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Abstract—In this work, we study the problem of power
allocation and adaptive modulation in teams of decision makers.
We consider the special case of two teams with each team
consisting of two mobile agents. Agents belonging to the same
team communicate over wireless ad hoc networks, and they try
to split their available power between the tasks of communication
and jamming the nodes of the other team. The agents have
constraints on their total energy and instantaneous power usage.
The cost function adopted is the difference between the rates
of erroneously transmitted bits of each team. We model the
adaptive modulation problem as a zero-sum matrix game which
in turn gives rise to a a continuous kernel game to handle
power control. Based on the communications model, we present
sufficient conditions on the physical parameters of the agents
for the existence of a pure strategy saddle-point equilibrium
(PSSPE).

I. I NTRODUCTION

The decentralized nature of wireless ad hoc networks makes
them vulnerable to security threats. A prominent example of
such threats is jamming: a malicious attack whose objective
is to disrupt the communication of the victim network inten-
tionally, causing interference or collision at the receiver side.
Jamming attack is a well-studied and active area of research
in wireless networks. Unauthorized intrusion of such kind
has initiated a race between the engineers and the hackers;
therefore, we have been witnessing a surge of new smart
systems aiming to secure modern instrumentation and software
from unwanted exogenous attacks.

The problem under consideration in this paper is inspired
by recent discoveries of jamming instances in biological
species. In a series of playback experiments, researchers have
found that resident pairs of Peruvian warbling antbirds sing
coordinated duets when responding to rival pairs. But under
other circumstances, cooperation breaks down, leading to more
complex songs. Specifically, it has been reported that females
respond to unpaired sexual rivals by jamming the signals of
their own mates, who in turn adjust their signals to avoid the
interference [14].

Ad hoc networks consist of mobile energy-constrained
nodes. Mobility affects all layers in a network protocol stack
including the physical layer as channels become time-varying
[7]. Moreover, nodes such as sensors deployed in a field or
military vehicles patrolling in remote sites are often equipped
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with non-rechargeable batteries. Power control and adaptive
resource allocation (RA) play, therefore, a crucial role in
designing robust communications systems. At the physical
layer, power control can be used to maximize rate or mini-
mize the transmission error probability, see [2], [8] and the
references therein. In addition, in multi-user networks, power
control can be used to regulate the interference level at the
terminals of other users [4], [12], [15]. Due to the lack of
a centralized infrastructure in ad hoc networks, distributed
solutions are essential. In this work, similar to [2], [12],[15],
we model the power allocation problem as a noncooperative
game, which allows us to devise a non-centralized solution.As
a departure from previous research, however, the power control
mechanism we propose splits the power budget of each player
into two portions: a portion used to communicate with team-
mates and a portion used to jam the players of the other team.
More importantly, the objective function is chosen to be the
difference between the cumulative bit error rate (BER) of each
team; this allows for increased freedom in choosing physical
design parameters, besides the power level, such as the size
of modulation schemes.

Adaptive RA mechanisms involve varying physical layer
parameters according to channel, interference, and noise con-
ditions in order to optimize a specific metric, such as spec-
tral efficiency. Adapting the modulation scheme, choosing
coding schemes, and controlling the transmitter power level
are examples of adaptive RA schemes. Goldsmith and Chua
demonstrated in [6] that adaptive RA provides five times more
the spectral efficiency of nonadaptive schemes. In this work,
we propose an adaptive modulation scheme based on a zero-
sum matrix game played by both teams.

The conflicting objectives of the two teams entails the use of
game-theoretic framework to study this problem. We identify
three main tasks that each team needs to perform:

1) Optimal trajectory: computing the optimal motion path
for the agents

2) Power Allocation: dividing power between internal com-
munications and jamming

3) Adaptive Modulation: choosing an appropriate modula-
tions scheme

We addressed Task 1 in [3] by posing the problem as a
pursuit-evasion game. The optimal strategies of the players are
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obtained by using techniques fromdifferential game theory.
We also addressed Task 2 in [3] usingcontinuous kernel static
games; we will generalize the formulation in this work to
include a minimum rate constraint. This will lead to a more
practical scheme as it guarantees a non-zero communications
rate. Task 3 will be addressed in this work usingstatic matrix
games. The saddle-point equilibrium of the power allocation
problem is parametrized by the modulation schemes of the two
teams. We therefore introduce a third game in order to arrive
at the equilibrium modulation schemes. In fact, this gives rise
to a games-within-games structure: the optimal trajectory is
first found, power allocation is then performed, and finally the
optimal modulation is computed at each time instant.

The main contributions of this paper are as follows. We
introduce a third layer of games to our recent work [3] in
order to perform adaptive modulation. We also generalize
the power allocation problem introduced in [3] to ensure
non-zero communications rate. We introduce an optimization
framework taking into consideration constraints in energyand
power among the agents. Moreover, we relate the problem
of optimal power allocation for communication and jamming
to the communication model between the agents. Finally, we
provide a sufficient condition for existence of an optimal
decision strategy among the agents based on the physical
parameters of the problems.

The rest of the paper is organized as follows. We formu-
late the problem in Section II and explain the underlying
notation. The saddle-point equilibrium properties of the team
power control problem are studied in Section III with the
specific example of systems employing uncoded M-quadrature
amplitude modulations (QAM). We introduce our adaptive
modulation scheme in Section IV. Simulation results are
presented in Section V. We conclude the paper and provide
future directions in Section VI.

II. PROBLEM FORMULATION

Consider two teams of mobile agents. Each agent is com-
municating with members of the team it belongs to, and, at the
same time, jamming the communication between members of
the other team. In particular, each team attempts to minimize
its own BER while maximizing the BER of the other team.
We consider a scenario where each team has two members,
though at a conceptual level our development applies to higher
number of team members as well. Team A is comprised of
the two players{1a, 2a} and Team B is comprised of the two
players{1b, 2b}. We assume thatfa andfb are the frequencies
at which Team A and Team B communicate, respectively, and
fa 6= fb.

Naturally, for an initial positionx0 ∈ X, the outcome of the
gameπ, is given by the difference in the BERs of both teams
during the entire course of the game. Formally:

π(x0, ua
i , u

b
j) = N ·

∫ T

0

[pa1(t) + pa2(t)− pb1(t)− pb2(t)]
︸ ︷︷ ︸

L

dt,

wherepai (t) and pbj(t) are the BERs of agenti in Team A
and and agentj in Team B, respectively;ua

i and ub
j are

likewise the control inputs of agentsi andj in teams A and B,
respectively;N is the total number of transmitted bits which
remains constant throughout the game; andT is the time of
termination of the game. We conclude that the objective of
Team A is to minimizeπ, whereas that of Team B is to
maximize it.

Since the agents are mobile, there are limitations on the
amount of energy available to each agent that is dictated
by the capacity of the power source carried by each agent.
The game is said to terminate when any agent runs out of
power. LetP a

i (t) andP b
j (t) denote the instantaneous power

for communication used by playeri in Team A and player
j in Team B, respectively. We model this restriction as the
following integral constraint for each agent:

∫ T

0

Pi(t)dt ≤ E (1)

For each transmitter and receiver pair, we assume the
following communications model in the presence of a jammer
which is motivated by [13]. Given that the transmitter and
the receiver are separated by a distanced, and the transmitter
transmits with constant powerPT , the received signal power
PR is given by

PR = ρPT d
−α, (2)

where α is the path-loss exponent andρ depends on the
antennas’ gains. Typical values ofα are in the range of2
to 4. According to the free space path loss model,ρ is given
by:

ρ =
GTGRλ

2

(4π)2
,

where λ is the signal’s wavelength andGT , GR are the
transmit and receive antennas’ gains, respectively, in theline of
sight direction. In real scenarios,ρ is very small in magnitude.
For example, using nondirectional antennas and transmitting
at 900 MHz, we haveρ = (1)(0.33)

(4π)2 = 6.896× 10−4.
The received signal-to-interference ratio (SINR)s is given

by

s =
PR

I + σ2
, (3)

whereσ2 is the power of the noise added at the receiver, and
I is the total received interference power due to jamming and
is defined as in (2).

Let P a
i (t) andP b

j (t) denote the instantaneous power levels
for communication used by playeri in Team A and playerj
in Team B, respectively. Since the agents are mobile, there are
limitations on the amount of energy available to each agent
that is dictated by the capacity of the power source carried by
each agent. We model this restriction as the following integral
constraint for each agent

∫ T

0

Pi(t)dt ≤ E. (4)



In addition to the energy constraints, there are limitations on
the maximum power level of the devices that are used onboard
each agent for the purpose of communication. For each player,
this constraint is modelled by0 ≤ P a

i (t), P
b
i (t) ≤ Pmax.

We also assume that players of each team have access to
different M-QAM modulation schemes. We denote the set of
available modulation sizes to the players in Team A byMa

and that available to players of Team B byMb. The sizes of
the employed QAM modulation by the teams are Ma ∈ Ma

and Mb ∈ Mb. We assume that Team A can choose among
n different modulation schemes, and Team B chooses from a
set ofm different schemes, i.e.,|Ma| = n, |Mb| = m.

The instantaneous BER depends on the SINR, the modu-
lation scheme, and the error control coding scheme utilized.
Communications literature contains closed-form expressions
and tight bounds that can be used to calculate the BER when
the noise and interference are assumed to be Gaussian [5].
For uncoded M-QAM, where Gray encoding is used to map
the bits into the symbols of the constellation, the BER can be
approximated by [11]

p(t) = g(s) ≈ ζ

r
Q
(√

βs
)

, (5)

where r = log(M), ζ = 4(1 − 1/
√
M), β = 3/(M − 1),

and Q(.) is the tail probability of the standard Gaussian
distribution.

To ensure a non-zero communication rate between the
agents of each team, we impose a minimum rate constraint
for each agent:Ra

i (t), R
b
i (t) ≥ R̃, whereR̃ > 0 is a threshold

design rate, which we assume is the same for all agents. The
results can be readily extended to networks of players having
a different value of the minimum design rate.

At every instant, each agent has to decide on the fraction
of the power that needs to be allocated for communication
and jamming. Table I provides a list of decision variables for
the players, which models the power allocation. Each decision
variable is a non-negative real number and lies in the interval
[0, 1]. The decision variables belonging to each row add up to
one. The fraction of the total power allocated by the player
in row i to the player in columnj is given by the first entry
in the cell(i, j). This allocated power is used for jamming if
the player in columnj belongs to the other team; otherwise,
it is used to communicate with the agent in the same team.
Similarly, the distance between the agent in rowi and the agent
in columnj is given by the second entry in cell(i, j). Since
distance is a symmetric quantity,dij = dji and dij = dji.
Fig. 1 depicts the power allocation between the members of
the same team as well as between members of different teams.
In addition to power allocation, each team has to decide on

the size of the QAM modulation to be used. In summary,
each agent has to compute the following decision variables
at each instance in accordance with the above tasks: (i) the
instantaneous control (Task 1); (ii) the instantaneous power
level,Pi(t) (Task 2); (iii) all the decision variables present in
the row corresponding to the agent in Table I (Task 2); and
(iv) the size of the QAM schemes, Ma or Mb (Task 3).

TABLE I
DECISION VARIABLES AND DISTANCES AMONG AGENTS.
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Fig. 1. Power allocation among the agents for communicationas well as
jamming.

III. POWER ALLOCATION

From (3), the received SINR and the rate achieved by each
agent are given by the following expressions

sai =
ρaP

a
j (t)γ

ji(dij)−α

σ2 + ρbP b
1 (t)δ

i
1(d

i
1)

−α + ρbP b
2 (t)δ

i
2(d

i
2)

−α

sbi =
ρbP

b
j (t)δji(dij)

−α

σ2 + ρaP a
1 (t)γ

1
i (d

1
i )

−α + ρaP a
2 (t)γ

2
i (d

2
i )

−α

Ra
i = log(1 + saj ), Rb

i = log(1 + sbj) (6)

Agents of the same team embark in a team problem which
eliminates their need to exchange information about their
decision variables. Further, since agents in different teams
do not communicate, they possess information only about
their own decision variables. This makes the power allocation
problem a continuous kernel zero-sum game between the
teams:

Team A: The objective of each agent is to minimizeL.

min
Pa

i
,γi

1
,γi

2
,γij

L(Ma,M b) ⇒ min
Pa

i
,γi

1
,γi

2
,γ12

(paj − pb1 − pb2
︸ ︷︷ ︸

La
i
(Ma,Mb)

) (7)



subject to: 0 ≤ P a
i (t) ≤ Pmax, Ra

i ≥ R̃

γi
1 + γi

2 + γij = 1, γi
1, γ

i
2, γ

ij ≥ 0

Team B: The objective of each agent is to maximizeL.

max
P b

i
,δ1

i
,δ2

i
,δij

L(Ma,M b) ⇒ max
P b

i
,δ1

i
,δ2

i
,δij

(pa1 + pa2 − pbj
︸ ︷︷ ︸

Lb
i
(Ma,Mb)

) (8)

subject to: 0 ≤ P i
b (t) ≤ Pmax, Rb

i ≥ R̃

δ1i + δ2i + δij = 1, δ1i , δ
2
i , δij ≥ 0

Note that the power allocation vector for1a denoted by
γ = (γ12, γ1

1 , γ
1
2) belongs to the intersection between the

three-dimensional simplex∆3 and the planer0, wherer0 =
{γ|γ12 = 1

a1

(2R̃ − 1)}. The power allocation vectors of other
players belong to similar sets.

In [3], we showed that the optimal value of the power
consumption for each player isPmax. We also showed that the
entire game terminates in a fixed timeT = E

Pmax

irrespective
of the initial position of the agents. Moreover we provided
a sufficient condition for the existence of a pure-strategy
saddle-point equilibrium (PSSPE) for the power allocation
game when uncoded M-QAM schemes are used by all agents.
Here, we modify the condition to allow teams to use different
modulation schemes as made formal by the next theorem.

Theorem 1: When all players employ uncodedM -QAM
modulation schemes, the power allocation team game formu-
lated above has a unique PSSPE solution if the following
condition is satisfied:

Pmax ·max

{
ρa(d

12)−α

Ma − 1
,
ρb(d12)

−α

M b − 1

}

< σ2. (9)

For the special case ofMa = M b = M andρb ≈ ρa = ρ, the
condition becomes

βρPmax

(
min{d12, d12}

)−α
< 3σ2. (10)

The proof is similar to that presented in [3] and is omitted
here. Note that the left hand side of inequality (10) depends
entirely on physical design parameters; this is of particular
importance for design purposes. Moreover, we showed in [3]
that this condition can be expressed in terms of the received
signal-to-noise-ratios (SNRs) for all players, which could be
more insightful from a communication systems perspective.

Consider, for example, 1a, and let SNRxy =
Pmaxγ

x
yρ(d

x
y)

−α

σ2

and SNRxy =
Pmaxδxyρ(dyx)

−α

σ2 . We then have:

SNRij <
3

β
(SNR2

j + 1) i, j ∈ {1, 2}; i 6= j

Yet another useful way to interpret condition (10) is regarding
it as a minimum rate condition:

r > log

(

1 +
ρPmax

(
min{d12, d12}

)
−α

σ2

)

.

Assuming (10) holds, the objective function is strictly
convex in the decision variables of1a, 2a and strictly concave

in the decision variables of1b, 2b. A unique globally optimal
solution(γ̄) therefore exists, which we characterize using the
KKT conditions [9]. Consider, for example, the case of1a.
The expressions for SINR provided in (6) relevant to the
optimization problem being solved by1a can be written in
a concise form as shown below:

sa2 = a1γ
12, sb1 =

b1
c1 + γ1

1

, sb2 =
d1

e1 + γ1
2

,

where

a1 =
1

σ
Pmaxρa(d12)−α + ρ̃δ21

(
d2

1

d12

)
−α

+ ρ̃δ22

(
d2

2

d12

)
−α

,

b1 = ρ̃δ21

(
d12
d11

)
−α

, d1 = ρ̃δ12

(
d12
d12

)
−α

,

c1 =
σ

Pmaxρa(d11)
−α

+ γ2
1

(
d21
d11

)−α

,

e1 =
σ

Pmaxρa(d12)
−α

+ γ2
2

(
d22
d12

)−α

, ρ̃ =

(
ρb
ρa

)

.

The KKT conditions can then be written as:

∇La
1(γ̄) +

4∑

i=1

λi∇hi(γ̄) + η∇h(γ̄) = 0, (11)

λihi(γ̄) = 0, λi, η ≥ 0, i ∈ {1, 2, 3}
where

h1(γ̄) = −γ12 +min

{

2R̃ − 1

a1
, 1

}

≤ 0

h2(γ̄) = −γ1
1 ≤ 0, h3(γ̄) = −γ1

2 ≤ 0

h(γ̄) = γ12 + γ1
1 + γ1

2 − 1 = 0

Now, we present the necessary and sufficient conditions for
the solution to the optimization problem for the agents. Let
us consider the case of1a. The assumptions in Theorem 4
regarding strict convexity ofLa

1 render the KKT conditions
to be necessary as well as sufficient conditions for the unique
global minimum.

To this end, we obtain:

∇La
1 =







a1g
′(sa2)

b1g
′(sb

1
)

(c1+γ1

1
)2

b1g
′(sb

2
)

(c1+γ1

2
)2






,∇h(γ̄) =





1
1
1





∇h1(γ̄) =





−1
0
0



 ,∇h2(γ̄) =





0
−1
0



 ,∇h3(γ̄) =





0
0
−1



 .

Sinceγ ∈ ∆3∩ro, at most three of the constraints can be active
at any given point. Hence, the gradient of the constraints at
any feasible point are always linearly independent.

If two of the three constraints among{h1, h2, h3} are active,
then γ̄ has a unique solution that is given by the vertex of the
simplex that satisfies the two constraints. If only one of the
constraints among{h1, h2, h3} is active, then we have the
following cases depending on the active constraint



A =

Mb(1) Mb(2) ... Mb(m− 1) Mb(m)
Ma(1) L(Ma(1),Mb(1)) L(Ma(1),Mb(2)) ... L(Ma(1),Mb(m− 1)) L(Ma(1),Mb(m))
Ma(2) L(Ma(2),Mb(1)) L(Ma(2),Mb(2)) ... L(Ma(2),Mb(m− 1)) L(Ma(2),Mb(m))

...
...

...
...

...
... Team A

Ma(n) L(Ma(n),Mb(1)) L(Ma(n),Mb(2)) ... L(Ma(n),Mb(m− 1)) L(Ma(n),Mb(m))
Team B

(12)

1) h1(γ̄
1) = 0: γ̄1 = (γ̃12, γ1∗

1 , 1 − γ1∗
1 − γ̃12), where

γ̃12 = min
{

2R̃−1
a1

, 1
}

, satisfies the equation

g′(sb2)
d1

[e1 + (1 − γ1∗
1 − γ̃12)]2

= g′(sb1)
b1

[c1 + γ1∗
1 ]2

(13)
2) h2(γ̄

2) = 0: γ̄2 = (1 − γ1∗
2 , 0, γ1∗

2 ) satisfies the
following equation

a1g
′(sa2) =

d1g
′(sb2)

(e1 + γ1∗
2 )2

(14)

3) h3(γ̄
3) = 0: γ̄3 = (1 − γ1∗

1 , γ1∗
1 , 0) satisfies the

following equation

a1g
′(sa2) =

b1g
′(sb1)

(c1 + γ1∗
1 )2

(15)

If none of the inequality constraints are active, thenγ̄4 =
(1− γ1∗

1 − γ1∗
2 − γ̃12

︸ ︷︷ ︸

γ12∗

, γ1∗
1 , γ1∗

2 ) is the solution to:

a1g
′(sa2)−

b1
[c1 + γ1∗

1 ]2
g′(sb1) = 0

a1g
′(sa2)−

d1
[e1 + γ1∗

2 ]2
g′(sb2) = 0 (16)

Here, γ̄ lies in the set
{(1, 0, 0), (0, 1, 0), (0, 0, 1), γ̄1, γ̄2, γ̄3, γ̄4}. An important
point to note is thata1, b1, c1, d1 and e1 depend on the
decisions of the other players. Therefore, the computationof
the decision variables depend on the value of the decision
variables of the rest of the players. A possible way to deal
with this problem is to use iterative schemes for computation
of strategies. [1] provides some insights into the efficacy of
such schemes from the point of view of convergence and
stability. In this work, we assume that each agent has enough
computational power so as to complete these iterations in a
negligible amount of time compared to the total horizon of
the game. The specific conditions for 1a corresponding to
(13)-(15) when M-QAM modulations are utilized are:

(
sb1
sb2

) 3

2

exp

(

−β

2
(sb1 − sb2)

)

− b1
d1

= 0 (17)

(
sb2
sa2

) 1

2

exp

(

−β

2
(sa2 − sb2)

)

− a1d1
(e1 + γ1

2)
2

= 0 (18)

(
sb1
sa2

) 1

2

exp

(

−β

2
(sa2 − sb1)

)

− a1b1
(c1 + γ1

1)
2

= 0 (19)

Also, (16) in this case corresponds to solving (18) and (19)
jointly.

IV. A DAPTIVE MODULATION

The time-varying nature of the channels due to mobility
emphasizes the need for robust communications. Adaptive
modulation is a widely used technique as it allows for choosing
the design parameters of a communications system to better
match the physical characteristics of the channels in order
to optimize a given metric such as: minimizing BER or
maximizing spectral efficiency. In this work, we model the
adaptive modulation as a matrix zero-sum game between the
two teams. We therefore look for an equilibrium solution
which would dictate what modulations should be adopted
by the teams at each time instant. The competitive nature
of the jamming teams makes our approach to the problem
most practical as any other non-equilibrium solution cannot
produce an improved outcome, relative to that yielded by the
equilibrium, for any of the teams.

The matrix game is given in (12). The rows are all the
possible actions for players of Team A, and the columns
are the different options available for Team B. The(i, j)-th
element of the matrix is the value of the objective functionL
when Team A employsMa = Ma(i), and Team B employs
M b = Mb(j).

A PSSPE does not always exist for the power alloca-
tion game. The condition for the existence of a PSSPE is
mini maxj Aij = maxj miniAij [1]. In case a PSSPE does
not exist, we need to look for a solution in the larger class of
mixed-strategies. A pair of strategies{Ma∗,M b∗} is said to
be a a mixed-strategy saddle point equilibrium (MSSPE) for
the matrix game if [1]

(Ma∗)TAM b ≤ (Ma∗)TAM b∗ ≤ (Ma)TAM b∗

For ann ×m matrix game, the following theorem from [1],
which we state without proof, establishes the existence of an
MSSPE for the adaptive modulation game.

Theorem 2: The adaptive modulation game admits an
MSSPE.

In case multiple MSSPEs exist, the following corollary
becomes essential [1].

Corollary 1: If {Ma(i1),Mb(j1)} and
{Ma(i2),Mb(j2)} are two MSSPEs of the adaptive
modulation game, then {Ma(i1),Mb(j2)} and
{Ma(i2),Mb(j1)} are also MSSPEs.



This is termed theordered interchangeability property and its
importance lies in that it removes any ambiguity associated
with the existence of multiple equilibrium solutions as the
teams do not need to communicate to each other which
equilibrium solution they will be adopting. Literature contains
different efficient low-complexity algorithms that computes
MSSPEs for matrix games, such as Gambit [10]. We refer
the interested reader to [1] for a discussion of some of
these approaches. Section V illustrates these concepts and
shows how the choice of modulation size changes with the
characteristics of the environment. Finally, it is assumedthat
players of each team communicate their modulation choices
among themselves through a reliable side channel.

V. SIMULATIONS RESULTS

To better understand the adaptive modulation scheme,
we present the following example. LetMa = Mb =
{16, 64, 265}, d11 = 17.7864, d12 = 15.3376, d21 = 19.8951,
d22 = 14.1128, d12 = 20.6309, d12 = 26.3224, ρa = 0.0570,
ρb = 0.0517, Pmax = 100, σ2 = 10−3, R̃ = 1, andα = 2.
The matrixA corresponding to these values was found to be:

A =

16 64 256
16 0.0158 0.0533 0.1229
64 −0.0356 0.0091 0.0728 Team A
256 −0.1155 −0.0677 0.0040

Team B

Note that the third row dominates the other rowsstrictly, and
there is a unique PSSPE given by{256, 256} in this case.

Fig. 2 depicts how the teams adapt their modulation scheme
relative to the SNR, which we define asPmax/σ

2. The set of
modulations available to each team isM = {16, 20, 24, 28}.
Players1a, 2a, and1b were placed close to each other, while
2b is far from all of them; in particular:d11 = 2.2036, d12 =
33.6830, d21 = 2.4211, d22 = 33.6393, d12 = 4.5607, d12 =
33.2022. We also letρa = 0.0570, ρb = 0.0517, Pmax = 1,
R̃ = 1, α = 3, and varied the noise variance at all receivers to
simulate the presented SNR range. We observe that both teams
switch to a constellation of a smaller size at SNR= 50 dB.
This is due to both teams switching from pure communications
to perform both communication and jamming. In order to do
so, they both switch to a smaller constellation size which will
guarantee robust communications for them as they will allocate
some power to jam.

VI. CONCLUSION AND FUTURE WORK

This paper has studied the power allocation problem for
jamming teams. An underlying static game was used to obtain
the optimal power allocation, where the power budget of each
user is split between communication and jamming powers.
A separate matrix game was utilized in order to arrive at the
optimal modulation schemes for each team. This work focused
on the analysis of teams consisting of two players only; a
potential future direction is to generalize the results to teams
consisting of multiple agents. Moreover, future work will con-
sider scenarios of players possessing incomplete information
and study the problem in the context of Bayesian games.
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in team jamming games in wireless ad hoc networks. In
Submitted to the 4th International ICST Workshop on Game
Theory in Communication Networks (Gamecomm), 2011.
http://arxiv4.library.cornell.edu/abs/1101.6030v1.

[4] T. ElBatt and A. Ephremides. Joint scheduling and power control for
wireless ad hoc networks.IEEE Transactions on Wireless Communica-
tions, 3(1):74 – 85, 2004.

[5] A. Goldsmith. Wireless Communications. Cambridge University Press,
Cambridge, U.K., 2005.

[6] A. Goldsmith and S.-G. Chua. Variable-rate variable-power mqam for
fading channels.Communications, IEEE Transactions on, 45(10):1218
–1230, Oct. 1997.

[7] A. Goldsmith and S. Wicker. Design challenges for energy-constrained
ad hoc wireless networks.Wireless Communications, IEEE, 9(4):8 – 27,
2002.

[8] S. Lasaulce, Y. Hayel, R. El Azouzi, and M. Debbah. Introducing hierar-
chy in energy games.IEEE Transactions on Wireless Communications,
8(7):3833 –3843, 2009.

[9] D. G. Luenberger.Optimization by Vector Space Methods. John Wiley
and Sons, New York, NY, 1969.

[10] R. D. McKelvey, A. M. McLennan, and T. L. Turocy. Gambit:Software
tools for game theory. Version 0.2010.09.01, 2010. http://www.gambit-
project.org.

[11] D. P. Palomar, M. Bengtsson, and B. Ottersten. Minimum ber linear
transceivers for mimo channels via primal decomposition.IEEE Trans-
actions on Signal Processing, 53(8):2866–2882, 2005.

[12] J.-S. Pang, G. Scutari, F. Facchinei, and C. Wang. Distributed power al-
location with rate constraints in Gaussian parallel interference channels.
IEEE Transactions on Information Theory,, 54(8):3471 –3489, 2008.

[13] P. Tague, D. Slater, G. Noubir, and R. Poovendran. Linear programming
models for jamming attacks on network traffic fows. InProceedings of
6th International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt’08), Berlin, Germany, Apr 2009.

[14] J. Tobias and N. Seddon. Randomized pursuit-evasion with local
visibility. Current Biology, 19(7):577–582, 2009.

[15] W. Yu, G. Ginis, and J. Cioffi. Distributed multiuser power control for
digital subscriber lines.IEEE Journal on Selected Areas in Communi-
cations, 20(5):1105 –1115, June 2002.


	I Introduction
	II Problem Formulation
	III Power Allocation
	IV Adaptive Modulation
	V Simulations Results
	VI Conclusion and Future Work
	References

