
Optimal sparse CDMA detection at high load
Jack Raymond

School of Physics
Hong Kong University of Science and Technology

Hong Kong,
Email: jack.raymond@physics.org

Abstract—Balancing efficiency of bandwidth use and complex-
ity of detection involves choosing a suitable load for a multi-access
channel. In the case of synchronous CDMA, with random codes,
it is possible to demonstrate the existence of a threshold in the
load beyond which there is an apparent jump in computational
complexity. At small load unit clause propagation can determine
a jointly optimal detection of sources on a noiseless channel, but
fails at high load. Analysis provides insight into the difference
between the standard dense random codes and sparse codes, and
the limitations of optimal detection in the sparse case.

I. INTRODUCTION

Multiuser detection is the problem of extracting estima-
tions of multiple sources from a shared communication chan-
nel [1]. In order to most efficiently use the bandwidth a high
load should be used, and many theoretical results indicate
achievable capacities are good in this regime for standard
code classes. However, increasing load forces users to share
bandwidth and creates a strongly correlated inference problem,
for which optimal detection may not be possible by practical
(fast) detectors. Even in the limit of zero noise in the channel,
multi-access interference may prevent a Jointly or Individually
Optimal (JO/IO) estimation of the sources.

Code Division Multiple Access (CDMA) is a method of
bandwidth allocation in which each of K users is assigned a
code (~sk) by which to modulate a symbol on the bandwidth of
βK (M ) orthogonal time/frequency blocks (chips), β is called
the load. The scenario of a noiseless multi-access channel is
examined in this paper for ensembles of sparse random codes.
The sparse codes examined have the advantage that they can be
assigned independently at random to all users, and are known
to have a good performance in Additive White Gaussian Noise
Channels (AWGNC), combined with Belief Propagation (BP)
decoding [2], [3], [4].

Using only Unit Clause Propagation (UCP) [5] all source
may be determined efficiently for β up to some discontin-
uous transition point beyond which detection by decimation
becomes suddenly inefficient.

The noiseless threshold results provide bounds on achiev-
able detection and may guide the development of algorithms.
Features of this transition may be relevant to decimation based
detectors in a variety of sparsely coded noisy channels. For
AWGNC at standard operating power levels (signal to noise
ratio ∼6−9dB) the departure of the signal from the noiseless
case is quite small and threshold behaviour in the noiseless
system may have a dominating effect on detector performance.

A. CDMA model and pseudo-random codes

Amplitude on chips (e.g. Frequency bands)

User bit estimates
Fig. 1. (colour online) Two different coding schemes are demonstrated with
K=5 and load β=1 (right) and 5/3 (left). Connections indicate a non-zero
transmission by the user on the chip (sµk =±1). Left: When several users
are coincident on one chip inference of one variable depends on values of the
others. Right: Since each user has a unique chip detection is much easier, but
this scenario requires coordination of user transmissions and small load β.

A standard synchronous CDMA model has each user trans-
mitting a modulated bit bk=±1, the sources interfere to give
a signal

~y =
∑
k

~skbk + ~ω , (1)

where ~ω represents channel noise. Different encodings may
be represented as graphical inference structures, as shown in
figure 1. Weakly correlated codes, such as orthogonal codes
create computationally easy detection problems, at high loads,
or with poorly chosen codes, detection may be hard.

For many noise models, including the noiseless limit, a
maximum capacity can be achieved by minimising overlaps
in user codes ~sk.~sl [6], orthogonal codes are a solution
when β ≤ 1. However, creating maximum distance codes is
computationally expensive as β increases, and the allocation
of codes can be inflexible.

In realistic operating conditions synchronisation of users
may not be possible, and codes must be made robust against
a number of phenomena. Furthermore a small loss in capacity
might be tolerable in order to achieve greater flexibility in the
code allocation, or efficiency in the detection process. For this
reason codes sampled independently from code ensemble are
often considered. Random codes in which every user accesses
M chips with a unique modulation pattern imply inference
structures described by dense graphs [7], and these have
become favoured in theory and practice. More recently it has
been argued that sparse codes, where each user accesses only
C (� M ) chips might have some favourable properties [2],
particularly due to the efficiency of BP and message passing.
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Analysis by Tanaka [7] suggests that for dense codes in
the asymptotic case of many user and large bandwidth, limits
of βc = 2.09(1.51) exist above which IO (JO) detection is
not expected to be efficient due to suboptimal attractors for
detector dynamics, even in the noiseless limit. In a variety of
experiments based on BP, and heuristic decoding, the β & 1
regime indeed proves to be difficult [3], [8] for sparse codes.
The majority of practical detectors have efficient working
regimes restricted to β . 1.

In this paper the origins of this hardness at large load are
investigated for sparse codes in a noiseless channel. UCP is
found to be sufficient to produce a jointly optimal detection of
the bits in some range of β, so that perfect detection is possible
for loads up to some critical threshold depending on user
connectivity. The breakdown of the UCP detector is sudden
and leaves a residual problem without an obvious solution,
the residual problem has many properties characteristic of hard
constraint satisfaction problems [9].

B. Sparse random codes

The set of codes examined are sparse so that each user
transmits on only a fraction C/K of chips, Binary Phase Shift
Keying (BPSK) is used so the marginal is

P (sµk)=
(

1− C

K

)
δ(sµk) +

C

K

(δ(sµk − 1) + δ(sµk + 1))
2

,

(2)
each non-zero transmission is a binary modulation ±1. The
degeneracy problem central to this paper can be avoided by
choosing another modulation pattern, but degeneracy becomes
a problem for such schemes as soon as realistic noise is
introduced.

In the Poissonian ensemble each chip is accessed in an inde-
pendent manner, unfortunately some users end up transmitting
on no chips in this ensemble. In the more practical Regular
ensemble all users access exactly C chips so that

P (~sk) ∝ δ(
M∑
µ=1

(sµk)2 − C)
M∏
µ=1

P (sµk) . (3)

In the limit of large M the case C = O(1) has properties
distinguishable from the dense case due to dilution effects.

II. DETECTION BY UNIT CLAUSE PROPAGATION

The inference problem in the noiseless channel consists
of examining the signal and determining an estimation of
the sent bits (b̂) consistent with the model (1). The value
of some bits might only be determined by looking at the
entire signal, but other bits may be implied from only one
chip. Each chip determined by L user contributions, with
signal y, can be interpreted as a logical clause. Some clauses
allow degenerate solutions when considered in isolation, others
imply unique solutions. If a user k is the only transmission on
chip µ for example, then yµ=±1 and any consistent estimate
requires b̂k = sµkyµ, regardless of other chips on which
k transmits. The logical implication is a unit/atomic clause
in the variable k. Similarly a chip combining L interfering

transmissions determines all the incident users (through L
unit clauses) if the signal is extremal y=±L. Otherwise the
solution is degenerate, allowing several consistent assignments
of incidents bits.

UCP produces an estimate by decimating variables con-
tained in unit clauses and is a central process in many
complete detectors. By iteratively removing the unit clauses
the remaining degenerate clauses, which form a simplified
inference problem (residual graph), may be modified and
create additional unit clauses. If insufficient unit clauses exist
at some point in the algorithm, one can guess a value at
random, or using some more advanced inference, and UCP
checks the logical implications of this guess. A consequence
of guessing is that one may produce contradictory unit clauses
at some later point in the algorithm, a consistent (JO) solution
is not possible where contradictions occur. However, guessing
may not need to coincide exactly with the bit sequence for a
JO detection, it may be that several solutions exist for a given
signal. This is an undesirable scenario for practical purposes,
but possible at high load.

The initial set of unit clauses is found by taking all chips
for which yµ =±

∑
k |sµk| and converting each to |yµ| unit

clauses. The set of unit clauses Ω+ is populated, while this
set is non-empty, and includes no contradictions, the algorithm
proceeds deterministically in two steps.

In the first step a variable is decimated: Select a variable
k represented in Ω+, set its value b̂k according to the unit
clause(s) and remove unit clauses in variable k from Ω+.
Reevaluate the signal on all chips on which user k transmitted:
yµ → yµ − sµk b̂k, and then remove (set to zero) sµk for all
µ. Variable k is removed from the problem leaving a residual
graph. Let X be the the number of variables assigned in this
way, the decimation time, so that X → X + 1 in this step.

In the second step modifications to the residual graph are
considered, chips formerly degenerate may now be informa-
tive. For every chip modified in the first step check whether∑
k |sµk|=±yµ, if this condition is met then the inference is

no longer ambiguous and a unit clause is created and added
to the set Ω+, for each non-zero sµk.

If Ω+ is empty then a variable is chosen and a unit clause
is created and added to the set Ω+. In the simplest scenario
the variable (k) and assignment b̂k=±1 are chosen uniformly
at random. Once the first such guess is made it is necessary
to keep track of contradictions. If a unit clause is added to
the set Ω+ that is in contradiction with an existing unit clause
the algorithm may proceed to termination by ignoring the new
unit clause, but the estimate obtained is not JO.

The algorithm completes after K decimations, either with
the unique JO estimation (if no guesses were required), a JO
estimation (if guesses were required, but no contradictions
encountered), or an approximation (if contradictions were
encountered). If a JO solution is required the algorithm may be
modified so as to back-track and reevaluate previous guesses
when contradictions are encountered.

An example of the algorithm in action for the third scenario
is shown in figure 2 for an experiment with C = 3, β = 2,
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Fig. 2. (colour online) A typical decoding by the proposed method of
a regular code transmission (C = 3, β = 2, K = 1000) is shown. Up
to decimation time xDK the process is deterministic, |Φ+| > 0, and
errors are absent. Beyond this time a fraction of variables are determined
by guesses, the bit error rate begins to increase linearly once the first guess
is made. At decimation time xCK contradictions appear in Φ+, indicating
incorrect guesses. Both critical times exist in this example, it is also possible
that the algorithm runs without requiring any guesses, or without producing
contradictions, as occurs for smaller load.

a random bit sequence, and codes sampled from the regular
ensemble (3). Up to a time xDK the algorithm is deterministic,
and up to a time xCK no contradictions are encountered.
Between xDK and xCK a small fraction of variables must
be guessed, the Bit Error Rate (BER) increases linearly in
expectation from the first guess. Many contradictions arise
later in the algorithm, implied by the small number of guesses.

III. ASYMPTOTIC RESULTS
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Fig. 3. (colour online) The initial inference problem consists of variables
distributed at random within L-y clauses. In order to describe the mean prop-
erties of the algorithm at the initial conditions, and through the deterministic
phase up to xDK decimations, Φl(X) and Ωc(X) are sufficient statistics.
These are respectively the number of clauses of length l (ignoring clauses
larger than Lmax, a sufficiently large upper bound) describing the residual
graph, and the number of variables appearing c times in the set of unit clauses
(Ω+), a sufficient description of Ω+.

Experimentation indicates a self-averaging effect for large
K that can be analysed throughout the deterministic stage of
the algorithm (X/K < xD). This is possible by assuming
a concentration process in the various extensive statistics of

the residual graph [5], [10], and the extensive population of
distinct unit clauses, the important extensive properties are
illustrated in figure 3. The Poissonian ensemble is analysed
for brevity, the Regular ensemble derivation is more subtle
and outlined in Appendix A1.

In the Poissonian ensemble the number of chips with l
incident users is Poissonian distributed, parameterised by L
(=Cβ), a finite upper bound is assumed for the largest relevant
chip Lmax. Of chips containing l contributions, a fraction
21−l are non-degenerate for l ≥ 1. The remaining clauses
are degenerate, the number of degenerate clauses of length
l is called Φl(X). The fraction of signals taking value y for
given l in the residual graph is Binomial in expectation at time
X=0, and at later decimation times is found to be dependent
only on l given Φl(X) (a proof by iteration is possible). The
initial condition is

Φl(0) =
K

β

[
exp(−L)Ll

l!

] (
1− 21−l) . (4)

For the Poisson dynamics the only other statistic required is the
number of un-decimated variables that are not represented in
the set of unit clauses, Ω0(X). For the Poissonian ensemble
this number, at X = 0, is the probability of a zero in the
Poisson distribution parameterised by the total number of
variables incident on chips of type y=±L.

Ω0(0) = K exp

{
− 1
β

Lmax∑
l=1

l21−l
[

exp(−L)Ll

l!

]}
. (5)

The number of times a variable is represented in the set
of unit clauses, and the number of times it appears in the
graph are conditionally independent at time X = 0 given the
extensive statistics. Therefore a variable decimated from the
set of unit clauses is incident in chips of length l a number
of times proportional to length l, and inversely proportional
to the number of remaining variables K − X . This clause
may become either a smaller clause, or a set of L − 1 unit
clauses, the later with probability zl (independent of X). The
population Φl(X) is modified according to

Φl(X + 1) = Φl(X)− l
K−XΦl(X)

+ (l+1)
K−X (1− zl+1)Φl+1(X) ,

(6)

except for l = Lmax where the second term is absent. This
applies intuitively at the first decimation time X=0, but it is
also true at all X . Variables which become unit clauses through
the process of decimation do so at a rate proportional to their
connectivity, and are represented in the residual graph with a
frequency determined by their excess connectivity distribution.
For the Poisson ensemble these are both the same and whether
a variable is represented zero or several times in the set of unit
clauses does not effect its distribution in the residual graph.

As the clauses are reduced a fraction become new unit
clauses, determined by zl and Φl. At time X , there are K−X
variables remaining, of which Ω0(X) are unrepresented in a

1This appendix is included here but absent in the Physcomnet submission
for reasons of page limitation.



unit clause. Since the new unit clauses represent a random
sample of the variables, Ω0(X) has an expected change
proportional to the fraction of variables it contains and the
total number of new unit clauses

Ω0(X + 1) = Ω0(X)− Ω0(X)
K −X

[
Lmax∑
l=2

l(l − 1)
K −X

zlΦl(X)

]
.

(7)
Writing the various terms at O(K), (X = xK,Ω0 =

ω0K,Φl = φlK), and Taylor expanding the left hand sides
up to first order in 1

K leads to differential equations

dφl(x)
dx

= − 1
1− x

φl(x) +
(l + 1)
1− x

(1− zl+1)φl+1(x) , (8)

for 2 ≤ l < Lmax, for l = Lmax the second term is absent,
and

dω0(x)
dx

= −ω0(x)
1− x

[
Lmax∑
l=2

l(l − 1)
1− x

zlΦl(x)

]
. (9)

These equations can be solved to determine the extent of
the critical domain. It is necessary to find the first point in the
interval [0, 1] where ω0(xD)=1−xD, this is the point where
the set of unit clauses becomes empty. For the Poissonian code
the equation (8) is solved by a set of polynomials of the form

φl(x) =
Lmax∑
i=l

φl,i(1− x)ixLmax−i , (10)

where the coefficients can be determined iteratively from the
equation for l = Lmax, incorporated additional boundary
conditions for smaller l. Using these solutions (9) may be
solved as an exponential form. Roots of ω0(xD)=1− xD in
the interval [0, 1) can be determined numerically.

Unfortunately the equation for the regular ensemble are
not so easily solved. One must keep track of the dynamics
for variables of different degeneracies in Ω+, the number of
variables appearing c times as unit clauses is Ωc(X), where
c runs from 0 to C. A variable present in Ω+ occurs less
frequently in the residual graph, which must be accounted for
in (6), and the new unit clauses contribute to the populations
{Ωc(X)} in a non-linear fashion. Including initial conditions
one can again write a set of differential equations, but these
must be solved by numerical integration. Fortunately the
dynamics are smooth and fourth order Runge-Kutta methods
seem to produce a good determination of the critical point,
xD.

Figure 4 demonstrates the results of the numerical inte-
gration for the regular case with C = 3 at various loads by
comparison with experiments on systems with K=1000 and
K = 10000. Similar excellent agreement was found for the
Poissonian ensemble [8].

IV. COMPUTATIONAL HARDNESS

Figure 4 shows that there is a discontinuous jump in xD
as β increases, the guessing stage goes from being empty to
forming a large fraction of the algorithm run-time, and the
Terminal Residual Graph (TRG) goes from empty at xD to
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Fig. 4. (colour online) The asymptotic and experimental results for
xD indicates a first order transition in β when C = 3. The mean excess
connectivity of variables remaining in the graph when xD < 1 is large
(inset), implying the terminal residual graph is not tree like. The experimental
curves indicate the median, first and third Quartiles for these values based on
1000 (100) samples for for K=1000 (10000), typical cases are observed to
concentrate on the asymptotic prediction.

a giant loopy graph. At small β and C greater than 2 there
is only a deterministic phase and determining the unique JO
detection (also IO) is trivial (xD = xC = 1). Similarly below
the percolation threshold, the solution ceases to be unique,
finding one of the degenerate solutions remains easy (xD<1,
xC = 1). Finally at large β and C, the algorithm involves a
non-deterministic phase, and generates contradictions (xD <
xC < 1). This latter regime dominates for large C for finite
β. At large β and finite C one can expect degeneracy in the
solutions, but close to the transition the embedded solution is
expected to remain the unique JO solution, only difficult to
find by UCP. The three regimes can be bounded in a phase
diagram as shown in figure 5. Up to the range of β shown it is
found that perfect decoding (BER=0) coincides with xC =1,
except at small C. The JO solution is unique and trivial to find
at small load. The case of a Poissonian ensemble is examined
briefly in Appendix A.

Figure 2 shows properties typical of the regime in which
the non-deterministic method exists. For computational com-
plexity reasons the gap xC −xD is most important. If this
is not asymptotically 0, then with high probability O(K)
guesses have been made in reaching a contradiction. The cost
of backtracking, reevaluating O(2K) combinations to find the
correct branch, is not feasible and UCP becomes an efficient
JO estimator.

In order to understand the algorithm failure it is useful to
consider the TRG structure. In the regular case the graph
consists of a C-core, every variable is connected to exactly
C degenerate chips, each chip implying a constraint. These
constraints are of many types, comparable to 2-XOR, 1-in-
3 SAT [10], and others. The clauses are locked – at least
two variables in any clause must be changed to go from one
solution to another. Random Constraint Satisfaction Problems



(CSP) of a similar specification have been much studied in
physics [9], [10]. Increasing the ratio of logical constraints
to variables (1/β) often leads to a sharp transition in the
ability to find any solution (SAT transition) buffered by a
computationally hard regime.

The case studied is topologically similar to a CSP, but the
embedded solution changes the nature of the transition [11],
and it is difficult to establish the extent of this effect. There is
always a (BER= 0) JO solution, but one may asymptotically
expect a sharp transition from a computationally easy regime
for JO detection, to a computationally difficult one in which
the solution is still unique, and then towards regimes with
many solutions (poor performance even with an ideal detector).
It may be argued that the transition is a peculiarity of the UCP
decoder and the BPSK modulation scheme (which introduces
degeneracy). It also seems likely that for TRGs with unique
solutions methods such as BP decimation may be successful
beyond the UCP threshold in typical case with some high
probability. Certainly the critical β decreases with C, whereas
algorithms are known to perform well up to β . 1 in practice.
However, for small C the thresholds for β outlined in this
paper seem to match quite well transitions in the equilibrium
solution spaces for noisy systems [4], which may indicate a
common phenomena.

V. THE ROLE OF CHANNEL NOISE

The effect of noise might be considered for an erasure
channel without fundamentally changing the analysis [12]. In
an erasure channel a fraction of chips are removed, guessing
becomes necessary and degeneracy is introduced. For the
Poissonian ensemble the random erasure of chips is equivalent
to working with a new code parameterised by larger β.
However, for the sparse code any small number of erasures
has an important immediate effect: the TRG 2-core cease
to be the entire graph and there is no longer a unique
solution (BER=0). The Poissonian code development scheme
of figure 6 is applicable. Nevertheless, a sharp UCP transition
in β is still observed between a computationally easy tree-like
TRG (analogous to the xD = 1 scenario) and the non-trivial
loopy TRG, except for small C and/or many erasures.

Discontinuous transitions in optimal, or heuristically deter-
mined, bit error rates are common with increasing noise in
CDMA detection models. Erasures within the noiseless frame-
work introduce additional degeneracy in the solution space. It
seems reasonable to expect that a critical number of erasures
might cause a discontinuous jump in the BER applying to a
typical jointly optimal solution, related to the solution space
on the core of the TRG. An equilibrium statistical mechanics
approach may be most effective at uncovering such features.

VI. CONCLUSION

Unit clauses propagation is an important component in
many solution finders and seems particularly well adapted for
sparse CDMA, providing a guaranteed jointly optimal perfor-
mance across a range of parameters. This high performance
may be established in typical case by analytic methods. In

 1

 2

 4

 6

 8

 10

 1  2  4  6  8  10

M
ea

n 
C

hi
p 

C
on

ne
ct

iv
ity

,L
=β

 C

Mean User Connectivity,C

xD=xC=1

xD<xC<1

xD<1
xC=1

BER=0
BER=0.1
BER=0.3

Contradictions
βC (JO dense limit)=1.51
βC (IO dense limit)=2.09

Fig. 5. (colour online) Curves represent thresholds in the median of 1000
samples for systems of K = 10000. The regular ensemble is presented,
interpolating linearly (users of connectivity C and C+1) where C is not
integer. The regular ensemble produces unique solutions with C greater than
2 and β small, and when C<2 (below the percolation threshold) completes
without contradictions to produce one of a degenerate set of solutions without
contradictions. The contours in Bit Error Rate indicate a sharp transition
in estimate quality as β increases. The limit of the regime with BER= 0
is coincident with the line indicating presence of contradictions above the
percolation threshold.

Core

+trees

Core Core

Contradictions
Hard

No contradictions

Easy

Core

Trees
+trees

(a) (b)

Giant cluster

Deterministic stages

Non−deterministic stages

?

Giant 2−core

Fig. 6. (colour online) The initial problem has unit clauses and a residual
graph. Information is transferred from the former to the latter by UCP. Two
different inference paths correspond to the Poissonian (a) and Regular (b)
problems. With erasures in the regular channel (a) becomes relevant. (a) In
the Poissonian ensemble there is always an ambiguous stage due to presence of
disconnected variables, but is computationally easy if only trees are present in
the residual graph at xD (TRG). There are no algorithmic methods guaranteed
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a deterministic stage, or halts at a 2-core (graph without leaves). Solutions
must be isolated in (b) due to the locked nature of clauses, in graphs with
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this paper it is argued that the failure of UCP in the noiseless
case for large systems, due to multi-access interference at high
load, characterises an asymptotically limiting regime for all
fast algorithms due to fundamental topological and solution
space features of the inference problem.

Understanding the residual graph problem in greater detail
might provide insight for sparse codes and, if solved, a basis
for selection of principled detection methods at high load. A
basis for this analysis may be found in recent statistical physics
research on locked constraint satisfaction problems.
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APPENDIX

The mean dynamics for the regular user connectivity en-
semble are developed along similar lines to those presented in
the main text, expanding the explanation on certain points. At
decimation time X typical ensemble dynamics are described
sufficiently by Φl(X) and Ωc(X). The latter term describes the
number of variables present c times in the set of unit clauses
(including those that are absent c=0). During the deterministic
phase unit clauses exist, the critical criteria demarking this
algorithmic stage is

Ω0(X) < K −X . (11)

Selecting a variable independently of its degeneracy, leads to
a decrease in the number of degenerate unit clauses, therefore
decimation contributes to the dynamics according to

∆(1)Ωc(X) = − Ωc(X)∑C
c=1 Ωc(X)

, (12)

for all non-zero c. The number of residual graph variables
associated to a unit clause depends on its degeneracy, in the
regular ensemble a variable appears C times in the unit clauses
and residual graph, so the average probability an instance
of a variable in the residual graph corresponds to a variable
decimated from the set of unit clauses, relative to a uniform
sampling of the unit clauses, is

e(X) =
C∑
c=1

(C − c)Ωc(X)/
C∑
c=0

(C − c)Ωc(X) . (13)

Variables decimated appear less frequently in the residual
graph than the mean.

A clause population may grow with the removal of a vari-
able, as larger degenerate clauses become smaller degenerate
clauses, or become smaller as the population is reduced. A
variable is coincident with a clause in proportion to its size
the dynamic in expectation is

∆Φl(X) =
e(X)
K −X

(−lΦl(X) + (1− zl+1)(l + 1)Φl+1(X)) .
(14)

The Φl+1 dependent term is absent for the special case
l = Lmax. In the large system limit Lmax is not finite, but
choosing a finite value generates only a very small systematic
error. The factor zl=22−l/(1−2l−1), since it is the probability
the reduced chip contains only one true or one false literal
(modulated variable), y =L − 2 or 2 − L, multiplied by the
probability that the same literal is selected. Thus it is the
probability a degenerate clause becomes non-degenerate when
a typical variable is decimated from a clause of length l. The
distribution of clauses of type L, y is Binomial at time X=0,
and can be shown by iteration to remain so at later times for
the degenerate clauses, hence the simple form of zl.

Each reduction of a large clause to a non-degenerate clause
creates l − 1 unit clauses. These new unit clauses coincide
with variables in the set Φc in proportion to C − c, for
example a variable C times degenerate in the unit clauses
cannot be represented in the graph (since it only appears C
times in the problem before decimation). The probability a
new unit clause is coincident with a variable of degeneracy
c relative to the fraction of variables with degeneracy c is
fc(X). Each coincidence results in variables of degeneracy c
being transformed into variables of degeneracy c+1, therefore

∆(2)Ωc(X) =
[
−fc(X) Ωc

K−X + fc−1(X) Ωc

K−X

]
× e(X)

K−X
∑L
l=2 zl[l(l − 1)]Φl(X)

, (15)

defining f−1(X)=0 and otherwise

fc(X) =
(C − c)Ωc(X)∑C
c=0(C − c)Ωc(X)

∑C
c=0 Ωc(X)
Ωc(X)

. (16)
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The equations (12) and (15) combine to produce a small
change in the population Ω(X), infinitesimal by comparison
with the populations up to time xD. Similarly the populations
of clauses of length l are in expectation order K, but the
changes due to 14 are O(1). Taking X=xK, Φl(X)=Kφl(x)
and Ωc(X)=Kωc(x), writing ∆Φ(X) as a Taylor expansion
and keeping only leading orders in K leads to a differential
description of dynamics

dφl(x)
dx

=
e(x)
1− x

(lφl(x) + (1− z(l + 1))(l + 1)φl+1(x)) .
(17)

Similarly an equation may be written

dω0(x)
dx

= −f0(x)ω0(x)
(1− x)

[
e(x)
1− x

L∑
l=2

zl[l(l − 1)]φl(x)

]
,

(18)
and for each of the variables in the unit clauses, according to
their degeneracy

dωc(x)
dx = − ωc(x)∑C

c=1
ωc(x)

+ fc−1(x)ωc−1(x)−fc(x)ωc(x)
(1−x)

×
[
e(x)
1−x

∑L
l=2 zl[l(l − 1)]φl(x)

] .

(19)
As in the previous Poissonian ensemble a set of differential

equations is evident, the distinction is in the necessity of
the factors (16)(13), which can be taken as 1 to recover the
Poissonian case, and in the need to include information on
the degeneracy of variables to calculate typical properties.
The initial condition for Φl are identical to the Poissonian
case (4), due to the extra factor e(x) these equations do not
have a concise solution. Initial conditions on Ωc (5) differ
from the Poissonian case, in the new model it is a Binomial
distribution parameterised by C, and the fraction of all possible
CK unit clauses immediately revealed by degenerate clauses
(the exponent of (5) divided by C).

The treatment for the regular case, assuming some up-
per bound in the variable connectivity (C) and the chip
connectivity (L) provides a basis for generalising to more
complicated ensembles, although the regular and Poissonian
ensembles seem most natural in the context of CDMA. The
possibility to optimise ensembles based on the ability of UCP
to decode is one application, similar to the application of UCP
in optimisation of Linear and Fountain Codes [12]. Solution of
the equations requires numerical integration, but results with
simple Runge-Kutta methods were found to be sufficient and
in remarkably agreement with experiment (figure 4), verifying
assumptions of the method.

A figure analogous to figure 7 is shown for the Poissonian
ensemble. Unlike the regular ensemble, the Poissonian ensem-
ble nowhere results in a JO solution of BER= 0. This is due
to the inhomogeneity in user connectivity, of course only half
of the unconnected users (of which an extensive number are
present) may be inferred correctly for example. There is a
transition between cases for which one of many JO solutions
is found (without contradictions), and one in which no JO
solution is found by the proposed method. A sharp transition
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Fig. 7. (colour online) A figure with statistics and parameterisations
equivalent to figure 5, but applied to a Poissonian ensemble, is presented. xD
is everywhere less than one, there exists three regimes distinguished by the
BER of solutions and xC , similar qualitatively to those of the regular code.
Algorithms terminating without contradictions have low BER, except near
and below the percolation transition. When xC departs from 1 a substantial
increase in BER of solutions is found.

is again seen in the structure of the TRG from a tree to a large
graph containing loops at the threshold time xD.

The Poissonian ensemble is not a good candidate for coded
transmission. However, a regular code in combination with an
erasure channel might have many properties increasingly sim-
ilar to a Poissonian coded system as the noise level increases.
This is observed in experiment and asymptotic analysis.

A different ensemble with regular chip-connectivity and
Poissonian user-connectivity was considered in [8]. This study
demonstrated that when the chip connectivity is exactly 3 an
optimal solution is always computationally easy to determine
at any load. However, the transmission properties are not
favourable for such a regime. This special case demonstrates
the a limit with dominant dilution effect.


	Introduction
	CDMA model and pseudo-random codes
	Sparse random codes

	Detection by Unit Clause Propagation
	Asymptotic Results
	Computational Hardness
	The role of channel noise
	Conclusion
	References
	Appendix

