "Zro:t:)oon 60000 70000 80000 90000 100000 OVGI' ItS Iocal medlum, In a pal’thUlmmp'e patha max'mal

independent set of APs (which may not be an MIS) would

Fig. 17. Evolution of the average normalized network thitug grab the channel during’. This is not surprising since with

;JE ":"'t;‘s le ;612 ih;:;i'so'l?g—foro'tﬂgl%_igﬁ oxamplo h Figuie ). Infinite pi's, the CTMC{.A(t), ¢ > 0} becomes absorbing with

In this example, thel z_; algorithm converges to a local optimum.  the maximal independent sets of cells as the only absorbing
states and we cannot expect the time average to be equl to the
ensemble average.
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that a(G(c)) is maximized. As noted in Observatidd.11,
for sufficiently large packet sizes, we haWex~ a(G). Hence, At time T, APs that could transmit consecutive broadcast

maximizing (G (c)) would maximize®. packets stop contending until timg/ — 1) x 7" and APs

Maximal Independent Set Algorithm (MISA) : We pro- that remain blocked switch to Channel-2, sample fresh back-
pose the following channel assignment algorithm: offs and keep contending unti?7" and so on. APs that

(1) Choose anaximalindependent set of cells, assign thememain blocked throughout the duratiod/ — 1) x T' stick
Channel-1 and remove them from the graph. to Channeld/. Thus, in every time duratiofl’, a maximal

(2) Increment the channel index and repeat the procedimdependent set of APs would be assigned a channel. Normal
on theresidualgraph until one channel is left. network operation can begin after tim@/ — 1) x 7. In

(3) Assign ChannelM to all the cells in the residual graphaddition, if there is a central controller to which the APs
after M — 1 steps. can communicate, MISA can be repeated several times and

Notice thatMISA takes only\/ steps wherel/ denotes the the central controller, which obtains the global view of the
number of available channels channel assignments, can choose the best among the sslution

Theorem 9.1:The channel assignments by MISA are Nasprovided by MISA. In absence of centralized control, MISA
equilibria in pure strategies for the objective of maximgi can be invoked periodically. MISA can be easily implemented
normalized network throughput as — oo, Vi € V. in real networks in a completely decentralized manner if the

Proof: Suppose thatV; cells are assigned Channgin number of channels for every AP is the same and known.
Steps, 1 < j < M — 1. Let Gy;—1 be the residual graph MISA also requires loose synchronization among the APs.



X. CONCLUSIONS ANDFUTURE WORK

[17]

In this paper, we identified a Pairwise Binary Dependengs)
(PBD) condition that allows a scalable cell level modelirfig o
WLANSs. The PBD condition is likely to hold at higher PHY 119
rates and denser AP deployments. We developed a cell level
model both under saturation condition and for long-livedPT C[20]
transfers. Our analytical model was shown to be quite ateura
insightful and capable of comparing few design alternative21)
Thus, we believe that our modeling framework is a significant

step toward gaining “first-cut” analytical understandinfy

%22)

WLANSs having a dense deployment of APs. We demonstrated
how our analytical model could be applied along with thg&3]

Linear Reward-Inaction learning algorithm for optimal ohal

assignment. We also proposed a simple decentralized alga;

rithm called MISA which can provide channel assignmentg5]

that are Nash equilibria in pure strategies in only as magyysst

as there are channels. In this paper, we considered margnizi
the normalized network throughput. Developing simple arigs]

practical algorithms for general objective functions isopit
of our ongoing research.
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APPENDIXA
DERIVATION OF EQUATION [G

Consider a tagged node in CellLet

B

+(T) : number of attempts made by the tagged node up to fime
5(T) : number of collisions as seen by the tagged node up to fime
AA(T) : number of attempts made by the node in Stdtep to timeT

(2

(
CA(T) : number of collisions as seen by the tagged node in Statg to timeT
(

Q

K2

A(T) : number of back-off slots in Cellin State:A up to timeT

iS¢l

K2

Then, we have

Yi

CA(T)
_ A — A i
Th—n>1<>o T Z CAT) Th—I>noo T Z BIT) x BA(T)
lim Ci(T) _ AcA icuy _ AcA icua
T—s o0 A;(T) L A A A-ZA(T)
Amoz o D AD mm o Y BAT) < 7
AcA :icla AcA :icla E

AGA €U

( D
S (o 52 ) < (e, )
( (T)

AGA €U
. BAT) o ANT . CAMT)
Z Thglm T x Thi{loo B'A(T) x T1£>noo A'A(T)
AeA ity ’ ’

S () < ()

AEA:iGL{A
> (%) < (1—(1—&-)”*1 Il (1—/3.»"]')
JEN: 1 jEUA

AeA :icua
Z <@) X By

AcA :icua

> w(A (1 —@=-g)mt I a- ﬁj)"j>
JEN; 1 jEUA

AGA: €U
> w4
Ac A icly

(14)

where the last but one step follows from the facts that: (@ time spent in Statet up to timeT is equal tor(A)T and

w(A)T

if Cell-i is in back-off in Stated, then B/(T) = “22= (ii) the second limit within the brackets in the numeratsrtie

o ’

long-run fraction of back-off slots in Statd-in which the tagged node attempts which is equabtarrespective of Statet
given that Cell is in back-off in State4, and (iii) the third limit within brackets in the numerata the long-run fraction
of attempts made by the tagged node in Stdtthat result in collisions and depends on the set of neightiatsare also in

back-off in StateA.



APPENDIXB
PrROOF OFTHEOREM[G.]

Solving the balance equations for the CTMA(¢),t > 0} (Equatiorl#) together with the normalization equation, \veam

n(®) = = % : (15)
> (I1+)
Ac A \icA
Equation Y can now be expanded as
T = oA+ D> w4 (since ANU4 = D)
AcA :icA AcA :icuy
= Z (H Pj) m(®) + Z (H Pj) m(®) (by Equatior %
Ac A :ica \JEA AcA :icu, \JEA
1 .
N Z (H pj) + Z (H Pj)} (by Equatior 1B
[Ac A :ica \JEA Ac A :icu, \JEA

Al ) s ()
:AeA: I€A, ANN;=d \JEA Ac A AN({i}UN;)=d \JEA
> (Hm)+ )3 (H)] 1)

Ac A AN{i}=®, ANN;=0 \JEA Ac A AN({iYUN;)=d \JEA

where the fourth step follows from the facts that: (i) if Gelis active, then none of its neighbors can be active, and (i) if
Cell-; is in back-off, then neither Cell-nor any of its neighbors can be active. Observe now that,rttlegendent sets @f;

are also independent sets@fThus,A; can be obtained by restricting the summation in Equadtion @ity those independent
sets ofG that do not contain Cell-or any cell in\, i.e.,

m W) s )

Ac A AN({iYUN;)=d \EA Ac A An{i}=3 andAnn; =3 \i€A

where the second equality follows from the fact that uniorvad sets will be equal to the empty set iff each of the sets is an
empty set. Applying Equatidn 1.7 in the last step of Equalibhvie obtain Equatiof]9.
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