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Abstract— We propose a linear network coding scheme to
disseminate a finite number of data packets in arbitrary net-
works. The setup assumes a packet erasure channel, slotted
time, and that nodes cannot transmit and receive information
simultaneously. The dissemination process is completed when
all terminals can decode the original data packets. We also
assume a perfect knowledge of the information at each of the
nodes, but not necessarily a perfect knowledge of the channel.
A centralized controller decides which nodes should transmit,
to what set of receiver nodes, and what information should be
broadcasted. We show that the problem can be thought of as a
scheduling problem, which is hard to solve. Thus, we consider
the use of a greedy algorithm that only takes into account the
current state of the system to make a decision. The proposed
algorithm tries to maximize the impact on the network at each
slot, i.e. maximize the number of nodes that will benefit from the
coded packet sent by each active transmitter. We show that our
scheme is considerably better, in terms of the number of slots to
complete transmission, than schemes that choose the node with
more information as the transmitter at every time slot.

I. INTRODUCTION

Network coding was introduced by Ahlswede et al [1].
Network coding considers the nodes to have a set of functions
that operate upon received or generated data packets. Today’s
networks constitute a subset of the coded packet networks, in
which each node performs two main functions: forwarding
and replicating a packet. A classical network’s task is to
transport packets provided by the source nodes unmodified. In
contrast, network coding considers information as an algebraic
entity, on which one can operate. Reference [1] showed that
network coding achieves multicast capacity. Work in [2] and
[3] showed that linear codes are sufficient to implement any
feasible multicast connection. Also, [3] provides an algebraic
framework for studying this subset of coded networks.

The problem of data dissemination has been widely studied
for routing scenarios, focusing on theoretical analysis, e.g. [6],
and protocol design, e.g. [5]. More recently, Reference [7]
studied the effect of using network coding showing signifi-
cant improvement over routing in terms of completion time.
Reference [8] provides a wireless medium access control com-
bined with network coding for multi-hop content distribution.
The authors focus on a protocol that uses a content-directed

 

Fig. 1. Network Example: J mobile devices require M data packets, but
not all of them can obtain them directly from the Base Station. Each node
can transmit to I nodes.

medium access control (MAC), through which transmission
priority is given to those nodes based on the rank of the
coefficient matrix associated with the coded content the node
holds, i.e. nodes with more information are given higher
priority.

This paper advocates for the combination of network cod-
ing and medium access strategies, similar to the idea in
Reference [8]. However, we illustrate that giving priority to
the nodes with the most information in the network is not
necessarily going to promote a faster dissemination of the data.
The main objective of this paper is to determine key ideas
to help in the development of ad-hoc protocols that combine
network coding and MAC considerations.

In particular, we focus on the problem of minimizing the
completion time to disseminate information assuming a time
slotted system. This problem can be stated as a scheduling
problem which is in hard to solve in general. We propose a
heuristic to solving the problem, in which the nodes with the
greatest impact on the network at each time slot should trans-
mit, instead of choosing the node with the most information.
Starting with a toy example for a linear meshed network, i.e.
nodes deployed in a line, different medium access strategies
are compared with each other in terms of the mean completion
time. We show that our scheme can obtain considerable gains
with respect to choosing transmitters in terms of their knowl-
edge. Even in small networks and moderate number of data
packets to transmit, roughly a twofold improvement can be
obtained. Although the examples and simulation results focus
on linear meshed networks, we emphasize that the description
and analysis of our algorithm is valid for any network and any



 

Fig. 2. Network Example: J mobile devices require M data packets, but
not all of them can obtain them directly from the Base Station. Each node
can transmit to I nodes.

starting distribution of (coded) packets of the nodes. In fact,
our analysis considers routing as a particular case. Also, the
problem of linear meshed networks is interesting in itself for
some applications, e.g. underwater acoustic networks [9] [10].

In order to understand the combination of network cod-
ing and medium access strategies, we assume the following
scenario: A set of J mobile devices wants to receive the
same number of M packets from the base station. The mobile
devices are lined up with different distances to the base station
as shown in Figure 1. The coverage of the base station is
sufficient to reach I < J mobile devices. Furthermore, we
assume that the devices with longer distances to the base
station will receive less information. For illustration we assume
that the packet receiving probability, after the base station
is broadcasting a number of coded packets, varies between
25% and 100% in our example with J = 8 and I = 4. The
question at this point is how to continue disseminating the
information, as different strategies will have an impact on the
overall number of transmitted packets to satisfy all mobile
devices. Let us discuss some simple possibilities.

• Base Station Centered: The base station continues the
transmission of coded packets until all stations in its
coverage range have understood the full information (all
100%). Note that nodes closer to the base station will
need less time to gather all information, but the base sta-
tion needs to continue to satisfy all devices in its coverage
range. Once all devices in the coverage of the base station
are satisfied, optimally the device with full knowledge
that is farther downstream (farther away from the base
station) will start to relay the information to the rest.
Network coding helps in this example to compensate for
packet erasures, as the base station does not need to know
about which packets have been received so far. It only
has to focus on delivering enough linear combinations to
the nodes. Thus, the base station transmits random linear
combinations until all devices have a sufficiently high
number to decode all packets.

• Progressive Base Station: The first mobile device that
receives the full information will start to transmit and
the base station will stop automatically. The mobile deice
with full information will act as base station until another
device farther downstream has all information. Obviously

this approach has the advantage that more devices can be
reached and that those missing information are now closer
to the source, which in turn will lead to lower packet loss
probability. This scheme will perform as well as or better
than the Base Station Centered scheme.

• Greater Impact at each time slot (Greedy Algorithm): For
the last approach, it is not the node closest to the base
that goes first, in general. We look at the received packets
so far by each mobile device to determine which nodes
should transmit. It is important to note that the received
packets in the example are uncorrelated , i.e. the packets
marked as 25 % are not necessarily contained in those
marked as 50%. This assumption opens the door for a
new strategy. For the following discussion we introduce
the term coding horizon, which is roughly the number of
devices one transmitting device can reach by broadcasting
information. The very first mobile device in the line has
the coding horizon of 4, while mobile device i (the last
one that received information from the base station) has
a coding horizon of 7 (Figure 2). In this simple example,
there is clearly a drift of information from left to right.
Note that in this example, devices with a small coding
horizon have collected more packets so far, but devices
with fewer packets have a larger coding horizon and will
therefore reach more neighbors. We observe that node i
has more impact on the network in this time slot because
it can benefit more nodes with the transmission of a
single coded data packet. Therefore, each relaying action
is divided into a backward healing and a forward dissem-
ination part. In case mobile device i is sending a packet,
obviously all devices to the right of it are seeing that
information for the first time (forward dissemination).
Simultaneously, there might be devices to the left that
are also interested in these packets (backwards healing).
This is the main component of our heuristic scheme.

Note that the Progressive Base Station scheme will perform
as well as or better than the Base Station Centered scheme.
For this reason, we will focus on comparing Progressive Base
Station scheme to the Greater Impact scheme.

The paper is organized as follows. In Section II, we discuss
motivating examples that illustrate benefits of using nodes
with the greatest impact to the network, instead of nodes
with the most knowledge. In Section III, we outline the
set up of the problem and present our scheme as a greedy
algorithm to solve a more general but hard problem. Section IV
provides numerical results for different scenarios. Conclusions
are summarized in Section V.

II. MOTIVATING EXAMPLES

Before starting with a formal analysis of the problem, let
us consider two examples that illustrate the advantage of 1)
choosing the transmitter node in order to provide the greatest
impact to the system at each time slot versus choosing the
node that has the most information, and 2) the advantage of
breaking ties between sets of transmitters with the same impact
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Fig. 3. Motivating Example 1: Data dissemination when choosing (a) node
with the most knowledge, and (b) node with the most impact
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Fig. 4. Motivating Example 2: Data dissemination exploiting parallel
transmission

on the network by choosing the one that includes nodes with
the least information.

• Example 1: Let us consider a network with no packet
erasures where each node wants to receive M data
packets. Each node can contact 2 neighbors to the left
and 2 to the right, as in Figure 3. The leftmost node
has all M packets while a middle node has M/2 linear
combinations. Figure 3 (a) shows the data dissemination
process in time if we choose the node with the most infor-
mation and that is further downstream (Progressive Base
Station scheme in the introduction). This scheme takes
5M
2 time slots to complete the dissemination. Figure 3 (b)

shows the same procedure when the node with the highest
impact is chosen at the beginning. We break ties without
considering parallel transmissions and trying to keep as

close a behavior to the first approach. This is a simplified
version of the Greater Impact scheme. Note that this very
naive scheme requires only 2M time slots to disseminate
all information to the nodes, just by choosing node 4 as
the first transmitter. Thus, choosing the node with the
most information requires 25% more time to complete
transmission in this simple example, even with a vanilla
version of our scheme. If we performed the dissemination
with a scheme similar to 1 of the introduction, 3M time
slots would be required to complete the transmission, i.e.
50% more time than choosing the middle node, which
has greater impact to the network, at the beginning.

• Example 2: We consider a similar setup as the previous
example. However, we study the case of a network with
K nodes in which only one node has all the information.
Assuming no packet erasures, choosing the node with
the most knowledge at every time slot will transmit all
of its information to its N nodes further downstream. At
this point, the node further downstream starts transmitting
to its N neighbors until those neighbors have all infor-
mation. This process is repeated until all nodes have all
data. The time to complete transmission T

(1)
c under this

scheme is
T

(1)
c = M

⌈
K − 1

N

⌉
. (1)

However, if we use a scheme that chooses the node with
the greatest impact to the network but that breaks ties
in favor of sets of transmitters that will benefit nodes
with the least information, there will be a considerable
reduction in the completion time. This happens because
the system will be able to take advantage of parallel non-
interfering transmissions. Figure 4 illustrates the effect of
such a scheme when N = 2 and K = 8. We observe
that every 3 time slots the same sequence of transmitting
events occurs. This is valid for larger K. Using this
insight, the time to complete transmission T

(2)
c under this

scheme is

T
(2)
c = 3(M − 1) +

⌈
K − 1

N

⌉
. (2)

It is simple to show that T
(2)
c ≤ T

(1)
c for every value of

K, N and M of importance. However, T
(2)
c is strictly

less than T
(1)
c for K > 4N . Let us define the gain G in

this case as

G =
T

(1)
c

T
(2)
c

=
M

⌈
K−1

N

⌉
3(M − 1) +

⌈
K−1

N

⌉ (3)

which represents how much more time it takes to com-
plete the dissemination when we use a scheme that
chooses the node with greater knowledge instead of trying
to take advantage of the spatial diversity. We can show
that G can be made arbitrarily large. For example,

lim
M→∞

G =
1
3

⌈
K − 1

N

⌉
(4)
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Fig. 6. Gain G when K is fixed and we change the number of transmitted
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for a fixed value of K. This is related to the case of a
fixed network and a large number of packets that need to
be disseminated. On the other hand, if we have a fixed
number of packets but our network is large with respect
to the number of packets

lim
K→∞

G = M. (5)

Figure 5 illustrates the gain for a fixed value of M when we
increase the size of the network. For this example, M = 20
and N = 1. Figure 6 illustrates the gain for a fixed network
size K when we vary the number of packets to be transmitted.

III. PROBLEM SETUP

Let us formalize our problem. In particular, we focus in
networks where each of the nodes has some information but
it wants all M data packets present in the network. In our
previous examples, we generally considered a single node, e.g.
node 1 in Figure 7, that wanted to transmit M data packets to
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Fig. 7. Network of interest. Each node i has at the beginning a vector space
Vi. If we used no coding, each vector space would be spanned by a subset
of individual packets Pa, ∀a = 1, ..., M where M is the total number of
packets to disseminate. If we use coding, each vector space is spanned by a
set of linear combinations of Pa, ∀a = 1, ..., M .

all other K−1 nodes in the network. Let us assume that time
is slotted. A data packet or coded packet is transmitted in a
single slot. Each node i has a vector space Vi(t) at time t. If
we used no coding, each vector space would be spanned by
a subset of individual packets Pa,∀a = 1, ...,M where M is
the total number of packets to disseminate. If we use coding,
each vector space is spanned by a set of linear combinations
of Pa,∀a = 1, ...,M .

We consider the network to be modeled as a hypergraph
G = (N,A), where N is the set of nodes and A is the set
of hyperarcs. This is an extension of the graph, in which
we are capturing the broadcast nature of the channel. A
hyperarc (i, J) represents a connection between a node i (the
transmitter) and a set of nodes J (the receivers).

We also assume a perfect knowledge of the information of
the nodes and that we can operate under different channel
conditions, and have different knowledge about the transmis-
sion channel. We assume a centralized controlled that decides
which hyperarcs should be active at each slot, i.e. which nodes
should transmit and to what set of receiver nodes, and what
information should be transmitted through each hyperarc.

In general, the decision made in a time slot will affect
decisions in the following slots. Let us consider the case
of no erasures first. We can think about this problem as
a scheduling problem, where we have a set of schedules
S from which we can choose s(t)at time t. Each schedule
s ∈ S is a set of hyperarcs that are active in that schedule,
e.g. s =

{
(i1, J(1)), (i2, J(2)), ..., (im, J(m))

}
. In general,

each schedule should only include hyperarcs with different
transmitters, i.e. ia 6= ib,∀a 6= b. However, we impose no
conditions on the set of receivers Ja of each node a. This
allows us to cause collisions in one node during a time slot if
this means a higher benefit for the system overall.

Let us define Bs
iJ(i)j

(t) as the benefit that node j gets from

node i when i uses hyperarc (i, J(i)) at time t. This benefit
Bs

iJ(i)j
(t) will depend on what coded packet node i transmits

at time t, say q
i,J(i)(t) ∈ Vi(t). Let us define Ws(t),q̄(t) at time

t as the weight for a schedule s(t) given that q̄(t) = [q
i,J(i)(t)]

coded packets are being transmitted by the active transmitters
of that schedule. This weight represents the impact of that
schedule over the system in that time slot, i.e. how many nodes
are seeing an increase in dimension of their vector space if that
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Fig. 8. Simulation Setup: linear meshed network, with each node with at most
N = 2 neighbors upstream (closer to node 1) and N = 2 downstream. Node
1 has all M data packets at the beginning. The objective is to disseminate
those packets to every receiver in the least amount of time.

schedule is chosen. We can define Ws(t),q̄(t) as

Ws(t),q̄(t) =
m(s(t))∑

i=1

 ∑
j∈J(i)

Bs
iJ(i)j

 (6)

where m(s(t)) is the number of hyperarcs in schedule s(t).
The objective is to find the sequence U(1), U(2), ..., that
minimizes the time to disseminate all data packets to all nodes
of the network, where U(t) = (s(t), q̄(t)).

If we assume that the network started with Wini =∑K
k=1 dim(Vk) and that at the end of the process the system

should have a total of MK packets, then the problem can be
formulated as

min
U(1),U(2),...

n

subject to
U(t) = (s(t), q̄(t)),∀t
s(t) ∈ S,∀t
q
i,J(i)(t) ∈ Vi(t),∀t, i, J(i)

MK −Wini =
D∑

t=1

Ws(t),q̄(t),∀D ≥ n

Solving this scheduling problem is hard even in the absence
of packet erasures or perfect knowledge of the channel. Let us
focus on a greedy algorithm that tries to maximize the impact
on the network at each time slot.

Let us use greedy algorithms that only takes into account
the current state of the system to make a decision, i.e. we try
to find the set of hyperarcs s that will have the node with the
most information or the set s that has greater impact in the
network in the current slot for the Progressive Base Station and
Greater Impact schemes, respectively. From its perspective, at
any time slot the network can be modelled as a set of nodes
N with a vector space Vi associated to each node i (Figure 7).

Let us define viJ as the vector selected for transmission in
hyperarc (i, J). This choice is made to maximize the impact
of the transmission from i to each of his receivers in J . One
way to state this problem is to choose viJ so that we increase

as much as possible the dimensions of the vector spaces of
each of the receivers. This is,

viJ = arg max
qiJ∈Vi

∑
j∈J

dim
({

Vj , qiJ

})
. (7)

Note that this is valid for network coding. The simplest way
of generating viJ is to create a random linear coded packet
over a large enough field size. This coded packet is generated
from the packets or linear combinations that span the vector
space of node Vi. If no coding is allowed, we have to impose
the additional constrain on qiJ to be a single packet, i.e. the
vector qiJ will have a very specific structure. At any time slot
we choose a schedule depending on the scheme we use.

The Progressive Base Station scheme will choose the sched-
ule such that

s∗PBS = arg max
s∈S

(
max

(i,J)∈s
|Vi|

)
(8)

and we break ties in favor of nodes that have more neighbors
with incomplete information. This approach is similar in its
essence to the work in [8], because it gives nodes with the
most information a priority to access the channel.

The Greater Impact greedy algorithm will choose as sched-
ule

s∗GI = arg max
s∈S

Ws (9)

where Ws is the weight for each schedule given the choice of
qiJ .

Similar to the full problem, Ws represents the impact of a
schedule s over the system in that slot. Thus,

Ws =
m(s)∑
i=1

 ∑
j∈J(i)

Bs
iJ(i)j

 (10)

where m(s) is the number of hyperarcs in schedule s, Bs
iJ(i)j

is the benefit that node j gets from node i when i uses hyperarc
(i, J(i)).

In the case of no erasures,

Bs
iJ(i)j

=

{
1 if Z

iJ(i)j

0 otherwise
(11)

where Z
iJ(i)j

≡ dim(Vj) < dim
(
{Vj , viJ(i)}

)
, j 6∈

J(k)∀k 6= i, j 6= ia,∀a
If we had perfect Channel State Information (CSI),

Bs
iJ(i)j

=

{
C

iJ(i)j
if Z

iJ(i)j

0 otherwise
(12)

where C
iJ(i)j

is the channel state of the channel from i to j

when i transmits through hyperarc iJ(i). C
iJ(i)j

= 1 if the
channel will cause no erasure, and C

iJ(i)j
= 0 otherwise.

If we have no CSI but we have knowledge (or estimates)
of the packet erasure probability, the Progressive Base Station
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scheme remains the same. For the Greater Impact scheme, we
can define

Bs
iJ(i)j

=

{
1− P

iJ(i)j
if Z

iJ(i)j

0 otherwise
(13)

where P
iJ(i)j

is the packet erasure probability of the channel

from i to j when i transmits through hyperarc iJ(i).
Note that this last approach is equivalent to choosing the

schedule s∗ that maximizes the average weight of the schedule,
i.e. s∗ = arg maxs∈S E[Ws]. Note that

E[Ws] =
m(s)∑
i=1

 ∑
j∈J(i)

E
[
Bs

iJ(i)j

] (14)

when

Bs
iJ(i)j

=

{
C

iJ(i)j
if Z

iJ(i)j

0 otherwise
(15)

and E
[
C

iJ(i)j

]
= 1− P

iJ(i)j
.

IV. NUMERICAL RESULTS

This section provides numerical examples that compare the
performance of two different network coding schemes we have
discussed so far. Namely, our proposed scheme which chooses
at each time slot the schedule that will provide the greatest
impact on the network (’Greater Impact’), and the scheme
that chooses a schedule based on the node that has the most
knowledge in the network (’Progressive Base Station’). We
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assume that the available schedules are the same for both
schemes. Also, we simplify the problem by only allowing
schedules that do not generate interference in some nodes,
which could be beneficial in some cases. Note that this is
not a restriction of the analysis but a means to simplify the
simulation. The comparison between the schemes is carried out
in terms of average time to complete transmission of M data
packets under different packet erasure probability scenarios.

Our results focus on linear meshed networks with one or
two neighbors upstream and downstream. The packet erasure
probability to the closest two neighbors is Pe1, while Pe2

corresponds to the packet erasure probability for the two
neighbors farther away. Finally, we assume that one node at
the edge of the network has all information at the beginning
and that all other nodes have no information (See Figure 8).

Figure 9 shows that the results obtained in Section II
for Motivating Example 2 match the simulation results. In
particular, we observe that our ’Greater Impact’ scheme has
the same completion time to that in T

(2)
c for N = 1 neighbor

upstream and 1 neighbor downstream, K = 10 nodes in the
network, and a range of data packets M . The ’Progressive
Base Station’ approach shows similar performance to T

(1)
c .

Figure 9 shows that a considerable reduction in completion
time can be found by choosing the schedule with the greatest
impact to the network and by breaking ties in favor of
schedules that benefit nodes with the least information. This is
related to the opportunistic overhearing idea presented in [11]
for routing, i.e. if we allow overhearing of the data packets
the dissemination time can be considerably reduced, because



each transmission will be useful for more than one node. The
figure shows the degradation in performance we would get if
we performed routing of the coded packets from one node to
its neighbor without exploiting the broadcast nature of wireless
channels.

Figure 10 shows the performance of the two schemes when
coded packets can suffer erasures. Each node has N = 2
neighbors upstream and downstream, except nodes at the edges
of the linear meshed network. This figure shows that for
different scenarios our ’Greater Impact’ scheme shows much
better performance. Note that both schemes are allowed the
same schedules. The main difference is the way each scheme
chooses amongst the different schedules.

Figure 11 illustrates the gain in completion time for different
pairs (Pe1, P e2) of packet erasure probabilities. This figure
illustrates the gains for a network of K = 10 nodes. We
expect larger gains if we increase M or the number of nodes
K present in the network. However, it is clear that there is
a considerable advantage of our scheme even for moderate
network size and M .

Figure 11 shows that the gain from using the Greater
Impact scheme instead of the Progressive Base Station scheme
increases with packet erasures for our example with N = 2.
We observe this by comparing the result for (Pe1 = 0, P e2 =
0) to those with non-zero packet erasures, except the case
(Pe1 = 0, P e2 = 1) which corresponds to N = 1. The gain
for the case of (Pe1 = 0, P e2 = 0) is a propagation gain, i.e.
the Greater Impact scheme propagates coded packets faster to
other nodes, allowing parallel transmissions. The same applies
for (Pe1 = 0, P e2 = 1). For the cases of random erasures,
the gain is in part due to the propagation gain and in part
because the Greater Impact scheme chooses schedules based
on their impact to the network without focusing the decision
on a single node. Figure 11 shows that for K = 10 nodes
and M = 12 packets with different packet erasure pairs
(Pe1, P e2) we observe a gain of about 1.8. This means that
Progressive Base Station takes 80% more time to complete the
data dissemination process than what it would take if we used
the Greater Impact scheme.

Figure 11 shows that the case of (Pe1 = 0, P e2 = 1) (in
essence N = 1) has a larger gain than (Pe1 = 0, P e2 = 0)
(N = 2), although the former requires more time complete the
transmission for both schemes. This illustrates that allowing
overhearing of the coded packets, which is represented by the
ability of the nodes to transmit to more than one neighbor,
reduces the gain of using Greater Impact with respect to
Progressive Base Station, for the same number of nodes in the
network K. However, this gain will increase as we increase
the network size or as we increase the number of packets to
transmit. Even for a small network of K = 10 nodes we get
a gain of 1.6 when we transmit M = 12 packets with no
erasures, which is to say that Progressive Base Station takes
60% more time to complete the data dissemination process
than what it would take if we used the Greater Impact scheme.
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Fig. 11. Gain in completion time on a linear meshed network of 10 nodes
with different number of data packets to be disseminated. Each node can
contact N = 2 neighbors upstream and 2 downstream.

V. CONCLUSIONS

We present an analysis and numerical results that show that
choosing a schedule based on its impact on the network a
each time slot provides considerably better performance than
scheme that choose schedules giving priority to nodes that
know the most information. In fact, even for small networks
and moderate number of packets to transmit we can expect
large gains in terms of completion time.

Future research will consider an extension of the principles
proposed in this work to the case of a random arrivals of new
packets to the system (e.g. from a base station) that have to
be disseminated to all nodes in the network. One metric of
interest is the throughput performance of our system. More
importantly, future work will focus on using the principles
proposed in this paper to provide distributed MAC protocols
that improve performance of practical systems. In particular,
we will consider distributed protocols that provide a higher
priority to a node based on the number of neighbors that
require some of the information of that node. One of the main
challenges will be to develop a protocol that can allow nodes
to quickly and efficiently gather information of the degrees
of freedom (number of linear combinations of packets) that
their neighbors have or require, without incurring into much
overhead.
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