
Generic Coverage Verification without Location
Information Using Dimension Reduction

Gaurav S. Kasbekar, Yigal Bejerano and Saswati Sarkar

Abstract—Wireless Sensor Networks (WSNs) have recently
emerged as a key sensing technology with diverse civilian and
military applications. In these networks, a large number of small
sensors or nodes perform distributed sensing of a target field.
Each node is capable of sensing events of interest within its
sensing range and communicating with neighboring nodes. The
target field is said to be k-covered if every point in it is within
the sensing range of at least k sensors, where k is any positive
integer. We present a comprehensive framework for verifying
k-coverage of a d-dimensional target field for arbitrary positive
integers k, d. Our framework uses a divide and conquer approach
based on the technique of dimension reduction, in which the k-
coverage verification problem in d-dimensions is reduced to a
number of coverage verification problems in (d-1) dimensions,
which are then recursively solved. Our framework leads to
a distributed polynomial-time coverage verification algorithm
that does not require knowledge of the locations of nodes or
directional information, which is difficult to obtain in WSNs.
Each node can execute the algorithm using only the distances
between adjacent nodes within its transmission range and their
sensing radii. We analytically prove that the scheme detects a
coverage hole if and only if the target field has a coverage hole.

I. INTRODUCTION

Recent advances in wireless communications and electron-
ics have enabled the development of low-cost sensor nodes [1].
Each sensor node is capable of sensing specific events in its
vicinity and of communicating with adjacent nodes. Thus, for
event sensing applications, a large number of sensor nodes
are deployed in a target field and they collaborate to form
an ad-hoc network, referred to as a wireless sensor network
(WSN). WSNs have the potential to become the dominant
sensing technology in many civilian and military applications,
such as intrusion detection, environmental monitoring, object
tracking, traffic control, and inventory management. In many
of these applications, WSNs need to monitor the target field
for detecting events of interest, e.g., entrance of an intruder in
an intrusion detection application.

Coverage of the target field is essential for reliable detection
of events of interest, and the quality of the coverage is
considered a measure of the quality of Service (QoS) delivered
by a WSN [2]. However, sensor nodes are prone to failures
that may cause coverage holes in the target field, which in
turn adversely affects event detection capabilities of the WSN.
Thus, sensor nodes must execute simple and efficient coverage
holes detection mechanisms for ensuring network reliability
and providing the required QoS.

Coverage verification in sensor networks has received con-
siderable attention in the last few years. Nevertheless, re-
searchers have mostly focused on WSNs where the sensors
are deployed in a straight line or a 2-dimensional plane (refer

to Section II for a review of related work). Several important
applications however require that the sensors be deployed in a
3-dimensional space. For example, in 3D underwater acoustic
sensor networks [24], sensors are suspended at different depths
in the water, which allows observation of phenomena that
cannot be adequately observed using a 2D sensor network
deployed on the ocean bottom. Also, sensors need to be
deployed in a 3-dimensional space in the atmosphere for
weather forecasting and climate monitoring [23]. Most of the
coverage verification schemes developed for 3-dimensional
sensor networks assume that the precise locations (i.e., coordi-
nates) of the sensors are known, which cannot be guaranteed
for WSNs (Section II).

In this paper, we consider a WSN where the sensors are
deployed in a d-dimensional space, and focus on detecting
coverage holes, which are regions in the target field that are
covered by k − 1 or fewer sensors. Here, d, k can be any
positive integer. We describe the system model in Section III
and the detection problem in Section IV. We provide a generic
coverage verification algorithm that detects a coverage hole if
and only if one such is present. Our algorithm only requires
that each sensor knows its distances from its neighbors and
the distances between its neighbors that are also neighbors
of each other, and does not need any information on their
locations otherwise. The algorithm is distributed and requires
only simple computations.

Our coverage verification algorithm uses a divide and con-
quer approach based on a dimension reduction mechanism.
We first show that the coverage verification problem in d-
dimension can be solved by reducing it to a number of
coverage verification problems in d − 1 dimensions (when
d > 1), and can therefore be recursively reduced to a number
of coverage verification problems in 1 dimension (Section V).
This dimension reduction is based on a projection process; we
provide the details for this projection process for d = 3 and
d = 2 in Section VI. Finally, we show that it is straightforward
to verify coverage when all sensors are in 1-dimension, that
is on a straight line (Section VII).

II. RELATED WORK

Comprehensive surveys for coverage verification in WSNs
can be found in [3], [4]. In this section we compare our
results with existing results that are closely related. A genre of
papers focus on sensor deployment, topology control, motion
control and routing for satisfying several quality of service
requirements such as maximizing coverage, maximizing net-
work lifetime, minimizing the number of sensors deployed,

2

etc. [5], [17], [6], [23], [22]. Specifically, Choudhury et al. [17]
present an interesting topology control heuristic that activates
a subset of sensors so as to maintain coverage and connec-
tivity. This algorithm however does not guarantee coverage
in every circumstance [17]. We focus on verifying coverage
with guarantees on detection performance when sensors are
deployed in a d-dimensional space.

Coverage verification has primarily focused on WSNs where
sensors have been deployed on a 2-dimensional plane [2],
[5], [6], [8], [9], [10], [20]. Most of these papers assume
knowledge of either the locations of the sensors [2], [6], [8],
[9], [10] or the angles between neighboring sensors [5]. The
coverage verification scheme presented by Bejerano [20] how-
ever attains proven detection guarantees without using location
information. But, this scheme cannot be readily generalized for
WSNs with sensor deployment in an arbitrary d-dimensional
space.

The coverage verification problem for sensors deployed in
a 3-dimensional space has been addressed in [21], [22], [7],
[13], [14]. The algorithms proposed by Huang et. al. [21] and
So et. al. [7] require precise knowledge of sensor locations,
which cannot be easily obtained for WSNs [11], [12]. We
now consider the existing coverage verification schemes for
3-dimensional deployment that are oblivious to the nodes’
locations, referred to as coordinate-free solutions. Ghrist et. al.
[13] describe an innovative holes detection scheme based on
homology, which is however a centralized solution that cannot
be easily implemented in WSNs. Li et al. [14] introduced
distributed schemes for detecting large holes. To the best of
our knowledge, our scheme is the first distributed, coordinate-
free solution that is guaranteed to detect holes of any size
for sensors deployed in an arbitrary d-dimensional space. Our
scheme does not use directional information and relies only
on communication with neighbors.

III. THE NETWORK MODEL

We consider a wireless sensor network (WSN) consisting
of a set V of sensors that are also called nodes. The sensors
are distributed over a large d-dimensional target field, where
d ≥ 1. In practical WSNs, sensors are either deployed on a
plane (d = 2) or in three-dimensional space (d = 3). However,
our framework is applicable to an arbitrary positive integer d;
hence we do not assume any particular value for d.

Each node u can sense events of interest in its sensing range
and communicate with nodes in its transmission range. We
assume that the sensing and transmission ranges of a node u

are open d-dimensional balls1 centered at u, with radiuses ru

and Ru, respectively, where Ru > ru. Let r̂ = maxu∈V ru,
and R̂ = minu∈V Ru.

We refer to the boundary of a d-dimensional ball as a
d-boundary-sphere. For example, a 3-boundary-sphere is a
sphere in the usual sense (boundary of a 3-dimensional ball),

1The sensing and the transmission of a sensor may have various geometric
shapes, however, we assume that each one of these ranges subsume a ball
with radius ru or Ru, which are the commented sensing and transmission
ranges, respectively.

a 2-boundary-sphere is a circle (boundary of a 2-dimensional
ball i.e., a disc) and a 1-boundary-sphere is a pair of points
(boundary of a 1-dimensional ball i.e., a line segment). The
boundary of the sensing range of any node u is a d-boundary-
sphere, which we refer to as the sensing border of node u.

Let du,v denote the Euclidean distance between nodes u and
v. Nodes u and v are termed adjacent or neighbor if they are
included in the transmission range of each other. Let Nu be
the set of neighbors of u. For simplicity, we assume that there
are no two sensors at the same location and each sensor has
a unique identification number.

We refer to the set of points of the target field which are at
a distance of at least r̂ from any boundary point of the target
field as the internal space of the target field. We distinguish
between internal nodes, which lie within the internal space
versus the other nodes, referred to as periphery nodes. We
assume that only internal nodes need to verify their coverage.
The sensors are not aware of their locations. Yet, every sensor
knows if it is a periphery or an internal node, possibly using
the mechanisms in [16], [15]. We assume that nodes only
have localized distance information. Specifically, each node
u knows (a) ru, (b) du,v and rv for each v ∈ Nu and (c) dv,w

for each pair w, v ∈ Nu. Thus, we assume that each node can
estimate its sensing range, and its distances from its neighbors
without learning their orientations, and communicates this
information to its neighbors. This is a realistic assumption
as recent studies [18], [19] have introduced accurate distance
estimation techniques that are applicable for wireless sensors.

We say that a point in the target field is k-covered if it is in
the interior of the sensing ranges of at least k nodes. Similarly,
any set of points in the target field is considered k-covered if
every point in the set is k-covered. In particular, we say that
a node u’s sensing border is k-covered if every point on it is
k-covered (by nodes other than node u). Note that since the
sensing range of a node is an open ball, no point on u’s sensing
border is covered by u itself. We define a k-coverage hole, or
simply coverage-hole, as a continuous area of the target field
comprised of points that are not k-covered. For instance, if
k = 1 then every point of the coverage hole is not monitored
by any sensor.

Finally, no coordinate-free coverage verification scheme can
guarantee the detection of every k-coverage hole, if R̂ < 2 · r̂
[20]. Thus, we assume that R̂ ≥ 2 · r̂.

A summary of the paper main notation is given in Table I.

IV. THE COVERAGE HOLES DETECTION PROBLEM

Our objective is to verify that a given d-dimensional target
field does not contain any k-coverage hole for arbitrary k ≥
1, d ≥ 1, using only localized distance information. We now
present a proposition which has been proved by Huang et al. in
[8], [21] and which we use in our solution.

Proposition 1: Assume that no two nodes are located in the
same location. Then, the internal space of the target field is
k-covered if and only if the sensing border of every internal
node u ∈ V is k-covered.

3

Symbol Semantics
V The set of sensors in the given WSN.
u The node that executes our scheme.
d The dimension of the target field.
k The coverage requirement.

du,v The Euclidian distance between nodes u and v.
Nu The neighbors of node u.
Ru The transmission radius of node u.
ru The sensing radius of node u.
R̂ A lower bound on a node trans. radius, (Ru ≥ R).
r̂ An upper bound on a node sensing radius, (ru ≤ r).

AB The distance between two points A and B
[A, B) The ray originating at A and passing through B
∠ABC Angle between the rays [B, A) and [B, C) and its size

Ns
u The set of nodes whose sensing range subsumes u’s

sensing border
ku k − |Ns

u|
Cu,v The set of intersection points of the sensing borders

of nodes u and v
(uv)′ The virtual sensor at the center of Cu,v

t′ The virtual sensor that is the projection of sensor t

TABLE I
GENERAL NOTATION.

Recall that Proposition 1 does not apply to points of the
target field near its edge since the sensing borders of periphery
nodes may not be k-covered. Hence, our solution guarantees
accurate k-coverage-verification only for the internal space
of the target field. Thus, our objective can be formulated as
follows.

Problem Definition: (The d-dimensional k-Coverage Veri-
fication Problem): The d-dimensional k-coverage verification
problem is a decision problem whose goal is to determine
whether the sensing border of every internal node u is k-
covered, by using only localized distance information.

We distinguish between detecting the presence of coverage
holes and finding their exact locations. Since the sensors
are oblivious to their locations, they cannot report about the
exact location of a coverage hole when they detect one. We
assume that once a coverage hole has been detected, other
means are applied for inferring the hole location. For instance,
backtracking the paths of the coverage-hole report messages
or by using a coarse positioning system that provides a rough
location estimations of the nodes. We do not investigate the
mechanisms for inferring the hole locations.

V. THE COVERAGE VERIFICATION SCHEME

In this section we present a distributed scheme for solving
the d-dimensional k-coverage problem where k and d are
arbitrary. Each sensor u ∈ V independently verifies that its
vicinity is k-covered by using the sensing border concept
presented above. Whenever a node determines that its sensing
border is not k-covered, it reports the presence of a hole. If
the sensing borders of all nodes are k-covered, and therefore
the presence of hole is not reported, clearly there is no hole
(Proposition 1). In our divide-and-conquer approach, each
sensor verifies that its sensing border is k-covered by dividing
the problem into simpler instances, in which the coverage
requirement k is reduced or the problem dimension is reduced

to d − 1. In section VII, we propose a strategy for verifying
coverage in 1-dimension which concludes the algorithm. In
the following we elaborate on the algorithm executed by each
individual sensor u.

A. Subsumption and Intersection

We now present two properties that can be easily used to
confirm or rule out k-coverage of the sensing border of a
sensor in some special cases. It is easy to check the correctness
of these properties.

Property 1 (Subsumption): The sensing border of sensor
u is entirely subsumed in the sensing range of sensor w if and
only if du,w + ru ≤ rw.

By using Property 1, a sensor u can easily verify if its
sensing border is entirely subsumed in the sensing range of
another sensor w. Suppose w’s sensing border subsumes u’s
sensing border. Then, since every point on u’s sensing border
is covered by sensor w, we can check (k−1)-coverage of u’s
sensing border by sensors other than sensor w. Let Ns

u ⊆ Nu

be the set of sensors such that u’s sensing border is entirely
subsumed in the sensing range of each sensor in set Ns

u. Ns
u

is found by using property 1. If |Ns
u| ≥ k, then u’s sensing

border is k-covered. Now, let |Ns
u| < k, and ku = k − |Ns

u|.
Clearly, in this case, u’s sensing border is k-covered if and
only if it is ku-covered by sensors in the set Nu\Ns

u. To
check whether the above condition holds, we need to detect
intersecting spheres.

Property 2 (Intersection): The sensing border of sensor
v ∈ Nu\Ns

u intersects u’s sensing border (but is not tangent
to it) if and only if du,v < ru + rv and du,v + rv > ru.

The first condition in Property 2 states that there is overlap
between balls u and v and the second condition states that
sphere v is not subsumed in the interior of sphere u. Now, if
the sensing border of no sensor in Nu\Ns

u intersects sphere
u, then u’s sensing border is not ku-covered by sensors in the
set Nu\Ns

u. This condition can be verified using property 2.
Hence, in the next subsection, we assume that |Ns

u| < k
and that the sensing border of at least one sensor in Nu\Ns

u

intersects u’s sensing border, and focus on checking ku-
coverage of u’s sensing border by sensors in the set Nu\Ns

u.

B. Coverage verification through dimension reduction

A key step in our divide and conquer scheme is mapping a
given k-coverage verification instance in d-dimensions into a
number of ku-coverage problems in d− 1 dimensions.

We first show that when the sensing borders of u and
v intersect, the intersection constitutes a (d − 1)-boundary-
sphere, which we call Cu,v . To show this, suppose node u lies
at the origin and node v lies at the point with x1 coordinate
equal to du,v and all other coordinates equal to 0. Then the
equations of the sensing borders of u and v are given by:

x2
1 + x2

2 + . . . + x2
d = r2

u (1)

(x1 − du,v)2 + x2
2 + . . . + x2

d = r2
v (2)

4

Subtracting (1) from (2) and rearranging, we get:

x1 =
d2

u,v + r2
u − r2

v

2du,v
(3)

Substituting this value of x1 from (3) into (1), we get:

x2
2 + . . . + x2

d = r2
u −

(
d2

u,v + r2
u − r2

v

2du,v

)2

(4)

Cu,v is the set of points that satisfy (3) and (4). This shows
that Cu,v is a (d − 1)-boundary-sphere, with radius equal to
the square root of the expression on the right-hand side in (4).

We develop a divide and conquer approach using the
following proposition.

Proposition 2: Suppose |Ns
u| < k and that the sensing

border of at least one sensor in Nu\Ns
u intersects u’s sensing

border. u’s sensing border is ku-covered by sensors in the set
Nu\Ns

u if and only if for every sensor v such that the sensing
borders of u and v intersect, Cu,v is ku-covered by nodes in
Nu\(Ns

u ∪ v).
Proof: The necessity follows from the fact that Cu,v

lies on u’s sensing border. Let us prove sufficiency. Suppose
every (d − 1)-boundary-sphere Cu,v is ku-covered by nodes
in Nu\(Ns

u ∪ v). Assume, to reach a contradiction, that u’s
sensing border is not ku-covered. Thus, there is an area on
u’s sensing border that is not ku-covered. Consider a point p
on the boundary of a coverage hole. Such a point must exist
since all the (d−1)-boundary-spheres Cu,v are ku-covered and
hence some parts of u’s sensing border are ku-covered. Recall
that we define the sensing range of a sensor as an open ball.
From this, it follows that the boundary points of a coverage
hole are not ku-covered. So p is not ku-covered.

Now, for any ε, however small, there is a point on u’s
sensing border within distance ε from p that is ku-covered.
This implies that p must be on the boundary of the sensing
range of some sensor v that intersects with u’s sensing border.

Thus, p is located on (d− 1)-boundary-sphere Cu,v , which
contradicts the assumption that every (d−1)-boundary-sphere
Cu,. is ku-covered.

Note that results similar to Proposition 2 have been proved
in [21] and [22]. However, these papers use location infor-
mation for checking coverage. Our innovation is to show how
this proposition can be used to develop a coverage verification
algorithm that does not use location information.

In the light of Proposition 2, we need to check whether
Cu,v is ku-covered. To do this, we first project all sensors
in the set Nu\(Ns

u ∪ v) onto the (d − 1)-dimensional space
in which Cu,v lies. Let w ∈ Nu\(Ns

u ∪ v) be a sensor. We
call the projection of w onto the (d − 1)-dimensional space
of Cu,v as virtual sensor w′. The intersection of the sensing
border of (real) sensor w with the (d− 1) dimensional space
in which Cu,v lies is regarded as the sensing border of virtual
sensor w′. Similarly, we say that virtual sensor (uv)′ lies at
the center of Cu,v and we regard Cu,v as the sensing border
of virtual sensor (uv)′. The sensing range of a virtual sensor

is the interior of its sensing border in the (d− 1) dimensional
space in which Cu,v lies.

u,vC Planew

w’

Fig. 1. Illustration of projection concepts for d = 3

Fig. 1 illustrates these concepts for the case d = 3. The
figure shows the sensing border of sensor w, which is a sphere
and the plane in which circle Cu,v lies. The projection of w
on the Cu,v plane is virtual sensor w′. The darkened circle on
the Cu,v plane is the intersection of w’s sensing border with
the Cu,v plane, and is the sensing border of virtual sensor w′.
The shaded region within the darkened circle is the interior of
the sensing range of virtual sensor w′. Note that this shaded
region is within the interior of the sensing range of real sensor
w.

In general, a point in the (d−1)-dimensional space in which
Cu,v lies is in the interior of the sensing range of a virtual
sensor if and only if it is in the interior of the sensing range
of the corresponding real sensor. From this fact and from the
definition of virtual sensors and their sensing ranges, it follows
that Cu,v is ku-covered by real sensors in the set Nu\(Ns

u∪v)
if and only if the sensing border of virtual sensor (uv)′ is
ku-covered by virtual sensors that are the projections of real
sensors in the set Nu\(Ns

u ∪ v).
Using the distances between pairs of real sensors and the

sensing radii of the real sensors, u calculates the distances
between pairs of virtual sensors and the sensing radii of the
virtual sensors (see Section VI). Subsequently, it can check
ku-coverage of the sensing border of virtual sensor (uv)′ by
calculations in the (d − 1) dimensional space in which Cu,v

lies. In fact, doing this is exactly identical to the problem of
checking coverage of the sensing border of a real sensor when
real sensors are deployed in (d − 1)-dimensions. Thus, we
have reduced a coverage verification problem in d dimensions
to a number of coverage verification problems in (d − 1)
dimensions. This problem can be recursively solved using the
above steps. Specifically, each coverage verification problem
in (d − 1) dimension can again be reduced to a number of
coverage verification problems in (d − 2) dimensions and so
on until we get problems in 1 dimension. We describe how
such problems can be solved in 1-dimension in Section VII.

C. Examples

Fig. 2 illustrates the procedure. Parts (a) and (b) show the
case d = 3. Part (a) shows some sensors and their sensing
borders which are spheres. The sensing borders of sensors
u and v intersect in circle Cu,v . Part (b) shows the virtual
sensors and their sensing borders obtained by projecting the
sensors onto the plane of circle Cu,v . In this figure, the sensing
border of virtual sensor (uv)′ is subsumed in the sensing range

5

(b)
The spheres' projection on the C
u,v
Plane

C
u,v

u
 v

w

t
 t'

w'

uv'

C
u,v
Plane
C
u,v
Plane

(a)
The 3D location of the senssing spheres.

C
u,v

t

w

u
 v

w'

uv

t'

a

b

(d)
The disks' projection on the C
u,v
line.
(c)
The 2D location of the senssing disks.

C
u,v
Line
 C
u,v
Line

Fig. 2. Parts (a) and (b) show projection of sensors placed in three-
dimensions on the Cu,v plane. Parts (c) and (d) show projection of sensors
placed in two-dimensions on the Cu,v line.

of virtual sensor w′ and intersects with the sensing border of
virtual sensor t′.

Parts (c) and (d) show the case d = 2. Part (c) shows
some sensors and their sensing borders which are circles. The
sensing borders of sensors u and v intersect in the pair of
points a and b, which together form 1-boundary-sphere Cu,v .
Part (d) 2 shows the virtual sensors and their sensing borders
obtained by projecting the sensors onto the line of 1-boundary-
sphere Cu,v . In part (d), point a is in the interior of the sensing
range of virtual sensor t′ and point b is in the interior of the
sensing range of virtual sensor w′.

In Fig. 3, we summarize the computations executed by each
node u for determining k-coverage.

VI. PROJECTION FROM A HIGHER DIMENSION TO A
LOWER DIMENSION

We now describe how sensors in d-dimensions can be pro-
jected onto a (d−1)-dimensional space without any knowledge
of their coordinates. For concreteness, we describe in detail the
projection process for d = 3 (Sections VI-A to VI-D). The
projection process for arbitrary d is analogous. For d = 3, we
consider a sensor u which needs to determine ku-coverage of
Cu,v , the circle formed by the intersection of its sensing border
with that of another sensor v in its transmission range. Towards
that end, in the projection process, it determines information
about virtual sensor (uv)′, which is the center of circle Cu,v ,
and projected virtual sensors which are the projections of
sensors in Nu\(Ns

u ∪ v) onto the Cu,v plane. Specifically, it

2In part(d), note that the sensing ranges of virtual sensors (uv)′, t′ and w′
lie on the same straight line, shown dotted. They are shown on different lines
so as not to clutter the figure.

Verify Coverage(u, Nu, k, d)

begin
/* This procedure checks whether the sensing border of node u is k-covered by sensors
in the set Nu when u and sensors in the set Nu lie in a d-dimensional target field.
*/
if d=1 then

Use the algorithm in Section VII to check k-coverage of u’s sensing border
else

Determine Ns
u using Property 1

if |Ns
u| ≥ k then

Return that u’s sensing border is k-covered
else

Set ku = k − |Ns
u|

for Every node v ∈ Nu\Ns
u do

Check, using Property 2, whether the sensing borders of u and v intersect
end for
if the sensing border of no sensor v ∈ Nu\Ns

u intersects u’s sensing border
then

Return that u’s sensing border is not k-covered
else

for Every node v such that u’s and v’s sensing borders intersect do
Project all sensors in the set Nu\(Ns

u∪v) onto the (d−1)-dimensional
space containing Cu,v

/*Virtual sensor (uv)′ is at the center of Cu,v and virtual sensors
in the set N(uv)′ are projections of sensors in the set Nu\(Ns

u ∪
v). Recursively check ku-coverage of Cu,v by sensors in the set
Nu\(Ns

u ∪ v).*/

Verify Coverage((uv)′, N(uv)′ , ku, d− 1)
end for
if for all nodes v such that u’s and v’s sensing border intersect, Cu,v is
ku-covered by sensors in the set Nu\(Ns

u ∪ v) then
Return that u’s sensing border is k-covered

else
Return that u’s sensing border is not k-covered

end if
end if

end if
end if

end

Fig. 3. The algorithm run by node u to check k-coverage of its sensing
border. The statements delimited by /* and */ are comments

calculates the distances between pairs of these virtual sensors
that are in transmission range of each other (sections VI-B
and VI-D) and the sensing radius of each of these virtual
sensors (in sections VI-A and VI-C). In the projection process,
u uses the sensing radii of the sensors in its transmission
range, and the distances between pairs of sensors that are in
its transmission range and also in transmission range of each
other as inputs. Note that u does not use the coordinates of the
real sensors or calculate the coordinates of the virtual sensors.

After completing the above projection process from 3-
dimensions to 2-dimensions, u needs to check ku-coverage
of the sensing border of (uv)′. To this end, after checking
for subsumption of the sensing border of (uv)′ in the sensing
ranges of other virtual sensors, u considers each virtual sensor
t′ in the Cu,v plane, whose sensing border intersects with that
of (uv)′. The intersection is a pair of points, say at′ and bt′ .
u needs to check coverage of at′ and bt′ , which can be done
by projecting virtual sensors in the set N(uv)′\(Ns

(uv)′ ∪ t′)
onto the line at′bt′ . In this projection from 2-dimensions to
1-dimension, u determines information about the resulting 1-
dimensional virtual sensors, which consist of (a) the mid-
point of the pair of points at′bt′ and (b) projected virtual

6

sensors which are the projections of the virtual sensors in
N(uv)′\(Ns

(uv)′ ∪ t′) onto the at′bt′ straight line. As in the
3-dimensions to 2-dimensional projection, u calculates the
distances between pairs of these 1-dimensional virtual sensors
that are in transmission range of each other and the sensing
radius of each of these virtual sensors. As before, u uses
as inputs, the sensing radii of the virtual sensors in the
transmission range of (uv)′, and the distances between pairs
of virtual sensors that are in the transmission range of (uv)′

and also in transmission range of each other. In Section VI-E,
we mention some salient points of the projection process from
2-dimensions to 1-dimension.

We now return to the calculations for projection from 3-
dimensions to 2-dimensions. We use the following notation
throughout the section. Let O be the center of circle Cu,v .
Thus, the virtual sensor (uv)′ is located at point O. If A and
B are two points, then the length of the segment AB is denoted
by simply AB.

A. Calculation of the Sensing Radius of Virtual Sensor (uv)′

We first find lengths Ou and Ov, which are needed through-
out this section. For the purpose of this calculation, let u be
the origin and let v be the point (du,v, 0, 0). As derived in
section V (see (3)), the x1 coordinate of every point on circle
Cu,v is the same, say x1,Cu,v and is given by:

x1,Cu,v =
d2

u,v + r2
u − r2

v

2du,v
. (5)

Since O is the center of the circle Cu,v , it lies on the straight
line joining u and v. Hence, O lies on the x1-axis and its
x1-coordinate is x1,Cu,v . So, we get:

Ou = |x1,Cu,v | =
∣∣∣∣∣
d2

u,v + r2
u − r2

v

2du,v

∣∣∣∣∣ (6)

Ov = |du,v − x1,Cu,v | =
∣∣∣∣∣du,v −

d2
u,v + r2

u − r2
v

2du,v

∣∣∣∣∣ . (7)

Note that if either u or v is on the Cu,v plane, then it is at
point O. We can find whether this is the case from (6) and (7).
Fig. 4 shows the case in which v lies on the Cu,v plane. The
case in which u lies on the Cu,v plane is symmetrical. Fig. 5
and Fig. 6 respectively show the cases in which u and v lie
on the same side and on the opposite side of the Cu,v plane.
In all these cases, at least one of u and v is not on the Cu,v

plane. Henceforth in this section, we assume without loss of
generality, that u does not lie on the Cu,v plane.

Now, u calculates the sensing radius of virtual sensor (uv)′,
which is equal to rCu,v , the radius of circle Cu,v . As shown
in Fig. 6, let G be any point on circle Cu,v. Note that G lies
on sphere u. We have,

rCu,v = OG =
√

r2
u −Ou2 (8)

v u

C _ { u , v } P l a n e

Fig. 4. v lies on the Cu,v Plane

v u

C _ { u , v } P l a n e

Fig. 5. u and v lie on the same side of the Cu,v Plane

Sensing
border of u

ru

Sensing
border of v

u,vC Plane

u v
O

G

Fig. 6. Calculation of the radius of circle Cu,v

B. Calculation of the Distance of a Projected Virtual Sensor
from (uv)′

Let t ∈ Nu\(Ns
u ∪ v) be any sensor. We assume henceforth

in this section that sphere t intersects with both sphere u and
sphere v. (Otherwise, since Cu,v is the intersection of sphere
u and sphere v, it follows that no point on Cu,v can be in
the interior of t’s sensing range. In this case, sensor t can be
ignored for the purposes of checking coverage of circle Cu,v).
We show that t is in the transmission range of both u and
v. Since sphere u and sphere t intersect, a point, say p, on
sphere u is in the interior of the sensing range of t. Then by
the triangle inequality and the assumption that R̂ ≥ 2r̂, we
get:

dt,u ≤ tp + pu < r̂ + r̂ ≤ R̂

So t and u are in the transmission range of each other.
Similarly, t and v are in the transmission range of each other.

7

So distances dt,u and dt,v are known to sensor u.
Let t′ be a projected virtual sensor that is the projection

of real sensor t on the Cu,v plane. We now show how u can
calculate Ot′, the distance between virtual sensors (uv)′ and
t′. See Part(a) of Fig. 7. The lengths of the sides of 4tuv are

u,vC Plane

rt
t+t−

Circle
 C−

Circle
 C0 Circle

 C+

(a) Projection of sensor

 t on the C plane u,v

vu

t

O

rt’

O

u,vC Plane

v

Q t’

Plane P − Plane P +

P

(b) Possible locations of
 sensor t

u
t’

Fig. 7. Part (a) shows projection of the sensor t on the Cu,v plane. Part(b)
shows possible locations of t for fixed distances Ot′ and tt′

dt,u, dt,v and du,v. ∠tuv is given by the cosine rule as:

∠tuv = cos−1
d2

t,u + d2
u,v − d2

t,v

2dt,udu,v
(9)

By the cosine rule in 4Otu:

Ot =
√

Ou2 + d2
t,u − 2(Ou)(dt,u)cos∠tuv (10)

Again, by the cosine rule in 4Otu, ∠tOu is given by:

∠tOu = cos−1
Ot2 + Ou2 − d2

t,u

2(Ot)(Ou)
(11)

Now, if t and u lie on the same side of the Cu,v plane, as in
Part(a) of Fig. 7, then ∠tOt′ = 90◦−∠tOu. If t and u lie on
opposite sides of the Cu,v plane, then ∠tOt′ = ∠tOu− 90◦.
In either case:

∠tOt′ = |90◦ − ∠tOu| (12)

Since t′ is t’s projection on the Cu,v plane, ∠tt′O is a right
angle. From ∠tOt′, we get:

Ot′ = Ot cos ∠tOt′ (13)

Thus, Ot′ can be determined from equations (6) and (9) to
(13).

C. Calculation of the Sensing Radius of a Projected Virtual
Sensor

We show how u can calculate rt′ , the sensing radius of
virtual sensor t′. See Part(a) of Fig. 7. From Ot and ∠tOt′,
which were calculated in (10) and (12) respectively, we get:

tt′ = Ot sin ∠tOt′ (14)

Now, if rt ≤ tt′, then sphere t does not intersect with the Cu,v

plane and virtual sensor t′ can be ignored for the purpose of
checking coverage of circle Cu,v. If rt > tt′, then let P be
a point where sphere t intersects the Cu,v plane. Since t′P

equals rt′ , the radius of the circle formed by the intersection
of sphere t with the Cu,v plane, we get:

rt′ = t′P =
√

(tP)2 − (tt′)2 =
√

r2
t − (tt′)2 (15)

Thus, rt′ can be calculated from (14) and (15).

D. Calculating the Distance Between Two Projected Virtual
Sensors

We show how u can calculate the distance between two
projected virtual sensors s′ and t′ that are in transmission range
of each other. We define two virtual sensors s′ and t′ to be
in the transmission range of each other if and only if their
sensing ranges intersect. The motivation behind this definition
is that, the projection from 2-dimension to 1-dimension and
verification of coverage in 1-dimension will use the distances
between virtual sensors that are in transmission range of each
other as per the above notion.

Consider two sensors s, t ∈ Nu \ (Ns
u ∪ v). We now show

that the corresponding projected virtual sensors s′ and t′ are
in transmission range of each other only if the corresponding
real sensors s and t are in the transmission range of each
other. Suppose s and t are not in the transmission range of
each other. In this case, it can be easily shown, from the
assumption that R̂ ≥ 2r̂, that the sensing ranges of s and t do
not intersect. Since the sensing range of a virtual sensor is a
subset of the sensing range of the corresponding real sensor, it
follows that the sensing ranges of virtual sensors s′ and t′ do
not intersect as well. Thus, henceforth, we assume that s and
t are in transmission ranges of each other, and subsequently
compute s′t′.

First, assume that u can determine whether t and s are on
the Cu,v plane, and whether t lies on the same side of the
Cu,v plane as s. If both t and s are on the Cu,v plane, then
s′t′ = dt,s. Now, suppose at least one of t and s is not on the
Cu,v plane. Assume, without loss of generality, that t is not
on the Cu,v plane. If s is also not on the Cu,v plane, node u
checks whether s and t lie on the same side or opposite sides
of the Cu,v plane. Parts (a) and (b) of Fig. 8 show these cases.
In both these figures, a perpendicular is drawn from s to the
line joining t and t′. Suppose it meets the line at point H . We
now consider these cases separately:

1) s is either on the Cu,v plane or on the same side of the
Cu,v plane as t: Assume, without loss of generality, that
ss′ ≤ tt′. We have:

tH = tt′ −Ht′ = tt′ − ss′ (16)

tt′ and ss′ can be calculated as in (14).
2) s and t are on opposite sides of the Cu,v plane: We

have:
tH = tt′ + Ht′ = tt′ + ss′ (17)

In both the above cases, s′t′ can be calculated as follows:

s′t′ = sH =
√

d2
s,t − (tH)2 (18)

Thus, u can compute s′t′ using (16), (17) and (18).

8

Recall that we have assumed that sensor u does not lie on
the Cu,v plane. We now show how u can find whether a sensor
t is on the Cu,v plane, and if not whether t is on the same side
of the Cu,v plane as u. Using this procedure, u can determine
whether two sensors s and t are on the same side of the Cu,v

plane. If t is any sensor, ∠tOt′ can be calculated as in (12).
t lies on the Cu,v plane if and only if ∠tOt′ = 0.

Now suppose sensor t does not lie on the Cu,v plane.
Suppose distances Ot′ and tt′ have been calculated as in (13)
and (14). See Part(b) of Fig. 7. Let P− and P+ be the planes
parallel to the Cu,v plane at a distance equal to distance tt′

from the Cu,v plane, on the same side as u and on the opposite
side respectively. Let C0 be the circle on the Cu,v plane with
center O and radius equal to distance Ot′. For a fixed distance
Ot′, every point on circle C0 is a possible location for t′. Let
circles C− and C+ be the circles that are the projections of
circle C0 on planes P− and P+ respectively. Since t′ is the
projection of t on the Cu,v plane, t is the projection of t′

on either plane P− or P+. So for fixed distances Ot′ and
tt′, every point on circle C+ and circle C− is a possible
location for t. For some candidate location of t′ on circle C0,
let t− and t+ be the corresponding candidate locations for t
on circle C− and C+ respectively. Note that t− and t+ lie on
the normal to the Cu,v plane passing through that particular
candidate location of t′ as shown in Part(b) of Fig. 7. Suppose
the normal from u to line t−t+ meets the line at point Q. Then,
uQ = Ot′ and Qt′ = Ou. Thus, t−Q = t−t′−Qt′ = tt′−Ou
and similarly, t+Q = tt′+Ou. So distances ut− and ut+ can
be calculated as follows:

ut− =
√

(tt′ −Ou)2 + (Ot′)2 (19)

ut+ =
√

(tt′ + Ou)2 + (Ot′)2 (20)

In the above expressions, tt′, Ot′ and Ou can be calculated
as in (14), (13) and (6) respectively. Note that every point on
circle C− (respectively, C+) is at distance ut− (respectively,
ut+) from u. If dt,u = ut−, then t lies on circle C−, hence,
on the same side of the Cu,v plane as u. Otherwise dt,u = ut+

and then t lies on circle C+, hence, on the opposite side of
the Cu,v plane as u.

u,vC Plane

(b) s and t lie on
 opposite sides
 of the C plane u,v

(a) s and t lie on the
 same side of the
 C plane. u,v

u,vC Plane

t t’

s’s

H

t’
t H

ss’

Fig. 8. Parts (a) and (b) shows the cases in which s and t are on the same
side and opposite sides of the Cu,v Plane respectively

Remark 1: Note that when sensors are projected on a plane,
two or more virtual sensors may end up at the same location
even when no two real sensors are located at the same
position. So for the two-dimensional problem, the requirement
of Proposition 1 is not met. However, this is not a difficulty
because in the two-dimensional problem, we need only to
check whether the sensing border of virtual sensor (uv)′ is
ku-covered. We do not need to check ku-coverage of the target
field. So we do not apply Proposition 1.

E. Projection from Two Dimensions to One Dimension

We now comment on some salient aspects of the projection
from a plane to a line (2-dimensions to 1-dimension).

First, as for the virtual sensors obtained after projection onto
a plane, two 1-dimensional virtual sensors (i.e., those obtained
after projection onto a line) are said to be in the transmission
range of each other if and only if their sensing ranges intersect.

The same 2-dimension to 1-dimension projection scheme
applies both when the sensors on a plane are virtual sensors
obtained after projection from a 3-dimensional space, and also
when the sensors on a plane are real sensors.

VII. k-COVERAGE VERIFICATION ALGORITHM IN ONE
DIMENSION

In this section, we describe the k-coverage verification
algorithm for the case in which sensors are placed on a
straight line. The one-dimensional case may arise if in practice,
real sensors are placed on a straight line or if sensors are
placed in a higher dimension and we reduce the problem to
several one-dimensional coverage verification problems. Each
sensor knows the distances between adjacent sensors in its
transmission range and their sensing radii either from distance
measurements and exchanges (if sensors are real) or from
calculations in the projection process (if sensors are virtual).

Consider a sensor u, which may either be real or virtual, that
checks k-coverage of its sensing border. u sets up a coordinate
system in which u is the origin. The sensing border of u
consists of two points, say au and bu that are located at ru and
−ru respectively. An arbitrary sensor v can be at any one of
the points du,v and −du,v . Denote these points by v+ and v−

respectively. We now outline the algorithm that u uses to check
k-coverage of au and bu. u finds out whether each sensor v
in its transmission range contains at least one of the points
au and bu. This is the case if and only if dv+,au

< rv (since
dv+,au

≤ dv+,bu
). u discards sensors which do not cover any

of the points au and bu. It then divides the remaining sensors
into three sets S+, S− and S0 such that sensors in the set
S+ are on the right of the origin (i.e., on the same side as
au), sensors in the set S− are on the left of the origin (on
the opposite side from au) and sensors in the set S0 are at
the origin. For each sensor s in the transmission range of u,
u knows the distance ds,u. Since, in addition, it determines
on which side of the origin it lies, it knows its coordinate.
Thus, the locations of all sensors in sets S+, S− and S0 and
the locations of au and bu are known. Using these, for each
sensor s ∈ S+∪S−∪S0, u can find distance ds,au and ds,bu .

9

Now, au (bu, respectively) is in the interior of the sensing
range of s if and only if ds,au

< rs (ds,bu
< rs, respectively).

Thus, u can determine whether au and bu are k-covered.
We now describe how u divides the sensors into sets S+,

S− and S0. The sensors v for which du,v = 0 are put into
set S0. Next, let t /∈ S0 be a sensor. For every other sensor
s /∈ S0, u finds out whether t and s lie on the same side or
opposite sides of the origin. This can be done as follows. If
t and s are in the transmission range of each other, u knows
the distance dt,s between them from the projection processes.
Note that dt+,s+ = |du,t− du,s| and dt+,s− = |du,t + du,s|. If
dt,s = dt+,s+ , then t and s lie on the same side of the origin,
else dt,s = dt+,s− and then t and s lie on opposite sides of
the origin. Suppose t and s are not in the transmission range
of each other, which implies that their sensing ranges do not
intersect. We show by contradiction that they are on opposite
sides of the origin. Suppose they are on the same side, say on
the right of the origin. Then, since they both contain at least
one of au and bu, it follows that they both contain the point
au. So their sensing ranges intersect, which is a contradiction.

Now, let S+ (S−, respectively) consist of the sensors that
are on the same (opposite) side as t. If it is the other way
round, then by symmetry of the points au and bu around the
origin, the conclusion about k-coverage of au and bu will not
change. This is because we are interested in whether or not
both au and bu are k-covered. Thus, u can divide the sensors
into sets S+, S− and S0.

VIII. CORRECTNESS AND COMPLEXITY ANALYSIS

The following theorem establishes that the algorithm pre-
sented in Fig. 3 solves the coverage verification problem.

Theorem 1 (Correctness): When R̂ ≥ 2r̂, the coverage
verification algorithm in Fig. 3 reports the presence of a k-
coverage hole if and only if the internal space of the target field
has a k-coverage hole, and does not use location information.

Proof: From Proposition 1, it follows that in order to
verify k-coverage of the internal space of the target field,
it is sufficient to check k-coverage of the sensing border of
each node u. When |Ns

u| < k, it follows from Proposition 2
that in order to check k-coverage of u’sensing border, it is
sufficient to check ku-coverage of Cu,v for each v ∈ Nu\Ns

u

by sensors in the set Nu (Ns
u ∪ v). Note that Cu,v is ku-

covered by real sensors in the set Nu\(Ns
u ∪ v) if and only

if the sensing border of virtual sensor (uv)′ is ku-covered
by virtual sensors that are the projections of real sensors in
the set Nu\(Ns

u ∪ v). The coverage verification algorithm in
Fig. 3 checks ku-coverage of Cu,v for each v ∈ Nu\Ns

u

by (a) projecting sensors in the set Nu (Ns
u ∪ v) onto the

(d − 1)-dimensional space containing Cu,v when d > 1 and
recursing; and subsequently (b) checking ku coverage in 1-
dimension of the sensing borders of virtual sensors projected
in 1-dimension. In Section VI (Section VII, respectively), we
have presented the algorithms that accomplish steps (a) (and
(b), respectively), when R̂ ≥ 2r̂. These algorithms do not use
location information. The result follows since we have shown
that the algorithm in step (b) correctly determines whether or

not the sensing borders of virtual sensors are j-covered for
any j.

We now compute the running time of the algorithm run
by sensor u in terms of |Nu|, the number of sensors in its
transmission range.

A. One Dimension

Suppose real or virtual sensors are located in one dimension.
We now give the complexity of the algorithm described in
Section VII. The following are constant time operations:

1) Checking whether at least one of au and bu is in the
sensing range of a sensor v,

2) If t is a sensor not at the origin, checking for a sensor s
whether s and t are on the same side or opposite sides
of the origin,

3) Once sensors have been divided into sets S+, S− and
S0, checking whether au and bu are in the interior of
the sensing range of each sensor.

Since there are |Nu| sensors in Nu, the total time required
for performing the above operations for all sensors in Nu is
O(|Nu|). Hence, the complexity of the algorithm run by sensor
u is O(|Nu|).

B. Projection from d to d− 1 dimensions

Let d ≥ 2. We now find the complexity of projecting sensors
in Nu\(Ns

u ∪ v) onto the (d− 1) dimensional space in which
Cu,v lies, using the algorithm in Section VI. Calculation of the
sensing radius of sensor (uv)′ takes O(1) time. Calculation of
the distance of a projected virtual sensor t′ from virtual sensor
(uv)′ and the sensing radius of t′ are constant time operations.
So the total time required over all projected virtual sensors
is O(|Nu|). Again, calculation of the distance between two
projected virtual sensors takes O(1) time. There are O(|Nu|2)
such pairs. So the total time taken is O(|Nu|2).

Adding the times for all the projection calculations, the
complexity of the projection calculations is O(|Nu|2).

C. Two Dimensions

We now compute the complexity of the calculations per-
formed by a real or virtual sensor u to check k-coverage of
its sensing border when u and other sensors are located in
two-dimensions. Checking whether the sensing border of u
is subsumed in the sensing range of another sensor v is a
constant time operation. So the total time for all v ∈ Nu

is O(|Nu|). Now, suppose the sensing borders of u and v
intersect. Projection of sensors in Nu\(Ns

u ∪ v) onto the
Cu,v line takes O(|Nu|2) time and checking coverage in
the resulting one-dimensional problem takes O(|Nu|) time
as computed above. Thus, the time for checking coverage of
the intersection points of the sensing borders of u and v is
O(|Nu|2). Adding over all v ∈ Nu\Ns

u, we get the total time
as O(|Nu|3). Adding the computation times for subsumption
and intersection, the total running time taken by sensor u for
checking k-coverage of its sensing border is O(|Nu|3).

10

D. Three Dimensions

Now suppose sensors are located in three-dimensions. Anal-
ogous to the two-dimensional case, the total time for checking
subsumption is O(|Nu|). If sphere u and sphere v intersect,
projection of sensors in Nu\(Ns

u ∪ v) onto the Cu,v plane
takes O(|Nu|2) time and checking coverage in the resulting
two-dimensional problem takes O(|Nu|3) time as computed
above. So the total time for checking coverage of circle Cu,v

is O(|Nu|3). Adding over all sensors v, the total running time
is O(|Nu|4). Adding the running times for subsumption and
intersection calculations, the total running time taken by sensor
u for checking coverage is O(|Nu|4).
E. d dimensions, d ≥ 4

It is easy to show by induction that when sensors are located
in d dimensions where d ≥ 4, the running time taken by sensor
u for checking coverage is O(|Nu|d+1).

F. Running Time for Coverage Verification

In the above calculations, we found the complexity of the
algorithm run by node u for different dimensions in terms of
|Nu|. Now, let ∆ = maxu∈V |Nu| be the maximum number
of neighbors of any node in the network. When sensors are
located in d dimensions, the time taken by any sensor to check
k-coverage of its sensing border is 3:

1) O(∆) if d = 1 and
2) O(∆d+1) if d > 1.

IX. SIMULATION RESULTS

We analytically proved that the coverage verification scheme
accurately verifies k-coverage of the target field when the ratio
R̂/r̂ ≥ 2. In our simulations, we demonstrate how to make our
scheme more robust to errors in the measurements of distances
between nodes. In all our simulations, we consider a three-
dimensional target field and the case k = 1. Each internal
node in the target field uses the coverage verification algorithm
described in this paper to verify coverage of its sensing border
and reports the presence of a hole if it detects one.

First, we simulated some simple test cases. We developed a
simulator that allows us to create a coverage hole of control-
lable size at the center of the target field and to place the nodes
randomly around it, while ensuring that the space around the
coverage hole is fully covered. We ran a large number of
simulations with different sizes of the central coverage hole.
We observed that when the hole size was 0, no node reported
a hole and when the hole size was greater than 0, some nodes
reported a hole. This experimentally confirms the correctness
of the scheme.

Next, we considered a 50×50×50 units3 target field. Each
sensor had a sensing radius of 10 units and a transmission
radius of 22 units. Each sensor was placed uniformly at
random in the target field. We varied the number of nodes and
ran 100 simulations in each case. We searched for a number
of nodes to place, for which the probability of a coverage

3Note that in practice, d ≤ 3 and hence the algorithm is polynomial-time.

hole is roughly 0.5. We found that when the number of nodes
was equal to 370, in 51 instances out of 100, a coverage hole
was reported. We fixed the number of nodes at 370 for the
rest of the simulations. We considered the case in which there
may be errors in the distances measured by the nodes. In our
simulator, the evaluated distance between two adjacent nodes
u and v is given by,

Eval Distu,v = du,v · (1 + X · Error Index)

where, du,v is the actual distance between the nodes, X ∼
N(0, 1) is a normal random variable and Error Index is a
simulation parameter that controls the variance of the measure-
ment errors. We generated 100 random seeds, each of which
results in a particular placement of the nodes. We increased
Error Index from 0% to 5% in increments of 0.5% and
in each case, ran a simulation with each one of the 100
random seeds. We define a false alarm to be a simulated
instance in which there is actually no hole, but a hole is
reported. A misdetection is defined to a simulated instance
in which there is actually a hole, but it is not reported. With a
positive value of Error Index, there are false alarms and
misdetections, which can be found by comparing with the
simulation for Error Index = 0 for the same random seed.
The probility of false alarm (respectively misdetection) is the
fraction of the total simulated instances that are false alarms
(respectively misdetections). We define the risk to be the sum
of the probabilities of false alarm and misdetection.

In order to improve the robustness of our scheme to distance
measurement errors, we propose threshold-type of policies
in which a hole is reported by the network if and only if
the number of nodes who report that they border a hole is
greater than the threshold. The top plot of Fig. 9 shows the
probabilities of false alarm and misdetection and the risk
as a function of threshold for Error Index = 2%. The
plot shows that the false alarm probability decreases as a
function of threshold. This is because, if the threshold is T ,
a hole is reported by the network if the number of nodes
who report a hole is greater than T . So for a higher value
of T , a hole is reported in fewer simulated instances. For the
same reason, the misdetection probability increases with the
threshold. Roughly, the risk first decreases and then increases.
The risk is minimized at a threshold value of 6. This is the
optimal threshold.

The bottom plot of Fig. 9 shows the risks with the optimal
threshold, with a threshold of 0 and with a threshold equal to
twice the optimal threshold as a function of Error Index.
It can be seen that the risk with the optimal threshold is
always lower than the risks with the other two thresholds.
This shows that a threshold-type of policy can reduce the risk
if the threshold is chosen judiciously.

Fig. 10 shows the optimal threshold as a function of
Error Index. The plot shows that the optimal threshold
increases with Error Index. The reason for this is that
for any fixed placement of nodes (i.e., for a fixed random
seed), the number of nodes who report a hole increases with
Error Index. Fig. 11 illustrates this for a particular value of

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20

Threshold

Different Probabilities vs. Threshold for Error_Index=2%

False Alarm Probability
Misdetection Probability

Risk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5

Error_Index

Risks with Different Thresholds vs. Error_Index

Risk with Optimal Threshold
Risk with Threshold 0

Risk with 2*Optimal Threshold

Fig. 9. The top plot shows the false alarm probability, misdetection
probability and the risk as a function of threshold for Error Index = 2%.
The bottom plot shows the risks with the optimal threshold, with a threshold
of 0 and with a threshold equal to twice the optimal threshold as a function
of Error Index

the random seed. We now intuitively explain this phenomenon.
Suppose there are random errors in the distance measurements,
as is the case for positive Error Index. It is a likely event
that if a node’s sensing border is actually covered, with the
erroneous distances at least a small hole is detected on its
sensing border. However, it is unlikely that if there was
actually a hole on its sensing border, the random errors are
such that the hole is found to be covered. Thus, the number of
nodes who erroneously report that they border a hole increases
with Error Index. Now, suppose for Error Index = e1,
the optimal threshold is T1. If Error Index is increased to
e2 > e1, then for every random seed, the number of nodes
who report a hole increases. Hence, for any random seed,
for Error Index = e2 it is possible to choose a threshold
T2 ≥ T1 such that if there is no misdetection for this random
seed for threshold equal to T1, then there is no misdetection
for threshold equal to T2. Also, since T2 ≥ T1, it is possible
that there is no false alarm for threshold T2 even if there is
a false alarm for threshold equal to T1. Since this is the case
for all random seeds, it is intuitive that the optimal threshold
increases with Error Index.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5

O
pt

im
al

 T
hr

es
ho

ld

Error_Index

Optimal Threshold vs. Error_Index

Optimal Threshold

Fig. 10. The optimal threshold as a function of Error Index

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

N
um

be
r

of
 n

od
es

 w
ho

 r
ep

or
t a

 h
ol

e

Error_Index

No. of nodes who report a hole vs. Error_Index

Number of Nodes

Fig. 11. The number of nodes who report a hole as a function of
Error Index for a fixed placement of nodes

X. CONCLUSION

We presented an efficient, distributed, coordinate-free algo-
rithm for verifying k-coverage of a d-dimensional target field
for arbitrary integers k and d. We analytically proved that
the scheme detects a coverage hole if and only if there is a
coverage hole in the target field. Our simulation results show
how the robustness of the scheme to distance measurement
errors can be improved by using a threshold type policy.
We believe that the methods developed in this study are
fundamental for wireless sensor network management and they
will affect the design of new network protocols.

REFERENCES

[1] F. Zhao and L Guibas, ”Wireless Sensor Networks: An Information
Processing Approach”. Morgan Kaufmann, 2004.

[2] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M. B. Srivastava,
“Coverage Problems in Wireless Ad-hoc Sensor Networks”. In Proc.
of Infocom’01, Anchorage, Alaska, U.S.A., April 2001.

[3] N. Ahmed, S.S. Kanhere, S. Jha, ”The holes problem in wireless sensor
networks: a survey”. Mobile Computing and Communications Review,
Vol. 9, No. 2, pp. 4-18, 2005.

[4] M. Cardei and J. Wu. ”Coverage in Wireless Sensor Networks”,
Handbook of Sensor Networks. CRC Press 2004.

12

[5] Q. Fang, J. Gao, and L. Guibas. ”Locating and bypassing routing holes
in sensor networks.”. In Proc. of Infocom’04, March 2004.

[6] G. Wang, G. Cao, and T. La-Porta. ”Movement-assisted sensor deploy-
ment”. In Proc. of Infocom’04, Hong Kong, China, March 2004.

[7] A. Man-Cho So and Y. Ye. ”On Solving Coverage Problems in a
Wireless Sensor Network Using Voronoi Diagrams”. In Proc. of WINE
2005, LNCS 3828, pp. 584-593, 2005.

[8] C-F. Huang and Y.-C Tseng, ”The Coverage Problem in a Wireless
Sensor Network”. In Proc. of ACM WSNA’03, Sep. 2003.

[9] H. Zhang and J. C. Hou, ”Maintaining sensing coverage and connectivity
in large sensor networks”. In International Journal of Wireless Ad Hoc
and Sensor Networks, vol. 1, num. 1-2, pp. 89-123, January 2005.

[10] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. ”Integrated
coverage and connectivity configuration in wireless sensor networks”.
In Proc. of ACM SenSys’03, Los Angeles, CA, Nov. 2003.

[11] D. Niculescu, ”Positioning in ad hoc sensor networks”, In IEEE
Network, Volume 18, Issue 4, July-Aug. 2004 Pages: 24 – 29

[12] , Q. Shi, S. Kyperountas, N. S. Correal and F. Niu. ”Performance
Analysis of Relative Location Estimation for Multihop Wireless Sensor
Networks”. IEEE Journal On Selected Areas In Communications
(JSAC), Vol 23, No. 4, April 2005.

[13] R. Ghrist, A. Muhammad, ”Coverage and hole-detection in sensor
networks via homology”. In Proc. of IPSN 2005, April 2005.

[14] X. Li, D. K. Hunter, and K. Yang, Distributed Coordinate-free Hole
Detection and Recovery, In Proc. of Globecom ’06, November 2006.

[15] Y. Wang, J. Gao, J. S. B. Mitchell, Boundary Recognition in Sensor
Networks by Topological Methods, In Proc. of Mobicom ’06, Sep. 2006.

[16] C. Zhang, Y. Zhang and Y. Fang ”Detecting Coverage Boundary Nodes
in Wireless Sensor Networks”, In Proc. of ICNSC ’06, April 2006.

[17] R. R. Choudhury and R. Kravets, ”Location-Independent Coverage in
Wireless Sensor Networks” Technical Report, UIUC, 2004

[18] B. Alavi and K. Pahlavan ”Modeling of the TOA-based Distance
Measurement Error Using UWB Indoor Radio Measurements”. In IEEE
Communications Letters, Vol. 10, No. 4, April 2006, pages 275-277.

[19] C. Y. Wen, R. D. Morris, and W. A. Sethares, ”Distance Estimation
Using Bidirectional Communications Without Synchronous Clocking”,
Accepted for publication in IEEE Trans. Signal Processing.

[20] Y. Bejerano, “Simple and Efficient k-Coverage Verification without
Location Information”. In Proc. of Infocom’08, Phoenix, Arizona,
U.S.A., April 2008.

[21] C.-F. Huang, Y.-C. Tseng and L.-C. Lo, “The coverage problem in
three-dimensional wireless sensor networks”. In Proc. of GLOBECOM
’04, Vol. 5, pp 3182-3186, Nov-Dec 2004.

[22] M. K. Watfa and S. Commuri, “The 3-Dimensional Wireless Sensor
Network Coverage Problem”. In Proc. of ICNSC ’06, pp 856- 861,
April 2006.

[23] S.M.N. Alam and Z.J. Haas, “Coverage and Connectivity in Three-
Dimensional Networks”, In Proc. of Mobicom ’06, Sep. 2006.

[24] , I.F. Akyildiz, D. Pompili and T. Melodia, “Underwater Acoustic Sensor
Networks: Research Challenges”, Ad Hocs Networks Journal, (Elsevier),
March 2005.

