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Transmission Capacity of Spectrum Sharing

Ad-hoc Networks with Multiple Antennas

Rahul Vaze

Abstract

Two coexisting ad-hoc networks, primary and secondary, are considered, where each node of the

primary network has a single antenna, while each node of the secondary network is equipped with

multiple antennas. Using multiple antennas, each secondary transmitter uses some of its spatial transmit

degrees of freedom (STDOF) to null its interference towards the primary receivers, while each secondary

receiver employs interference cancelation using some of its spatial receive degrees of freedom (SRDOF).

This paper derives the optimal STDOF for nulling and SRDOF for interference cancelation that maximize

the scaling of the transmission capacity of the secondary network with respect to the number of antennas,

when the secondary network operates under an outage constraint at the primary receivers. With a single

receive antenna, using a fraction of the total STDOF for nulling at each secondary transmitter maximizes

the transmission capacity. With multiple transmit and receive antennas and fixing all but one STDOF for

nulling, using a fraction of the total SRDOF to cancel the nearest interferers maximizes the transmission

capacity of the secondary network.

I. INTRODUCTION

With ever increasing demand for bandwidth, extensive research has focussed on the intelligent

usage of available spectrum [1]–[4]. One of the key ideas to improve the spectrum utilization
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is the coexistence of secondary networks together with the primary/licensed network, e.g. the

use of cognitive radios. Cognitive radios are intelligent devices which continuously sense the

spectrum and schedule transmissions in unutilized frequency bands under a constraint on the

interference they cause to the primary receivers. Spectrum efficiency can be further improved

by using multiple antennas at cognitive radios, where multiple antennas are used for nulling

the interference they cause to the primary receivers or for transmit beamforming or receive

interference cancelation [5]–[8].

In this paper we consider the coexistence of two ad-hoc wireless networks (primary/licensed

and secondary). In an ad-hoc wireless network, multiple transmitter-receiver pairs communicate

simultaneously in an uncoordinated manner without the help of any fixed infrastructure. The

primary ad-hoc network is assumed to be oblivious to the presence of the secondary ad-hoc

network, and the secondary ad-hoc network operates under an outage constraint at the primary

receivers. Each node of the primary network is assumed to have a single antenna, while each node

of the secondary network is equipped with multiple antennas. We are interested in answering

the question: how does the transmission capacity of the secondary network scale with multiple

antennas at secondary nodes, where the transmission capacity is the maximum allowable intensity

of nodes, satisfying a per transmitter receiver rate, and outage probability constraint [9]–[12].

In prior work, the throughput scaling of secondary networks with respect to the number

of secondary nodes under an outage constraint at the primary receivers has been studied in

[13]–[15]. With a single transmit and receive antenna at the secondary nodes, upper and lower

bounds on the transmission capacity of the secondary network have been derived in [16], while

an exact transmission capacity expression of the secondary network has been derived in [17]

when the path-loss exponent is four. For a single secondary transmitter-receiver pair, opportunistic

spectrum sharing using multiple antennas has been proposed and analyzed in [7], [8]. To the best

of knowledge, however, no work has been reported on the scaling of the transmission capacity
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of the secondary networks with respect to the number of antennas available at secondary nodes.

In this paper we assume that each secondary transmitter has N antennas, while each secondary

receiver has M antennas. Each secondary transmitter is assumed to send a single data stream

through its multiple antennas. Multiple antennas at each secondary transmitter are used for

partial nulling, where some spatial transmit degrees of freedom (STDOF) are used for nulling its

interference towards the primary receivers, and the rest of the STDOF are used for beamforming

towards its corresponding secondary receiver. Similarly, multiple antennas at each secondary

receiver are used for partial interference cancelation, where some spatial receive degrees of

freedom (SRDOF) are used for canceling the interference from both the primary and secondary

transmitters, and the rest SRDOF are used to increase the strength of the signal of interest. Our

results are summarized as follows.

• N = M = 1: We derive an exact expression for the secondary transmission capacity. We

characterize the increase in the transmission capacity of the secondary network with respect

to the increase in the allowed outage probability tolerance at the primary receivers.

• Arbitrary N , M = 1: Using a fraction of the total STDOF at each secondary transmitter for

nulling its interference towards the nearest primary receivers, and the rest of the STDOF for

transmit beamforming maximizes the upper and lower bound on the secondary transmission

capacity. The secondary transmission capacity lower bound scales as min{N 2
α , N1− 2

α}, and

the upper bound scales as N
2
α , where α is the path-loss exponent.

• N = 1, Arbitrary M : The transmission capacity is independent of M .

• Arbitrary N and M (M ≥ N ): With N − 1 STDOF for interference nulling at each

secondary transmitter, using a fraction of the total SRDOF at each secondary receiver for

canceling the nearest interferers at each secondary receiver, maximizes the upper and lower

bound on the secondary transmission capacity. With M = N , the secondary transmission

capacity lower bound scales as N1− 2
α , and the upper bound scales linearly in N .



4

Our results show that the transmission capacity of the secondary network scales sublinearly

with the number of transmit antennas with or without multiple antennas at each secondary

receiver. In comparison, when no secondary nodes are present, the transmission capacity of the

primary network scales linearly with the number of receive antennas even with a single transmit

antenna [18], [19]. The transmission capacity with coexisting networks is reduced because the

secondary network is required to operate under two outage constraints: one at the primary

receivers, and the other at the secondary receivers.

Another interesting thing to note is the role of transmit antennas in the secondary network.

Our results show that with a single transmit antenna, the transmission capacity of the secondary

network does not scale with the number of receive antennas. This is in contrast to the result

of [18], [19], where without the secondary network, the transmission capacity with a single

transmit antenna is shown to scale linearly with the number of receive antennas. Our result can

be explained by noting that with only a single transmit antenna, none of secondary transmitters

can null their interference towards any of the primary receivers, and hence the transmission

capacity is bottlenecked by the outage constraint at the primary receivers. Consequently, the

transmission capacity of the secondary network is independent of the number of antennas at the

secondary receivers. Thus, to maximize the transmission capacity of the secondary network, the

number of secondary transmit antennas should be similar to the number of secondary receive

antennas.

Notation: Let A denote a matrix, a a vector and ai the ith element of a. Transpose and

conjugate transpose is denoted by T , and ∗, respectively. The expectation of function f(x) with

respect to x is denoted by E(f(x)). A circularly symmetric complex Gaussian random variable x

with zero mean and variance σ2 is denoted as x ∼ CN (0, σ2). Let S1 be a set and S2 be a subset

of S1. Then S2\S1 denotes the set of elements of S1 that do not belong to S2. Let f(n) and

g(n) be two function defined on some subset of real numbers. Then we write f(n) = Ω(g(n)) if
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∃ k > 0, n0, ∀ n > n0, |g(n)|k ≤ |f(n)|, f(n) = O(g(n)) if ∃ k > 0, n0, ∀ n > n0, |f(n)| ≤

|g(n)|k, and f(n) = Θ(g(n)) if ∃ k1, k2 > 0, n0, ∀ n > n0, |g(n)|k1 ≤ |f(n)| ≤ |g(n)|k2. We

use the symbol := to define a variable.

II. SYSTEM MODEL

Consider an ad-hoc network with two sets of nodes: primary and secondary. Each primary and

secondary transmitter has a primary and secondary receiver associated with it, located at distance

dp and ds in random direction, respectively. The primary nodes are oblivious to the presence of

secondary nodes. The secondary nodes (both transmitters and receivers) are aware of the primary

nodes, and try to maximize the transmission capacity [9] of the secondary network, subject to

a constraint on the added outage probability they cause at any primary receiver. The locations

of primary and secondary transmitters are modeled as two independent homogenous Poisson

point processes (PPPs) on a two-dimensional plane with intensity λ1, and λ2, respectively. We

consider a slotted ALOHA like random access protocol, where each transmitter attempts to

transmit with an access probability Pa, independently of all other transmitters. Consequently,

the active primary and secondary transmitter processes are also homogenous PPPs on a two-

dimensional plane with intensity λp = Paλ1, and λs = Paλ2. Let the location of the nth active

primary transmitter be Tpn, and the nth active secondary transmitter be Tsn. The set of all active

primary and secondary transmitters is denoted by Φp = {Tpn, n ∈ N} and Φs = {Tsn, n ∈ N},

respectively. The coexisting ad hoc networks under consideration is illustrated in Fig. 1, where

the red dots represent the primary transmitters and receivers, while the blue dots represent the

secondary transmitters and receivers. We assume that each primary transmitter and receiver has

a single antenna, while each secondary transmitter has N antennas, and each secondary receiver

has M antennas. We restrict ourselves to the case when each secondary transmitter transmits

only one data stream through its multiple antennas.
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The received signal at the primary receiver Rp0 is

y0 =
√
Ppd

−α/2
p h00xp0 +

∑
n:Tpn∈Φp\{Tp0}

√
Ppd

−α/2
pp,n h0nxpn +

∑
n:Tsn∈Φs

√
Ps
N
d−α/2sp,n g0nunxsn,(1)

where Pp and Ps is the transmit power of each primary and secondary transmitter, respectively,

h0n ∈ C is the channel between Tpn and Rp0, g0n ∈ C1×N is the channel between Tsn and Rp0,

dpp,n and dsp,n is the distance between Tpn and Rp0, and Tsn and Rp0, respectively, α is the path

loss exponent α > 2, xpn and xsn are data signals transmitted from Tpn and Tsn, respectively,

with xpn, xsn ∼ CN(0, 1), un ∈ CN×1 is the beamformer used by the nth secondary transmitter.

We consider the interference limited regime, i.e. noise power is negligible compared to the

interference power, and drop the additive white Gaussian noise contribution [9]. We assume that

each h0n, and each entry of g0n is i.i.d. CN (0, 1) to model a richly scattered fading channel

with independent fading coefficients between different transmitting receiving antennas.

The CM×1 received signal v0 at the secondary receiver Rs0 is

v0 =

√
Ps
N
d−α/2c Q00u0xc0 +

∑
n:Tsn∈Φs\{Ts0}

√
Ps
N
d−α/2ss,n Q0nunxsn +

∑
n:Tpn∈Φp

√
Ppd

−α/2
ps,n f0nxpn,(2)

where dss,n and dps,n is the distance between Tsn and Rs0, and Tpn and Rs0, respectively, Q0n ∈

CM×N is the channel between Tsn and Rs0, f0n ∈ CM×1 is the channel between Tpn and Rs0.

For partial interference cancelation, the nth secondary receiver multiplies t∗n to the received

signal. Thus with signal model (1), and (2), the signal-to-interference ratio (SIR) for Rp0 is

SIRp :=
Ppd

−α
p |h00|2∑

n:Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n:Tsn∈Φs

Psd−αsp,n|g0nun|2
,

and the SIR for Rs0 is

SIRs :=
Psd

−α
s |t∗0Q00u0|2∑

n:Tsn∈Φs\{Ts0} Psd
−α
ss,n|t∗nQ0nun|2 +

∑
n:Tpn∈Φp

Ppd−αps,n|t∗0f0n|2
,

respectively. We assume that tn = 1 if M = 1. Without the presence of secondary network, the

SIR at the primary receiver Rp0 is SIRnc
p :=

Ppd
−α
p |h00|2∑

n:Tpn∈Φp\{Tp0}
Ppd
−α
pp,n|h0n|2

.

We assume that the rate of transmission for each primary (secondary) transmitter is Rp =

log(1 + βp) (Rs = log(1 + βs)) bits/sec/Hz. Therefore, a packet transmitted by Tp0 (Ts0) can
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be successfully decoded at Rp0 (Rs0), if SIRp ≥ βp (SIRs ≥ βs). Without the presence of

secondary network, for a given rate Rp bits/sec/Hz, let λp be the maximum intensity for which the

outage probability of the primary network P nc
p,out = P

(
SIRnc

p ≤ βp
)
≤ εncp . Allowing secondary

transmissions increases the interference received at Rp0 as quantified in SIRp compared to

SIRnc
p , and thereby increases the outage probability from P nc

p,out to Pp,out = P (SIRp ≤ βp) for

a fixed λp. Let the increased outage probability tolerance at the primary receivers be εncp + ∆p.

Then we want to find the maximum intensity of secondary transmitters λs for which Pp,out ≤

εncp + ∆p, and the outage probability of the secondary network Ps,out = P (SIRs ≤ βs) ≤ εs.

Thus, the maximum intensity of the secondary network is λ?s = maxPp,out≤εncp +∆p, Ps,out≤εs λ.

Hence following [9] the transmission capacity of the secondary network is Cs := λ?s(1− εs)Rs

bits/sec/Hz/m2. In the rest of the paper, we derive λ?s with or without multiple antennas at the

secondary nodes. Following [9], to compute the outage probability Pp,out and Ps,out, we consider

a typical transmitter receiver pair (Tp0, Rp0) and (Ts0, Rs0), respectively.

III. N = 1,M = 1

Theorem 1: With M = N = 1, and c1 =
2π2Csc( 2π

α
)

α
where Csc is co-secant,

λ?s = min

− ln
(

1−εncp −∆p

1−εncp

)
d2
p

(
Pp
Psβp

)α
2

,
− ln(1− εs)− λpc1d

2
s(
Psβs
Ps

)
2
α

c1β
2
α
s d2

s

 .

Proof: See appendix A.

Discussion: In this section we derived an exact expression for the intensity of the secondary net-

work, when the secondary network operates under an outage constraint at the primary receivers.

In prior work, an exact expression for the intensity of the secondary network was derived in [17]

only for α = 4, while upper and lower bounds were derived in [16]. Our derivation of the exact

expression used the fact that the interference caused by the primary and the secondary transmitters

at either the primary or the secondary receiver is independent. Using the independence, we then

applied the Laplace transform method of [12], to derive the exact expression. Using the derived
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expression, we characterized the increase in the intensity of the secondary network by increasing

the allowed outage probability tolerance at the primary receivers.

IV. MULTIPLE TRANSMIT ANTENNAS N , SINGLE RECEIVE ANTENNA M = 1

In this section we consider the case when each secondary transmitter has N antennas, while

each secondary receiver has a single antenna, M = 1. With multiple antennas at each secondary

transmitter, two of the promising strategies to increase the intensity of the secondary network

are: 1) nulling the interference caused to the primary receivers, or 2) transmit beamforming on

the channel to its corresponding receiver. The first strategy decreases the interference received by

each primary receiver, and hence increases the first term inside the minimum for the expression

of λ?s (Theorem 1), while the second strategy helps in increasing the signal power for each

secondary transmission and increases the second term inside the minimum for the expression of

λ?s (Theorem 1). Since the transmission capacity is the minimum of the transmission capacity

while considering the outage constraint at the primary and secondary receivers (Theorem 1),

multiple antennas at each secondary transmitter should be used to jointly increase the transmis-

sion capacity under both the constraints. Towards that end, we assume that out of the total N

STDOF, k are used for nulling interference towards the k nearest primary receivers, while the rest

N − k are used for transmit beamforming. Note that nulling interference towards the k nearest

primary receivers, does not ensure that the interference contribution from the k nearest secondary

interferers are canceled at each primary receiver. This is illustrated in Fig. 2, where the red dots

represent the primary transmitters and receivers, while the blue dots represent the secondary

transmitters and receivers, and each secondary transmitter nulls its interference towards its k

primary receivers. The interference nulling, however, does not necessarily nulls the interference

from the k nearest secondary transmitters at each primary receiver, e.g. at primary receiver Rpl

(circle B), interference is nulled from only one nearest secondary transmitter.

Let C be the random variable denoting the number of nearest secondary interferers that are
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canceled at any primary receiver. Then with C = c nearest secondary interferers canceled at

Rp0, the SIR at Rp0 is

SIRp :=
Ppd

−α
p |h00|2∑

n: Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n: n>c, Tsn∈Φs

Psd−αsp,n|g0nun|2
.

The SIR at Rs0 is

SIRs :=
Psd

−α
s |q00u0|2∑

n: Tsn∈Φs\{Ts0} Psd
−α
ss,n|q0nun|2 +

∑
n: Tpn∈Φp

Ppd−αps,n|f0n|2
,

where q0n is the 1 × N channel vector between Tsn and Rs0, and un lies in the null space of

[gT1n . . .g
T
kn] to null the interference towards the k nearest primary receivers, and chosen such

that it maximizes the signal power |qnnun|2. From [18], un = q∗nnSS
∗

|q∗nnSS∗|
, where S ∈ CN×N−k is

the orthonormal basis of the null space of [gT1n . . .g
T
kn].

Lemma 1: The signal power s := |q00u0|2 at the secondary receiver with u0 =
q∗00SS

∗

|q∗00SS
∗| is

distributed as Chi-square with 2(N − k) DOF The interference power at the secondary receiver

from the secondary transmitter n, |q0nun|2, is distributed as Chi-square with 2 degrees of freedom

(DOF).

Proof: The first statement follows from [18]. The second statement follows since un and q0n

are independent and since each entry of q0n ∼ CN (0, 1).

Lemma 2: The interference power at primary receiver from the secondary transmitter n,

|g0nun|2, is distributed as Chi-square with 2 DOF.

Proof: Follows from the fact that un and g0n are independent and since each entry of g0n ∼

CN (0, 1).

Lemma 3: The interference received at any secondary receiver from the union of transmitters

belonging to Φp (with intensity λp, transmission power Pp) and Φs (with intensity λs, transmission

power Ps) is equal to the interference received from transmitters belonging to a single PPP Φ

with intensity λpP
2
α
p + λsP

2
α
s and unit transmission power.

Proof: See appendix B.
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Theorem 2: With M = 1, when each secondary transmitter uses k DOF for nulling its interfer-

ers towards its k nearest primary receivers, and N−k DOF for beamforming, k = θN, θ ∈ (0, 1]

optimizes the scaling of intensity of the secondary network λs, and the intensity scales as

λ?s = Ω
(

min{N 2
α , N1− 2

α}
)

, and λ?s = O
(
N

2
α

)
.

Proof: See appendix C.

Discussion: In this section we showed that using k = θN, θ ∈ (0, 1], STDOF maximizes

the intensity of the secondary network, and the lower bound on the intensity of the secondary

network scales sublinearly in N . A major obstacle in the analysis stems from the fact that

when each secondary transmitter nulls its interference towards its k nearest primary receivers, it

does not imply that the interference from the k nearest secondary interferers is canceled at any

primary receiver. Therefore, the results of this section do not follow directly from previous work

on finding the intensity of ad-hoc networks with multiple antennas when each receiver cancels

interference from some of its nearest interferers [18], [19].

Without the presence of the secondary network, the intensity scales as N
2
α when each trans-

mitter has N antennas and uses transmit beamforming [20]. Comparing our results with [20], we

find that in our case the intensity of the secondary network scales as min
{
N

2
α , N1− 2

α

}
because

the secondary transmitters have to satisfy two outage constraints: one at the primary receiver

and the other at the secondary receiver. Since each primary transmitter and receiver has only a

single antenna, even in the best case when exactly k nearest secondary interferers are canceled

at each primary receiver, considering the outage constraint at the primary receivers, the intensity

of the secondary network scales at best as N1− 2
α .

V. MULTIPLE TRANSMIT AND RECEIVE ANTENNAS

In this section we assume that each secondary transmitter has N antennas and each secondary

receiver has M antennas. The N transmit antennas at each secondary transmitter are used to
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null interference towards its N − 1 nearest primary receivers,1 while each secondary receiver

uses its m SRDOF for canceling the nearest interferers from the union of the primary and the

secondary interferers, and the rest N −m SRDOF are used for increasing the strength of signal

of interest.

Then, the SIR at Rp0 is

SIRp :=
Ppd

−α
p |h00|2∑

n:Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n:n>c, Tsn∈Φs

Psd−αsp,n|g0nun|2
,

and the SIR at Rs0 is

SIRs :=
Psd

−α
s |t∗0Q00u0|2∑

n:Tsn∈Φs\{Ts0} Psd
−α
ss,n|t∗nQ0nun|2 +

∑
n:Tpn∈Φp

Ppd−αps,n|t∗0f0n|2
,

where un lies in the null space of [gT1n . . .g
T
N−1n] to null the interference towards its N−1 nearest

primary receivers, tn lies in the null space of channel vectors corresponding to its m nearest

interferers from {Φp ∪ Φs}\{Tsn} chosen such that it maximizes the signal power |t∗Qnnun|2.

From [18], tn = (Qnnu)∗RR∗

|(Qnnu)∗RR∗| , where R ∈ CM×M−m is the orthonormal basis of the null space

of channel vectors corresponding to its m nearest interferers from Φp ∪ Φs\{Tsn}.

Lemma 4: The signal power s := |t∗0Q00u0|2 at the secondary receiver with tn = (Qnnu)∗RR∗

|(Qnnu)∗RR∗|

is distributed as Chi-square with 2(M −m) DOF The interference power at secondary receiver

from the secondary transmitter n I0n
ss := |t∗0q0nun|2, and the interference power at secondary

receiver from the primary transmitter n I0n
ps := |t∗0f0n|2 is distributed as Chi-square with 2 DOF.

Proof: The first statement follows from [18]. The second and third statement follows since t∗0,

un, and q0n are independent, and since each entry of q0n, f0n ∼ CN (0, 1).

Lemma 5: The interference received at the typical secondary receiver Rs0∑
n:Tsn∈Φs\{Ts0}

Psd
−α
ss,nI

0n
ss +

∑
n:Tpn∈Φp

Ppd
−α
ps,nI

0n
ps =

∑
n:T∈Φ\{Ts0}

Pnd
−α
n I0n,

where I0n is Chi-square distributed with 2 DOF, Φ = {Φs ∪ Φp}, and Pn is a binary random

variable which takes value Pp with probability λp
λp+λs

, and value Ps with probability λs
λp+λs

.

1For analytical tractability we do not consider the general case of using k STDOF for nulling and rest N−k for beamforming.
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Proof: Since the superposition of two PPP’s is a PPP, consider the union of Φp and Φs as a

single PPP Φ = {Φs ∪ Φp}. Thus, the interference received at the typical secondary receiver

Rs0 is derived from the transmitters corresponding to Φ with channel gains I0n
ss or I0n

ps , where

both I0n
ss and I0n

ps are distributed as Chi-square with 2 DOF. Note that the primary transmitters

use power Pp, and the secondary transmitters use power Ps. The probability that any randomly

chosen node of Φ belongs to Φp is λp
λp+λs

(Lemma 3) [16], hence the power transmitted by any

node of Φ is Pp with probability λp
λp+λs

, and Ps with probability λs
λp+λs

.

Theorem 3: When each secondary transmitter uses N−1 DOF for nulling, and each secondary

receiver uses m DOF for canceling the m nearest interferers from {Φs ∪ Φp}\{Ts0}, then m =

θN, θ ∈ (0, 1]) maximizes the lower and upper bound on the intensity of secondary ad-hoc

network, and λ?s = Ω
(

min{M,N1− 2
α}
)

, and λ?s = O
(

min
{
N,M1+ 2

α

})
.

Proof: See appendix D.

Discussion: In this section we showed that using a fraction of total SRDOF maximizes the

scaling of the intensity of the secondary network, when N − 1 STDOF are used for interference

nulling by each secondary transmitter. Comparing results of this Section with Section IV, we

observe that employing similar number of antennas at both the secondary transmitters and

receivers in comparison to having multiple antennas only at the secondary transmitters improves

the intensity scaling for path-loss exponent α > 4.

Without the presence of the secondary network, with M receive antennas, the intensity of

an ad hoc network is shown to scale linearly with M even with a single transmit antenna

[18], [19]. In contrast, with coexisting networks, our results show that with a single transmit

antenna, the intensity of the secondary network is independent of the number of receive antennas

of each secondary receiver. This result can be understood by noting that with a single transmit

antenna, none of the secondary transmitters can null their interference towards any of the primary

receivers, and the intensity of the secondary network is limited by the outage constraint at the

primary receivers, and hence independent of the number of receive antennas of the secondary
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receivers. Therefore it is imperative to use similar number of transmit and receive antennas at

the secondary nodes to maximize the intensity of the secondary network.

VI. SIMULATIONS

In all the simulation results we use α = 3, dp = ds = 1m, Pp
Ps

= 2, βp = βs = 1 corresponding

to Rp = Rs = 1 bits/sec/Hz. In Fig. 3, we plot the transmission capacity of the secondary

network with respect to the transmission capacity of the primary network to show how one

can be tradeoff against other for εncp + ∆p = εs = .1 and M = N = 1. In Fig. 4 we plot

the transmission capacity of the secondary network with increasing primary outage probability

constraint for a primary network intensity of λp = 0.01, secondary outage constraint εs = .1,

and M = N = 1. We see that the transmission capacity of the secondary network increases

with increasing primary outage probability constraint until a point where the secondary outage

constraint becomes tight, and thereafter the transmission capacity of the secondary network is

constant, limited by the secondary outage constraint. In Fig. 5, we plot the transmission capacity

of the secondary network with respect to the number of transmit antennas N at each secondary

transmitter for different values of θ = 1
2
, 1

3
, 1

4
, with M = 1. We see that for all the values of θ

the transmission capacity of the secondary network scales sublinearly with N as predicted by

Theorem 2. In Fig. 6, we plot the transmission capacity of the secondary network with respect to

the number of secondary transmit and receive antennas N and M . We see that for N = M the

transmission capacity of the secondary network scales sublinearly with N , however, for N = 1

the transmission capacity of the secondary network is constant and determined by the outage

constraint of the primary network.

VII. CONCLUSIONS

In this paper we considered deployment of a secondary network overlaid on top of an existing

primary network. Under an outage constraint at the primary network’s receivers from the sec-

ondary network’s transmitters, we characterized the maximum intensity of the secondary network
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with and without multiple antennas. We showed that with a single antenna at the secondary

nodes, the intensity of the secondary network grows logarithmically with the outage probability

tolerance at the primary receivers. With multiple antennas, we characterized the optimal role

of multiple antennas at the secondary nodes that maximizes the scaling of the intensity of the

secondary network. We showed that employing multiple antennas only at the secondary receivers

does not yield any gain. To exploit the multiple antenna gain, either the multiple antennas should

be employed at the secondary transmitters, or at both the secondary transmitters and receivers.

We showed that with multiple antennas only at the secondary transmitters, the intensity of the

secondary network scales sublinearly with the number of antennas. The sublinear scaling of the

intensity cannot be improved by employing multiple antennas at both the secondary transmitters

and receivers, however, the sublinear exponent is better for path-loss exponent greater than four.

APPENDIX A

First we find the value of λs for which Pp,out ≤ εncp + ∆p. Using the definition of SIRp,

Pp,out = P

(
Ppd

−α
p |h00|2∑

n: Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n: Tsn∈Φs

Psd−αsp,n|g0n|2
≤ βp

)
,

εncp + ∆p = P

(
Ppd

−α
p |h00|2∑

n: Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n: Tsn∈Φs

Psd−αsp,n|g0n|2
≤ βp

)
,

(a)
= 1− EIpp,Isp

{
exp

(
−
βp(PpIpp + PsIsp)d

α
p

Pp

)}
,

(b)
= 1−

∫ ∞
0

exp
(
−βp(Ipp = s)dαp

)
fIpp(s)ds

∫ ∞
0

exp

(
−
βp(Isp = t)Psd

α
p

Pp

)
fIsp(t)dt,

(c)
= 1− LIpp

(
βpd

α
p

)
LIsp

(
Psβpd

α
p

Pp

)
,

(d)
= 1− exp

(
−λpc1β

2
α
p d

2
p

)
exp

(
−λsc1d

2
p

(
Psβp
Pp

) 2
α

)
,

where (a) follows by letting Ipp :=
∑

n: Tpn∈Φp\{Tp0} d
−α
pp,n|h0n|2, and Isp :=

∑
n: Tsn∈Φs

d−αsp,n|g0n|2,

and taking the expectation with respect to |h00|2 since |h00|2 is exponentially distributed, (b)

follows since Ipp and Isp are independent, (c) follows by defining LI(.) as the Laplace transform
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of I , and (d) follows since LIpp
(
βpd

α
p

)
= exp

(
−λpc1β

2
α
p d2

p

)
[12], where c1 is a constant. Note

that εncp = 1− exp
(
−λpc1β

2
α
p d2

p

)
[12], hence λs =

− ln

(
1−εncp −∆p

1−εncp

)
d2
p

(
Pp
Psβp

)α
2
.

Next, we evaluate the value of λs such that Ps,out ≤ εs. By definition

Ps,out = P (SIRs ≤ βs) ,

= P

(
Psd

−α
s |q00|2∑

n: Tsn∈Φs\{Ts0} Psd
−α
ss,n|q0n|2 +

∑
n: Tpn∈Φp

Ppd−αps,n|f0n|2
≤ βs

)
.

Using the same analysis as above for finding λs such that Pp,out ≤ εncp + ∆p we get λs =

− ln(1−εs)−λpc1d2
s(
Psβs
Ps

)
2
α

c1β
2
α
s d2

s

.

APPENDIX B

The interference received at secondary receiver Rs0 is

Iss + Ips =
∑

n: Tsn∈Φs\{Ts0}

Psd
−α
ss,n|q0nun|2 +

∑
n: Tpn∈Φp

Ppd
−α
ps,n|f0n|2,

=
∑

n: Tsn∈Φs\{Ts0}

(
dss,n

P
1
α
s

)−α
|q0nun|2 +

∑
n: Tpn∈Φp

(
dps,n

P
1
α
p

)−α
|f0n|2,

(a)
=

∑
n: Tsn∈Φ′c\{Ts0}

(
d
′

ss,n

)−α
|q0nun|2 +

∑
n: Tpn∈Φ′p

(
d
′

ps,n

)−α
|f0n|2,

(b)
=

∑
n: Tsn∈Φsp\{Ts0}

(
d
′

cc,n

)−α
|q0nun|2,

where in (a) Φ′c is a PPP with intensity λsP
2
α
s , and Φ′p is a PPP with intensity λpP

2
α
p , since

scaling the distances in a PPP by 1
a

increases the intensity of a PPP by a2, and (b) follows by

defining Φsp = {Φp ∪ Φs} with intensity λpP
2
α
p + λsP

2
α
s since superposition of two PPP’s is

a PPP with intensity equal to the sum of two superposed PPP’s, and since q0nun and f0n are

identically distributed from Lemma 1.

APPENDIX C

Since we are interested in establishing the scaling behavior of the intensity of the secondary

network with respect to N , we consider the case when both N and k are large enough. First we

find the value of λp for which Pp,out ≤ εncp + ∆p.
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Lower Bound: The outage probability Pp,out is

Pp,out = EC

{
P

(
Ppd

−α
p |h00|2∑

n: Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n: n>c,Tsn∈Φs

Psd−αsp,n|g0n|2
≤ βp

)}
,

εp + ∆p = EC

{
P

(
Ppd

−α
p |h00|2∑

n: Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n: n>c,Tsn∈Φs

Psd−αsp,n|g0n|2
≤ βp

)
|C < bk/mc

}
×P (C < bk/mc)

+EC

{
P

(
Ppd

−α
p |h00|2∑

n: Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n: n>c,Tsn∈Φs

Psd−αsp,n|g0n|2
≤ βp

)
|C ≥ bk/mc

}
×P (C ≥ bk/mc) ,

(a)

≤ δ + EC
{

1− EIpp,Icsp

{
exp

(
−
βp(PpIpp + PsI

c
sp)d

α
p

Pp

)}
|C ≥ bk/mc

}
,

(b)
= δ + EC

{
1−

∫ ∞
0

exp
(
−βp(Ipp = s)dαp

)
fIpp(s)ds∫ ∞

0

exp

(
−
βp(I

x
sp = t)Psd

α

Pp

)
fIxsp(t)dt|C ≥ bk/mc

}
,

(c)
= δ + EC

{
1− LIpp

(
βpd

α
p

)(
1− P

(
Ppd

−α
p |h00|2∑

n: n>c,Tsn∈Φs
Psd−αsp,n|g0n|2

≤ βp

))
|C ≥ bk/mc

}
,

(d)

≤ δ + EC
{

1− exp
(
−λpc1β

2
α
p d

2
p

)(
1− (πλs)

α
2 βp

(
Ps
Pp

)
dαpφ

((α
2
− 1
)−1

(c+ 1)1−α
2 + c3

))
|C ≥ bk/mc} ,

= δ + 1− exp
(
−λpc1β

2
α
p d

2
p

)
+ exp

(
−λpc1β

2
α
p d

2
p

)
(πλs)

α
2 βp

(
Ps
Pp

)
dαpφ

((α
2
− 1
)−1

EC
{

(c+ 1)1−α
2 |C ≥ bk/mc

}
+ c3

)
,

(e)

≤ δ + εp + exp
(
−λpc1β

2
α
p d

2
p

)
(πλs)

α
2 βp

(
Ps
Pp

)
dαpφ

((α
2
− 1
)−1

(bk/mc+ 1)1−α
2 + c3

)
,

where (a) follows by letting m ∈ N such that P (C < bk/mc) ≤ δ, δ ≤ ∆p, and m is

independent of k, and Icsp :=
∑

n: n>c,Tsn∈Φs
d−αsp,n|g0n|2, and |h00|2 is exponentially distributed,

existence of m ∈ N such that P (C < bk/mc) ≤ ∆p is guaranteed, since for large values of k

canceling only a few nearest secondary interferers has a very small probability, (b) follows since

Ipp and Isp are independent, (c) follows by defining LI(.) as the Laplace transform of I , and (d)

follows from the upper bound on outage probability [19, Theorem 4], (e) follows since for C ≥

bk/mc ,EC
{

(c+ 1)1−α
2 |C ≥ bk/mc

}
≤ (k+1)1−α

2 for α > 2, and εp = 1−exp
(
−λpc1β

2
α
p d2

p

)
.
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Thus, λs ≥ 1
π

 ∆p−δ

exp

(
−λpc1β

2
α
p

)
d2
pβp

(
Ps
Pp

)
dαpφ

(
(α2−1)

−1
(bk/mc+1)1−α2 +c3

) 2
α

, and λs = Ω
(
k1− 2

α

)
.

Upper bound: To find an upper bound on λs, we consider the case when exactly k nearest

secondary interferers are canceled at each primary receiver using k DOF for nulling by each

secondary transmitter. This gives an upper bound since in general the the number of nearest

interferers canceled at each primary receiver is a random variable, and the performance is limited

by those primary receivers that have less than k nearest interferers canceled. Thus,

Pp,out = EC

{
P

(
Ppd

−α
p |h00|2∑

n:Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n>c,Tsn∈Φs

Psd−αsp,n|g0n|2
≤ βp

)}
,

εp + ∆p

(a)

≥ P

(
Ppd

−α
p |h00|2∑

n:Tpn∈Φp\{Tp0} Ppd
−α
pp,n|h0n|2 +

∑
n>k,Tsn∈Φs

Psd−αsp,n|g0n|2
≤ βp

)

= 1− EIpp,Ixsp

{
exp

(
−
βp(PpIpp + PsI

k
sp)d

α
p

Pp

)}
,

= 1−
∫ ∞

0

exp
(
−βp(Ipp = s)dαp

)
fIpp(s)ds

∫ ∞
0

exp

(
−
βp(I

k
sp = t)Psd

α

Pp

)
fIxsp(t)dt,

= 1− LIpp
(
βpd

α
p

)(
1− P

(
Ppd

−α
p |h00|2∑

n>k,Tsn∈Φs
Psd−αsp,n|g0n|2

≤ βp

))
,

(b)

≥ 1− exp
(
−λpc1β

2
α
p d

2
p

) (k + 5
8

+ α
4

)α
2

dαβ(πλ)
2
α

,

where (a) follows from the fact that canceling exactly k nearest secondary interferers at each

primary receiver using k DOF for nulling by each secondary transmitter provides the best

performance, and (b) follows from the lower bound on outage probability [19, Theorem 4].

Thus, from the lower and upper bound

λs = O(k), and λs = Ω(k1− 2
α ). (3)
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Next, we evaluate the maximum λs such that Ps,out ≤ εs. By definition

Ps,out = P

(
Psd

−α
s |q00u0|2∑

n: Tsn∈Φs\{Ts0} Psd
−α
ss,n|q0nun|2 +

∑
n: Tpn∈Φp

Ppd−αps,n|f0n|2
≤ βs

)
,

(a)
= P

(
Psd

−α
s |q00u0|2∑

n: Tn∈Φ\{Ts0} d
−α
n |q0nu0|2

≤ βs

)
,

(b)

≤ c5(λpP
2
α
p + λsP

2
α
s )

(
βs

dc(N − k)

) 2
α

,

(c)

≥ c6(λpP
2
α
p + λsP

2
α
s )

(
βs

dc(N − k)

) 2
α

where (a) follows from Lemma 3 by letting Φ = {Φs ∪ Φp} and Lemma 2, since |q0nun|2 is

Chi-square distributed with 2 DOF similar to |f0n|2, and (b) and (c) follows from [20], since

|q00u0|2 is a Chi-square random variable with 2(N − k) DOF Lemma 1 for constants c5 and c6.

Thus, considering the outage probability constraint of εs for the secondary network,

λs = Θ
(

(N − k)
2
α

)
. (4)

Combining (3) and (4), λ?s = Ω
(

min
{
k1− 2

α , (N − k)
2
α

})
, and λ?s = O

(
min

{
N, (N − k)

2
α

})
.

Hence k = θN, θ ∈ (0, 1], provides the best scaling of the intensity of the secondary network

and results in λ?s = Ω
(

min{N1− 2
α , N

2
α}
)

, and λ?s = O
(

(N − k)
2
α

)
.

APPENDIX D

Considering the outage probability at any primary receiver when each secondary transmitter

uses N − 1 DOF for nulling, from Theorem 2

λs = Ω
(
N1− 2

α

)
, and λs = O (N) . (5)

Next, we evaluate the maximum λs that satisfies the outage probability constraint of εs for the

secondary network with rate Rp bits/sec/Hz for each transmission. Using Lemma 5, the outage
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probability for the secondary pair Ts0Rs0 is

Ps,out
(a)
= P

(
Psd

−α
s |t∗0Q00u0|2∑

n>m, Tn∈Φ\{T0} Pnd
−α
n I0n

≤ βs

)
,

(b)

≥ 1− (M −m)(m+ 1 + c4)
2
α

dαp βs

Ps
(π(λs + λp))

α
2

(
λp

Pp(λp + λs)
+

λs
Ps(λp + λs)

)
(c)

≤
(π(λp + λs))

α
2 βpd

α
p

((
α
2
− 1
)−1

(m+ 1)1−α
2 + c3

)
M −m− 1

(
λpPp
λp + λs

+
λsPs
λp + λs

)
,

where in (a) Φ = {Φs∪Φp} Lemma 5, and I0n is a Chi-square distributed random variable with

2 DOF (Lemma 4), and (b), and (c) follow from [19] and [18], respectively, with |t∗0Q00u0|2

Chi-square distributed with 2(M −m) DOF (Lemma 4), and after taking the expectation with

respect to Pn. Thus, using m = θM, θ ∈ (0, 1], provides the best scaling of the intensity and

results in

λs = Ω(M), and λs = O(M1+ 2
α ). (6)

Hence combining (5), and (6), λ?s = Ω
(

min{M,N1− 2
α}
)

, and λ?s = O
(

min
{
N,M1+ 2

α

})
.
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