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Abstract—Predictive small cells networks and proactive re-
source allocation are considered as one of the key mechanisms
for increasing the long-term energy-efficiency of communication
networks. Learning techniques exploit repetitive patterns in
human behavior to predict some future transmission contexts
of the network. In this paper, we target to improve the energy
efficiency of delay-tolerant transmissions by enabling flexibility
in resource allocation with prediction-based strategies. We study
the performance, in terms of energy efficiency of several scenarios
of future knowledge ranging from zero to perfect knowledge of
the future context, but also partial knowledge scenarios (short-
term predictions, long-term statistics or partial knowledge). An
iterative process, approaching the optimal strategies in each
scenario, is described. In some cases, closed-form expressions
of the optimal strategies to be implemented can be obtained and
the performance in each scenario is computed. Our analytical
and numerical results assess the potential benefit of exploiting
the knowledge of the future in the case of a delay-tolerant
transmission and show how the system may benefit from a
provided piece of information about the future transmission
context.

I. INTRODUCTION

Wireless networks are the communication bridge and bot-
tleneck for future evolutions of the digital world. Operators
struggle to support the massive data traffic growth in a sustain-
able and economical way [1]. In that sense, operators aim at
reducing the networks power consumption, while maintaining
a satisfying Quality of Service (QoS). To do so, small cells
networks (SCNs) have been proposed as a valid candidate
[2]. Several tradeoffs have also been identified [3], among
which the latency-power efficiency tradeoff which lead to
delay-tolerant transmission concepts. At the same time, recent
advances on learning and data mining have shown that human
behavior and future context for users in the network is highly
and accurately predictable [4] [5]. As a consequence, recent
works have then looked forward to coupling scheduling tech-
niques with context predictions, leading to so-called proactive
small cells networks.

Scenarios of proactive resource allocation and predictive
wireless networks have been introduced and investigated in
[6][7][8]. In these papers, the system is able to predict up-
coming requests and can adapt its transmissions in order to
limit its own outage probability. Significant diversity gains
were analytically demonstrated and illustrate the significance
of the potential benefit offered by knowledge of the future.
In this paper and as in [9] [10], we investigate a scheduler
for delay-tolerant transmissions, but consider several degrees

of knowledge of the future. For different assumptions on
the knowledge of the future available, we show the perfor-
mance of the system, when it implements several optimal
and sub-optimal transmission strategies. However, in most
cases, it appears thatthe closed-form expressions of the optimal
scheduling policies and the performance of such systems can
not be simply and clearly established. Instead, an iterative
approach is considered to define, at each present time, the
optimal power to be used.

In this paper, we propose several scenarios of downlink
transmissions where a Base Station (BS) has to achieve data
transmission of Q(0) bits over block fading channels, with a
deadline of T time slots. The system controls its instantaneous
power of transmission p or equivalently can adapt its instan-
taneous rate to the present channel realisation h, the number
of remaining time slots and the remaining data packet to be
transmitted at the present time. The optimization problem con-
sists in minimizing the cumulated power cost while satisfying
a strong QoS requirement (a complete transmission of a packet
of initial size Q(0) before deadline T ), for several different
assumptions on the future context knowledge. We focus on
defining the optimal strategies that the system implements,
for different kinds of future context knowledge, ranging from
a complete lack of knowledge to an ideal, complete and perfect
knowledge of the future.

The investigated schedulers include scenarios where no
knwoledge of the future channel realisations is available to the
system. We have also considered the case where a complete
and exact knowledge is available to the system, which define
the optimal performance bound. Schedulers optimal strategies
and performances are also detailed in scenarios where partial
and hybrid knowledge is available. This includes statistical
long-term knwoledge, but also partial, accurante and short-
term estimations.

In this paper, our contribution lies in analysing the trans-
mission policies and their performance in terms of energy
efficiency, for several scenarios of future knwoledge. This
analysis leads to interesting insights, showing the potential
significant benefit of transmission schedulers, coupling both
delay-constrained settings and future context knowledge. It
also shows how the system may benefit from elements of
future knowledge, even statistical or partial.

In Section II, we define both the system model and the
optimization problem we consider throughtout the paper. In



Section III, an iterative process, allowing to approach the
optimal transmission strategies for any given future knowledge
is described. In Section IV, we define the different types of
future knwoledge that we consider in this paper and define,
when possible the closed-form expression for both their power
strategies and global power performances. Finally, we propose
numerical simulations, compare and discuss each scheduler
performance in Section V.

II. SYSTEM MODEL AND OPTIMIZATION PROBLEM

In this paper, we consider a simple downlink transmission
model (similar to [9] [10]), consisting of one BS and one user.
The BS is enforced to transmit a data packet to its associated
user, within a limited number of time slots T . In the following,
we denote the index of any time slot by t ∈ 1, 2, ...T .

In this context and as depicted in Figure 1, we consider for
each time slot, uncorrelated block fading channels, in power
units, h(t), t ∈ {1, 2, ...T}, with values in H. We consider
that a minimum link quality is always guaranteed, denoted
ε > 0, i.e. that H =]ε,∞[T . This assumption will later
appear necessary, when computing strategies for which we
do not have future knowledge. We assume, that the channel
realisations are random i.i.d processes, distributed according
to PDFs D1

real(h), ...DT
real(h).

Fig. 1. Transmission scheme

We assume, that the channel can be perfectly estimated, at
the transmitter, at the beginning of each time slot, and that
it remains static for the complete duration of the time slot
∆t. We also denote by Q(t), the number of remaining bits
at the end of time slot t. The initial amount of data, denoted
Q(0) > 0, is known at the beginning of the first time slot.
For simplicity, we assume that no other requests are allowed
to enter the system until the end.

We assume that the BS can adapt its power of transmission
p = (p(t))t∈{1,2,...T}, where p(t) > 0 is the power level used
at time slot t, which is defined at the beginning of each time
slot t. The transmission rate matches the channel capacity, i.e.
that the remaining packet size at the end of time slot t, Q(t)
decreases according:

∀t ∈ {1, T}, Q(t) = Q(t−1)−B. log2 (1 + h(t)p(t)) ∆t (1)

Where ∆t and B are constants denoting the duration of the
time slot and the bandwidth of the channel respectively.

We denote ∀t, i ∈ {1, ..., T}, i > t, Dt
i(h) as the prediction

being made at the beginning ot TS t on the channel realisation
on TS i. In fact, Dt

i(h) is an estimated PDF of the channel
realisation h(i), given to the system at TS t.

Within this context, we consider the following constrained
optimization problem: the BS has to define a strategy that
allows a complete transmission, of initial size Q(0), before
deadline T (achieving a complete transmission is then ex-
pressed by Q(T ) = 0), at a minimal cumulated power cost.
The problem can be formally rewritten as (2):

p∗ = (p∗(1), p∗(2), ...p∗(T )) = arg min
p

k=T∑
k=1

p(k)

s.t., Q(T ) = Q(0)−
k=T∑
k=1

B log2 (1 + h(k)p(k)) ∆t = 0 (2)

And ∀t, i ∈ {1, ..., T}, i > t, Dt
i(h) are known at the

beginning of TS t.
In the following, we consider several assumptions on the

degree of knowledge offered to the system, i.e. several and
different predictions scenarios on PDFs Dt

i>t(h). We first
focus on how the system exploits such a given information
about the future, to compute at the beginning of each TS t,
the optimal power to be used, p(t).

III. AN ITERATIVE APPROACH TO THE OPTIMIZATION
PROBLEM

At the beginning of each TS t, the system is revealed the
channel realisation for the TS t, denoted hr(t). Based on this
present information and for a given knowledge of the future,
represented by PDFs on the upcoming channel realisations
(Dt

t+1(h), ...Dt
T (h)), the system has to define the optimal

power p∗(t) to be used for TS t, assuming the remaining
packet to transmit until deadline T is of Q(t− 1).

The optimal power p∗(t | hr(t), Q(t − 1)) to be used at
time t is defined at the beginning of TS t, as :

p∗(t | hr(t), Q(t−1)) = arg min
p

(
p+ E

[
k=T∑
k=t+1

p(k) | Q(t)

])
(3)

With Q(t) = Q(t− 1)−B log2 (1 + hr(t)p)
And ∀i ∈ {t+ 1, ..., T}, Dt

i(h) are known.
The difficulty of the optimization process relies in being

able to estimate the cost-to-go function S(t + 1 | Q(t)) =

E
[∑k=T

k=t+1 p(k) | Q(t)
]

at time t, since it depends on all the
random channel realisations of the T − t remaining time slots,
(h(t + 1), ..., h(T )). However, the optimization (3) can be
formulated sequentially with dynamic programming. In fact,
it is a classic backward iteration, as in [11].

The optimal power to be used on TS T , p∗(T | h,Q) if
the channel realisation hr(T ) = h and the remaining packet
Q(T−1) = Q can be easily computed, as the power necessary
to complete the transmission on the last time slot T , i.e.

p∗(T | h,Q) = (2( Q
B∆t

) − 1)
1

h
(4)

At t = T − 1, the system can compute S(T | Q) =
E [p(T | Q)], as:

S(T | Q) =

∫
h∈H

Dt
T (h)p∗(T | h,Q)dh (5)



Which leads to:

S(T | Q) = (2( Q
B∆t

) − 1)E
[

1

h(T )

]
(6)

Note that E
[

1
h(T )

]
is not finite if the channels have

Rayleigh fadings (i.e. h(T ) is exponentially distributed), un-
less the channel set for possible channel realisations H is
truncated as described in [13]. In fact, this is one of the reasons
why we have considered a minimal channel realisation ε > 0
and considered the set of admissible channel realisations H to
be ]ε,∞[T .

Based on the previous results, we can solve the optimization
problem 3, via the following iterative process. For k from T−1
to t, we sequentially compute:

p∗(k | h,Q) = arg min
p

(p+ S(k + 1 | Q′)) (7)

With Q′ = Q−B log2 (1 + p ∗ h). This is a one-dimensional
convex optimization problem, in p, which is easy to solve.
Based on this, we can compute S(k | Q), as:

S(k | Q) =

∫
h∈H

Dt
k(h)p∗(k | h,Q)dh

+

∫
h∈H

Dt
k(h)S(k + 1 | Q′)dh (8)

Where Q′ = Q−B log2 (1 + p∗(k | h,Q)h).
The iterative process is repeated until p∗(t | h,Q) is

defined. For a given present realisation of the channel hr(t)
and assuming the remaining packet size is Q(t − 1), we can
solve the optimization 3, by defining the optimal power to be
used on time slot t, p∗(t), as:

p∗(t) = p∗(t | hr(t), Q(t− 1)) (9)

At the beginning of each time slot t, we can compute
the optimal power p∗(t), based on the remaining packet size
Q(t−1), the present and revealed channel realisation hr(t) and
take into account the future channel estimations (Dt

i(h))i>t
available at time t.

We now focus on the different scenarios of future knowledge
and look forward to define, when it is possible, the closed-
form expressions of the optimal transmission policies and their
global performance.

IV. SCENARIOS OF FUTURE KNOWLEDGE: OPTIMAL
SCHEDULING AND PERFORMANCE

A. Omniscient Scheduling

We define the optimal power strategy pom, as the optimal
strategy solving (2) when the system is given perfect knowl-
edge of the future channel realisations hr at t = 0. In this
configuration, we assume the system has a perfect knowledge
of the future channel realisations, i.e., the predictions PDFs
Dt
i(h) are defined as:

∀i, t ∈ {1, ...T}, i > t,Dt
i(h) = δh=hr(i) (10)

Where δh=hr(i) is a Dirac distribution centered on hr(i).

It turns out that the iterative process we defined in Section
III, for which we have defined Dt

i(h) as in Eq. 10, leads to
the exact same power strategy pom, defined by Time-Water-
Filling, in Proposition IV.1.

Proposition IV.1. The power strategy pom consists of a time
water-filling:

∀t ∈ 1, ..., T , pom(t) = max(0, µ− 1

h(t)
) (11)

Where µ is the unique water-level, verifying:

Q(0) =

T∑
t=1

B log (1 + h(t)pom(t)) ∆t (12)

Proof. Elements of proof can be found in [9] and [14]

The strategy pom gives the optimal performance bound, that
can be achieved for any given future realisation of the channel
h = (h(1), ..., h(T )) and a constrained data transmission, with
initial size Q(0) and deadline T . The closed-form expression
of the power strategies is not easy to define, because it
depends on the number of time slots active for transmission
N (Q(0), h), defined as:

N (Q(0), h) = card {pom(t) > 0 | t ∈ {1, ...T}, Q(0), h}
(13)

Assuming, the channel realisations happen
according to PDFs D1

real(h), ...DT
real(h), computing

E
[∑k=T

k=1 p(k) | Q(0)
]

in such a scenario is also complicated,
since it depends on N (Q(0), h) as well. An asymptotic
approach has however been considered to approximate the
system performance, in cases where Q(0)

Bδt is large [14].

B. Zero-knowledge optimal strategy I: Worst-Case Scenario

We define by zero knowledge strategy, the power strategy
pzk that would be implemented, if the system is given the least
possible information about its future context. In this scenario,
the next future channel realisations remain unknown to the
BS, until the beginning of each time slot, where each channel
is revealed. A first possible approach would consist to define
the power pzk(t) to be used at the beginning of each time
slot t, for a revealed channel realisation h(t) on time slot
t, by assuming that the future realisations will lead to the
worst possible configuration. This power allocation scheme is
then completely reactive, in the sense that it is not able to
exploit any information about the future, but has to deal with
the channel information revealed at the present time. Such a
strategy leads to the best worst-case performance.

In this context, the best power strategy pzk(t) to be im-
plemented on time slot t corresponds to the first element of
the optimal power strategy p = (p(t), ..., p(T )), solving the
following min-max optimization problem.

min
p

max
(h(t+1),...h(T ))

∈H(T−t)

(
k=T∑
k=t

p(k)

)



s.t., Q(t− 1) =

T∑
k=t

B. log (1 + h(k)p(k)) ∆t (14)

The worst possible future configuration can be easily de-
fined as the case where all the unknown future channel
realisations (h(t + 1), ...h(T )) take the smallest value ε. In
this case, we have ∀i, t ∈ {1, ...T}, i > tDt

i(h) = δh=ε and
the optimization problem (14) can be rewritten as:

min
p

(
k=T∑
k=t

p(k)

)

s.t., Q(t− 1) =

T∑
k=t

B. log (1 + h(k)p(k)) ∆t

h(t) = hr(t) ∈ H known, and ∀k ∈ {t+ 1, ..., T}, h(k) = ε
(15)

The optimization problem leads to the following time water-
filling solution:

∀k ∈ {t, ..., T}, p(k) =

{
max(0, µ− 1

h(t) ) if k = t

max(0, µ− 1
ε ) else.

(16)
Where µ is the unique water-level satisfying:

Q(t− 1) =

T∑
k=t

B. log (1 + h(k)p(k)) ∆t

Proposition IV.2. The power strategy pzk is then defined as:

pzk(t) =
(

2
(Q(t−1)−Q(t))

B∆t − 1
) 1

h(t)
(17)

Where the packet remaining at time t, Q(t) decreases with t
and is given by:

Q(t) =

(
T − t

T − t+ 1

(
Q(t− 1)−B log2

(
h(t)

ε

))
∆t

)+

=

(
T − t
T

Q(0)−
t∑
i=1

T − t
T − i+ 1

B log2

(
h(i)

ε

)
∆t

)+

(18)

Proof. For elements of proof, refer to [14]

Within this framework, we show, that a BS can smartly
exploit the limited knowledge, consisting of each channel
realisation revealed at the beginning of each time slot, and
adapt its prower strategy in a reactive way. However, the
system pessimistically assumes the worst scenario for the
future realisations of the channel. Because of this, the strategy
pzk appears unable to fully exploit the latency/power efficiency
tradeoff and, as a consequence, the global performance, in
terms of energy-efficiency, of the zero knowledge strategy
pzk is poor compared to the omniscient one pom. Computing
analytically the expected performance of this strategy leads to
serious complications, which is the reason why, we will not
develop it extensively in this paper.

C. Zero-knowledge optimal strategy II: Equal-bit Scenario

Another power strategy one could implement, in a scenario
where no knowledge of the future is avaible, is the equal-bit
strategy. Basically, the scheduler transmits Q(0)

T bits during
each time slot, no matter what the present or future channel
realisations might be.

Proposition IV.3. The power strategy peb is then defined as:

peb(t) =
(

2
(Q(0))
TB∆t − 1

) 1

hr(t)
(19)

This scheduler has an expected total power consumption
E
[∑k=T

k=1 p(k) | Q(0)
]
, which can be immediately defined as:

E

[
k=T∑
k=1

p(k) | Q(0)

]
= (2

Q(0)
TB∆t − 1)

T∑
i=1

∫
h∈H

Di
real(h)dh

(20)
This strategy is able to take into account the number of extra

time slots available for transmission, but does not consider any
future channel predictions. As a consequence, the system is
unable to smartly distribute the power over the time slots with
good channel realisations, while avoiding transmissions on the
time slots with poor channel realisations. In the end, its global
energy efficiency performance is poor compared to a scenario
where such a future knowledge, even partial, is provided to
the system.

D. Statistical Knowledge Scenario

A first kind of knowledge, that the system can access, is
a statistical knowledge about the future channel realisations.
In this scenario, we assume that the system is not able to
tell exactly, what the future channel realisations will be.
Instead, it can access the exact long-term channel statistics
(Di

real(h))i∈{1,...,T}, which means that:

∀i, t ∈ {1, ...T}, i > t,Dt
i(h) = Di

real(h) (21)

The iterative process we defined in Section III, uses the
avaiblable predictions on channel realisations Dt

i(h), ∀i, t ∈
{1, ...T}, i > t. This strategy allows to take into account
the possible channel realisations for the upcoming time slots.
This way, the present power strategy pst, whose elements are
computed at the beginning of each time slot, is able to take
into account both the number of remaining time slots T−t and
some piece of statistical information about what the remaining
future channel realisations might be.

Note that, we have considered, that the system was not able
to adjust and refine its statistical estimations, at the beginning
of each time slot. In fact, we could model such a scenario,
where our prediction Dt

i(h) gets more and more accurate,
as long as the present time slot t gets closer to the time
slot i. In that case, when we get closer to the future time
slot i, Dt

i(h) converges to the best predictor one could make
about the channel realisations on time slot i, δh=hr(i). Such
a scenario of future knowledge is not investigated throughout
this paper, but will be in an upcoming journal paper.



E. Two Scenarios of Short-Sighted Knowledge

An other scenario of future knowledge that the system can
access consists of a short-sighted knowledge. In this scenario,
we assume that the system is able to estimate accurately the
present channel realisation, at the beginning of each time slot,
as well as a few upcoming channel realisations. In fact, there
are a lot of channel models, that are able to predict the channel
realisations for upcoming time slots, by taking into account the
present channel realisations [12].

In this section, we assume that at the beginning of each
time slot, the system is able to predict exactly the channel
realisations for the upcoming K ∈ 1, ..., T time slots. This
means, that, at the beginning of time slot t, the prediction
provided to the system is:

∀i ∈ {t, ...min(T, t+K−1)}, i ≥ t,Dt
i(h) = δh=hr(i) (22)

The remaining predictions, can be modelled according to
two scenarios:

- K-Short-Sighted with Statistical Knowledge on the re-
maining time slots: we assume that the remaining pre-
dictors are defined as in the statistical Section IV-D,i.e.

∀i ∈ {1, ...T}, i ≥ t+K,Dt
i(h) = Di

real(h) (23)

- K-Short-Sighted with Zero Knowledge on the remaining
time slots: we assume that the remaining predictors are
defined as in the Zero Knowledge I Section IV-B,i.e.

∀i ∈ {1, ...T}, i ≥ t+K,Dt
i(h) = δh=ε (24)

In both cases, our iterative method allows to compute the
optimal power p∗(t) to be used at the beginning of each time
slot t.

V. NUMERICAL PERFORMANCE ESTIMATION AND
COMPARISONS

A. Simulation Parameters

In order to numerically evaluate the expecation of the
consumed power, we ran Monte-Carlo simulations over Mc =
1000 iterations for arbitrary varying values of Q(0)

B∆t and T .
The performances of the schedulers are numerically estimated
and compared, in a scenario of block-fading Rayleigh channels
with parameter λ = 1. The simulation parameters are listed in
Table I, below.

TABLE I
SIMULATION PARAMETERS

Parameter Parameter Value
Q(0)
B∆t

ranging from 1 to 200

Number of time slots T 25, as in [10]

Number of MC iterations Mc 1000

Channels Block fading with i.i.d. trunc. Rayleigh(1)

Channel set H ]ε,∞[

ε 0.1

B. About the Significance of a Performance Gain

Our first concern when considering schedulers that are able
to take into account predictions about the future transmission
context is to determine how significant the potential energy
performance gains might be, between:

- the performance of the most efficient power strategy
we can implement when the system is not given any
information about its future transmission context,

- the performance of a scheduler taking into account a
statistical knowledge of the future

- and the best performance the system can access, if it is
provided a complete exact knowledge of the future.

To do so, we first considered simulations with T = 25 time
slots and Q(0)

B∆t = 100. Let us now consider

50 100 150 200
1

1.5

2

2.5

Q(0)
B∆t

E [
∑ T t

=
1
p
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) ]
E [

∑ T t
=

1
p
o
m

(t
) ]

Equal-Bit strategy
Zero Knowledge Strategy

Statistical Knwoledge Strategy

Fig. 2. Energy Performance vs. Q(0)
B∆t

- Q(0)
B∆t

ranging from 1 to 100 and
T = 25.

As expected from the analytical investigation, it appears that
the zero knowledge worst-case scenario is unable to benefit
from the T time slots, since it is assuming the worst possible
realisation of the future at the beginning of each time slot.
It turns out that the scheduler rushes the transmission of
the packets, completing the transmission notably before the
deadline. Its global power efficiency is then poor compared to
the two other strategies. We also know, from our analytical
study, that the equal-bit scheduler is not able to identify
the good and bad channel realisations. As a consequence,
it is unable to smartly distribute its transmission powers
among the most appropriate channels. In the end, it results
in a poor power efficiency performance compared to the
omniscient scenario. In the following, we considered the ratio
between the performance of the transmission strategy and the

total power of the omniscient strategy,
E[

∑T
t=1 p(t)]

E[
∑T

t=1 pom(t)]
, as our

energy efficiency performance criterion. The average energy
performances of each scheduler are depicted on Figure 2,
for a values set Q(0)

B∆t , when T = 25. It turns out that the
statistical knowledge scheduler outperforms both the Equal-
Bit scheduler and the zero knowledge worst-case scheduler.



Also, when no information about the future is available at
all, the equal-bit scheduler turns out to be a more energy
efficient scheduler, comapred to the zero knowledge worst-case
scheduler. We observe that there is a significant potential gain
between the best performing scheduler when no information
about the future is available and the performances of both the
statistical knowledge scheduler and omniscient scheduler. This
confirms, that acquiring a future knowledge, even partial or
statistical, appears worth the effort [15], because we observe
a significant potential energy efficiency improvement.

C. Performance analysis

In this section, we investigate the performance of the
two short-sighted schedulers we proposed in Section IV-E.
Moreover, in this section, we present a comparison of all five
strategies performances.

First, let us define the αz(p∗) and αs(p
∗) criteria defined

as:

αz(p
∗) =

E
[∑T

t=1 pzk(t)
]
− E

[∑T
t=1 p

∗(t)
]

E
[∑T

t=1 pzk(t)
]
− E

[∑T
t=1 pom(t)

] (25)

αs(p
∗) =

E
[∑T

t=1 pst(t)
]
− E

[∑T
t=1 p

∗(t)
]

E
[∑T

t=1 pst(t)
]
− E

[∑T
t=1 pom(t)

] (26)

On Figure 3, we show the average αz criterion value for
optimal strategies in K short-sighted scenarios with zero
knowledge, for values of K ranging from 1 to T . We have
also represented the performance of Equal-Bit scheduler. As
expected, the system has the same performance of the zero
knowledge scheduler when K = 1 and has the same per-
formance of the omniscient scheduler when K = T . From
the previous section, we know that when the system is not
given any information about the future, the equal-bit scheduler
is the best performing strategy. It appears that the K short-
sighted strategy with zero knowledge outperforms the Equal-
Bit scheduler for values of K

T ≥ 0.15.

The same way, we have considered the scenarios where
statistical knowledge is available as a complement to the
K upcoming estimated channel realisations, namely the K-
Short-Sighted with Statistical Knowledge on the remaining
time slots. On Figure 4, we show the average αs criterion
value for optimal strategies in K short-sighted scenarios with
statistical knowledge, for several values of K ranging from
1 to T . We have also represented the performance of the
statistical knowledge, equal-bit and omniscient schedulers.
As expected, the system has the same performance of the
statistical knowledge scheduler when K = 1 and has the same
performance of the omniscient scheduler when K = T .

On both figures, it appears that the performance of the
system increases when K

T increases as well. Also, the larger
K becomes, the less significant the extra performance gain
is. As a conclusion, it appears that providing a K short-
sighted knowledge to a system with no other information
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about the future is highly benefic to the system, even when
K is small. In fact, it suffices that K ≥ 0.15T so that the
information becomes benefic to the system, leading to an
average performance greater than the average performance of
the equal-bit scheduler.

When Statistical knowledge is also available to the system,
a short-term prediction capability improves even more the per-
formance of the designed scheduler. Its average performance
converges, when K → T , with a similar behavior to the
one described before, to the optimal bound, i.e. the average
performance of the omniscient scheduler.

Finally, we discuss the performance of several future knowl-
edge scenarios and schedulers. The following schedulers have
been considered:

- Zero Knwoledge Scheduler
- Equal-Bit Scheduler



- Statistical Knwoledge Scheduler
- K Short-Sighted, with Zero Knwoledge Scheduler ( K =

2, 3, 5)
- K Short-Sighted, with Statistical Knwoledge Scheduler (
K = 2, 3)

Figure 5 shows the ratio between the average energy per-
formance of each strategy and the average performance of the
omniscient scheduler for several values of Q(0)

B∆t and T = 25.

It appears, as expected, that the performance of the K
Short-Sighted, with Zero Knwoledge scheduler is better than
the one of the equal-bit scheduler, when K

T ≥ 0.15, and we
observe that the performance of the K Short-Sighted, with
Zero Knwoledge scheduler improves as long as K increases,
with decreasing gain every time. The performance of the
Statistical Knwoledge scheduler is quite close to the optimal
one, as demonstrated also in Section V-B. Adding a K Short-
Sighted Knowledge to the Statistical Knowledge contributes to
improve even more the performance of the scheduler, which
rapidly tends to the optimal performance achieved by the
Omniscient scheduler.
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VI. CONCLUSION AND DISCUSSION

In this paper, we investigate the tradeoff between the latency
T , the future context knowledge and the energy performance
of the system for delay-tolerant transmissions. For several
identified scenarios of future knowledge ranging from zero

to complete knwoledge, we propose an iterative algorithm to
approach the optimal instantaneous power strategies. It appears
that the system may greatly benefit of any piece of future
knowledge information, such as channel statistics or short-term
estimations. The system can then implement scheduler, for
which power performance appears greatly improved, compared
to scenarios where no knowledge is available.

As future work, such results will be discussed. For exam-
ple, we have not assumed any cost related to the learning
capability: one could discuss the actual cost of learning and
confront it to the actual energy-efficiency improvement, that
the system can access if it is granted a certain knowledge of its
upcoming future transmission context. New hybrid strategies
able to take into account both short-sighted predictions and
partial/statistical knowledge are also being studied.
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