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Abstract—Smooth and green future extension/scalability (e.g.,
from sparse to dense, from small-area dense to large-area dense,
or from normal-dense to super-dense) is an important issue
in heterogeneous networks. In this paper, we study energy
efficiency of heterogeneous networks for both sparse and dense
two-tier small cell deployments. We formulate the problem as
a hierarchical (Stackelberg) game in which the macro cell is
the leader whereas the small cell is the follower. Both players
want to strategically decide on their power allocation policies
in order to maximize the energy efficiency of their registered
users. A backward induction method has been used to obtain
a closed-form expression of the Stackelberg equilibrium. It is
shown that the energy efficiency is maximized when only one
sub-band is exploited for the players of the game depending on
their fading channel gains. Simulation results are presented to
show the effectiveness of the proposed scheme.

Index Terms—Heterogeneous networks; Energy efficiency;
Multi-carrier systems; Game theory.

I. INTRODUCTION

Small cells are deployed over the existing macro cell net-
work and share the same frequency spectrum with macro cells
(see Fig. 1). Due to spectral scarcity, the small cells and macro
cells have to reuse the allocated frequency band partially or
totally which leads to co-tier or cross-tier interference [1].
Interference mitigation between neighboring small cells and
between the macro cell and the small cell is considered to
be one of the major challenges in heterogeneous networks.
Further, the conventional radio resource management tech-
niques for hierarchical cellular system is not suitable for
heterogeneous networks since the position of the small cells is
random depending on the users’ service requirement [2], [3].
Several existing works addressed the challenges of interference
management in heterogeneous networks [4], [5]. Moreover,
for mobility connectivity performance, both sparse and dense
deployments should be considered with equal priority as sug-
gested in the 3GPP Release 12 [6]. Moreover, as the number
of radio nodes increases, backhaul becomes more important.
Backhaul performance not only affects the data throughput
available to users, but also the overall performance of the
radio-access network [7]. Recently, millimeter-wave [8] was
proposed as a potential candidate for the backhaul link as it
enables multi-Gbps wireless data communications. However,
achieving these goals is usually at the expense of higher energy
consumption. Therefore how to reduce power consumption

Macro cell

Small cell

Fig. 1. A heterogeneous networks with multi-layered systems of overlapping
macro and small cells.

while satisfying the system throughput requirement becomes
a vital task in heterogeneous networks.

In this paper, we introduce a novel game-theoretic frame-
work in heterogeneous network which enables both the small
cells and the macro cell to strategically decide on their
downlink power control policies. Due to the nature of het-
erogeneous networks architecture, we formulate the problem
as a Stackelberg (hierarchical) game in which the macro cell
and the small cells strategically optimize the energy efficiency
of their users.

II. SYSTEM MODEL

Small cells are controlled by a Home eNB (HeNB) whereas
macro cells are controlled by a macro eNodeB (MeNB).
Let gkf denote the downlink channel gain between small
cell user (SUE) f and its serving HeNB on carrier k with
k = 1, . . . ,K. The macro cell users (MUEs) exist indoor as
well and are served by the macro cell, where we denote by gk0
the downlink channel gain of a macro-user served by the macro
cell on carrier k. In our model, channel gain includes Rayleigh
fading. Both the small cells and the macro cell operate in a
shared spectrum environment which gives rise to a mutual
interference. hk0 , resp. hkf , stands for the interfering signal
from the macro cell eNodeB 0, resp. the small cell Home
eNodeB f , on carrier k. For realistic reasons we will assume
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that K ≥ N where N stands for the number of players
in the game, i.e., one macro cell (referred to hereafter and
interchangeably as the leader) and F small cells (referred to
hereafter and interchangeably as followers).

III. NETWORK ENERGY-EFFICIENCY ANALYSIS

Energy consumption can be decomposed into the fixed-
energy-consumption part and the dynamic-energy consump-
tion part [9]. Fixed energy consumption, e.g., circuit energy
consumption, is the baseline energy consumed. Circuit energy
consumption usually depends on both the hardware and soft-
ware configurations of a device and is independent of the
number of occupied channels. In this paper, we will focus
on the dynamic energy consumption which accounts for the
transmission energy consumed in radio frequency transmission
circuits depending on the number of occupied channels. The
system model adopted throughout the paper is based on the
seminal paper [10] that defines the energy efficiency frame-
work. We consider a utility function that allows one to measure
the corresponding trade-off between the transmission benefit
(total throughput over the K carriers) and the cost (total power
over the K carriers):

un(p1, . . . ,pN) =

Rn ·
K∑
k=1

f(γkn)

K∑
k=1

pkn

(1)

where pn is the power allocation vector of user n over all
carriers k, i.e., pn = (p1n, . . . , p

K
n ). Rn and γkn are respectively

the transmission rate and the SINR of user n over carrier k.
f(·) is the ”efficiency” function which measures the packet
success rate. The utility function un, that has bits per joule as
units, perfectly captures the trade-off between throughput, and
battery life and is particularly suitable for applications where
energy efficiency is crucial. The efficiency function f(·) is an
increasing, continuous sigmoidal function. It can be shown that
for a sigmoidal efficiency function, the utility function in (1)
is a quasi-concave function of the user’s transmit power [11],
and we will use this assumption throughout our paper. Clearly,
a message from Eq. 1 in terms of power usage is that a device
should not exploit, in general, all the available radiated power
at the transmitter to maximize its energy efficiency.

IV. THE GAME THEORETIC FORMULATION

A. The non-cooperative game problem

An important solution concept of the game under con-
sideration is the Nash equilibrium (NE) [12], which is a
fundamental concept in non-cooperative strategic games. It is a
vector of strategies pNE = {p1

NE , . . . ,pN
NE}, one for each

player, such that no player has incentive to unilaterally deviate,
i.e., un(pn

NE ,p−n
NE) ≥ un(pn,p−n

NE) for every action
pn 6= pn

NE , where the −n subscript on vector p stands for
”except user n”, i.e., p−n = {p1, . . . ,pn−1,pn+1, . . . ,pN}.

B. The hierarchical game formulation

There are many motivations for studying wireless networks
with hierarchical structures, but the most important ones are
to improve the network efficiency and modeling aspect. The
Stackelberg game has been first proposed in economics and in-
dependently in biology for modeling optimal behavior against
nature [13]. It is also a natural setting for heterogeneous
wireless networks due to the absence of coordination among
the small cells and between small cells and macro cells. At
the core lies the idea that the utility of the leader obtained
at the Stackelberg equilibrium can often be improved over
his utility obtained at the Nash equilibrium when the two
users play simultaneously. It has been proved in [14] that
when only one carrier is available for the players this result
is true for both the leader and the follower. The goal is then
to find a Stackelberg equilibrium in this two-step game. It
is noteworthy that if there exists a Nash equilibrium in a
game, there exists at most one Stackelberg equilibrium [13].
In this work, we consider a Stackelberg game framework in
which the macro cell (or the leader) decides first his power
allocation vector p0 = (p10, . . . , p

K
0 ) and based on this value,

a small cell (or follower) f will adapt its power allocation
vectors pf = (p1f , . . . , p

K
f ) for f = 1, . . . , F . A Stackelberg

equilibrium can then be determined using a bi-level approach,
where, given the action of the leader, we compute the best-
response function of the follower (the function pf (·) for
f = 1, . . . , F ) and find the actions of the followers which
maximize their utilities.

V. SPARSE NETWORK MODEL

Two-tier heterogeneous networks have been proposed to
accommodate the rapid increase in wireless data traffic in in-
door environments. In this section, we first consider a wireless
network where small cells are deployed in a sparse manner to
cover the hotspots and are overlaid by a single macro cell. In
such environment, macro eNB will have very good channel
conditions to its macro cell users while signals received from
the outdoor small cell users will be highly attenuated by the
macro cell transmission. We will thus ignore interference from
small cells transmissions since their contribution is minimal in
a sparse network yielding the following MUE and SUE SINR
on carrier k respectively

γk0 =
gk0p

k
0

σ2
(2)

γkf =
gkfp

k
f

σ2 + hk0p
k
0

, for f = 1, . . . , F (3)

where σ2 stands for the noise variance. Here and in the sequel
Bn, n = 0, 1, . . . , F denotes the carrier for which player
n’s signal channel gain gkn is the biggest, while Sn, n =
0, 1, . . . , F denotes the carrier for which his signal channel
gain gkn is the second biggest. The following proposition will
be true in this situation.



Proposition 1. Let γ∗ be the unique positive solution to the
equation

x f ′(x) = f(x) (4)

In the sparse network model, the equilibrium power alloca-
tions of each of the players are as follows:
The power allocation of the leader is:

pk0 =

{
γ∗σ2

gk0
for k = B0

0 otherwise

The power allocation of the follower f if Bf 6= B0 is

pkf =

{
γ∗σ2

gkf
fork = Bf

0 otherwise

The power allocation of the follower f if Bf = B0 and
g
Bf
f

g
Sf
f

≥

1 +
h
Bf
0

g
Bf
0

γ∗ is

pkf =

{
γ∗σ2(gk0+γ

∗hk
0 )

gk0 g
k
f

for k = Bf

0 otherwise

The power allocation of the follower f if Bf = B0 and
g
Bf
f

g
Sf
f

≤

1 +
h
Bf
0

g
Bf
0

γ∗ is

pkf =

{
γ∗σ2

gkf
for k = Sf

0 otherwise

Prop. 1 proved that the best-response of two actors of the
system is to use only one carrier depending on their fading
channel gains. This result differs from what it is usually
obtained by throughput-based systems. Indeed, it is well
known that maximizing the sum throughput leads to a water-
filling solution [15] where only a certain number of bands
are exploited depending on the channel gains. In particular,
when the SNR is low (resp. high), only one (resp. every) band
is exploited. Energy efficiency, on the other hand, is always
maximized by using a single band. This means that each of
MeNB and HeNB always leaves K−1 bands completely free.

VI. DENSE NETWORK MODEL

Consider now a scenario in which a lot of small cells are
densely deployed to support huge traffic over a relatively wide
area covered by the macro cell. This is typically suitable for
dense urban networks or a large shopping mall where the
coverage of the small cell layer is generally discontinuous
between different hotspot areas. System simulations in [16]
have suggested that this scenario should require special at-
tention since it creates a significant interference impact. The
impact of this interference increases as the density of small
cells within the macro cell coverage area increases. We will
focus on mitigating the cross-tier interference between the
macro cell and small cells in a two-tier downlink model.

More specifically, we consider a dense two-tier network
with f small cells overlaid by a single macro cell giving rise

to non-negligible interference from small cells. The resulting
SINR of MUE 0 served by the macro cell on carrier k is given
by

γk0 =
gk0p

k
0

σ2 +

F∑
f=1

hkfp
k
f

(5)

On the other hand, downlink transmissions of a small
cell Home eNB suffer from interference with the macro cell
transmissions yielding the same SINR expression in (3).

In this section we present an algorithm for finding exact
equilibrium in the partial interference two-tier system model.
In the whole section we make the following two additional
assumptions about function f :
(A1) f ′(0+) = 0 or f ′(0+) > 0 and f ′′(0+)

f ′(0+) >

2γ∗maxk≤K

[
hk
0

gk0

∑F
f=1

hk
f

gkf

]
.

(A2) For any a > 0 the equation

(x− ax2)f ′(x) = f(x)

always has exactly one positive solution.
These two assumptions assure that the game under consid-
eration always has an equilibrium and that it can be found
using the algorithm presented in the proposition below. Note
however that in particular, for the most standard form of f ,

f(x) = (1− e−x)M ,

both assumptions are satisfied, so they are not overly prob-
lematic.

Proposition 2. Let γ∗ be defined as in (4) The following
procedure gives the equilibrium power allocations for all of
the players in the two-tier model:

1) Let every follower f choose his best carrier Bf . For
each k denote by F (k) the number of followers who
choose k and sort these followers in decreasing order by

their θf =
g
Bf
f

g
Sf
f

. Denote by f(k, l) the follower choosing

carrier k with l-th biggest θf .

2) For every k and each L ≤ F (k) let ηk,L =
∑L
l=1

hk
f(k,l)

gk
f(k,l)

and find the positive solution to the equation

(x− hk0γ
∗ηk,L
gk0

x2)f ′(x) = f(x).

Let γ∗∗k,L be this solution.
3) For each k let F ∗(k) be the biggest L such that

gkf(k,l)(g
k
0 − γ∗∗k,lγ∗ηk,lhk0) > g

Sf(k,l)

f(k,l) (g
k
0 + hk0γ

∗∗
k,l)

and for each l ≤ F ∗(k) compute the four values:

V k0 (l) =
f(γ∗∗k,l)(g

k
0 − γ∗∗k,lγ∗ηk,lhk0)R0

γ∗∗k,l(1 + γ∗ηk,l)σ2
,

p̃k0(l) =
γ∗∗k,l(1 + γ∗ηk,l)σ

2

gk0 − γ∗γ∗∗k,lηk,lhk0
,



V̂ k0 (l) =
f(

gk0 p̂
k
0 (l)

σ2(1+γ∗ηk,l−1)+γ∗ηk,l−1hk
0 p̂

k
0 (l)

)

p̂k0(l)
,

p̂k0(l) =
σ2(gkf(k,l) − g

Sf(k,l)

f(k,l) )

hk0g
Sf(k,l)

f(k,l)

.

4) For l < F ∗(k) do the following steps:
If p̃k0(l) < p̂k0(l+1), put V k0 (l) = V̂ k0 (l+1) and p̃k0(l) =
p̂k0(l + 1).
If p̃k0(l) > p̂k0(l), put V k0 (l) = V̂ k0 (l) and p̃k0(l) = p̂k0(l).

5) Find (k̂, l̂), maximizing V k0 (l) for l ≤ F ∗(k), k =

1, . . . ,K. Take F ∗(k̂) = l̂, p̃k̂0 = p̃k̂0(l̂) and p̃k̂
f(k̂,l)

=

γ∗(σ2+hk̂
0 p̃

k̂
0 (l̂))

gk̂
f(k̂,l)

for l = 1, . . . , l̂.

The equilibrium power allocations of the leader are defined
by:

pk0 =

{
p̃k0 for k = k̂
0 otherwise

The equilibrium power allocations of follower f when f =
f(k̂, l) with l ≤ F ∗(k̂) are defined by:

pkf(k,l) =

{
p̃kf(k,l) for k = k̂

0 otherwise

The equilibrium power allocations of follower f when f =
f(k̂, l) with l > F ∗(k̂) are defined by:

pkf(k,l) =

{
γ∗σ2

gkf
for k = Sf

0 otherwise

Finally, the equilibrium power allocations of follower f when
Bf 6= k̂ are defined by:

pkf(k,l) =

{
γ∗σ2

gkf
for k = Bf

0 otherwise

Although the formulation of Prop. 2 is rather complicated,
we end up having similar observations than for Prop. 1.

VII. NUMERICAL ILLUSTRATIONS

We present a scenario with small cells overlaying an existing
macro cell network. We first provide a performance compar-
ison of the proposed Stackelberg model described in Section
VI and the following traditional communication schemes:
• the Nash model: both the macro cell and the small cell

choose their power level according to [17] in a non-
cooperative manner,

• the best channel model: all players choose to transmit
on their ”best” channels.

As expected, results in Figure 2 show that the MeNB (i.e.,
the leader) performs better at Stackelberg than for the other
strategies in terms of energy efficiency. This is at the expense
of the HeNB (i.e., the follower) which performs worse at
Nash equilibrium. This is due to the fact that in Nash model,
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the MeNB does not anticipate the HeNB’s action like in the
Stackelberg model.

In Figure 3, we plot the energy efficiency at equilibrium
as a function of the number of carriers. Again, we observe
that the MeNB of the Stackelberg scheme achieves the best
energy efficiency compared to the other schemes. Moreover,
we found out that both the utility of the leader and the
follower are increasing with the number of carriers. As the
latter increases, all configurations tend towards having the
same energy efficiency since the channel diversity gain tends
to 0.

VIII. CONCLUSION

In this paper, we have introduced a novel game-theoretic
framework in heterogeneous network which enables both the
small cells and the macro cell to strategically decide on
their downlink power control policies. Due to the nature of
heterogeneous networks architecture, we have formulated a
hierarchical game in which the macro cell and the small cells
strategically optimize the energy efficiency of their users. We
have derived analytically the equilibrium for the sparse and



two-tier dense network. In particular, we have shown that the
energy efficiency is maximized when only one sub-band is
exploited for the players of the game and the other sub-bands
are left unused. This result differs from what it is usually
obtained by throughput-based systems where only a certain
number of bands are exploited depending on the channel gains.
Simulation results assessed the performance of the proposed
approach in various settings.
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APPENDIX

Before we present the proofs of our main results, we cite
an important result from [17] as a lemma:

Lemma 1. Given the power allocation vector p0 of the leader,
the best-response of the follower f for f = 1, . . . , F is given
by

pkf (p0) =


γ∗(σ2 + gk0p

k
0)

gkf
, for k = Lf (p0),

0, for all k 6= Lf (p0)
(6)

with Lf (p0) = argmax
k

gkf
σ2+hk

0p
k
0

and γ∗ is the unique
(positive) solution of the equation (4).

A. Proof of Proposition 1

Proof: Since the macro cell user does not experience any
interference, his utility from using carrier k is

f(
gk0p

k
0

σ2 )

pk0
, (7)

which is by Lemma 1 maximized for pk0 = γ∗σ2

gk0
. If we

substitute it into (7), we obtain that his utility from carrier
k is f(γ∗)gk0

γ∗σ2 , which is obviously maximized for k = B0.
Now, knowing that the leader will use carrier B0 and power

pB0
0 = γ∗σ2

g
B0
0

, follower f , experiencing interference only with
the leader may either choose carrier B0, obtaining as utility

f(
g
B0
f p

B0
f

σ2+h
B0
0 p

B0
0

)

pB0

f

,

or choose some other carrier k where his utility will be

f(
gkfp

k
f

σ2 )

pkf
.

The former is (again by Lemma 1) maximized for pB0

f =
γ∗(σ2+h

B0
0 p

B0
0 )

g
B0
f

=
γ∗σ2(g

B0
0 +γ∗h

B0
0 )

g
B0
0 g

B0
f

and then equal to

f(γ∗)gB0

f

γ∗(σ2 + hB0
0 pB0

0 )
=

f(γ∗)gB0

f

γ∗σ2(1 +
h
B0
0

g
B0
0

γ∗)
, (8)

while the latter for pkf = γ∗σ2

gkf
and then equal to

f(γ∗)gkf
γ∗σ2 .

Obviously, if gkf ≥ gB0

f the latter is bigger, and so for Bf 6=
B0 f chooses to allocate to carrier Bf power pBf

f = γ∗σ2

g
Bf
f

.

Otherwise (when Bf = B0) he compares the value (8) he
may obtain on Bf and the one he can obtain on the best of

his remaining carriers, Sf ,
f(γ∗)g

Sf
f

γ∗σ2 . Choosing the bigger one
gives the result given in the proposition.

B. Proof of Proposition 2

Proof: We first show that the players will not have
incentive to change their power allocations defined by the
algorithm, without changing the carriers they use. Note that,
since small cells experience interference only with the macro
cell 0, they always only adjust their power to that chosen by
the macro cell 0, according to Lemma 1. This is done in every
case considered in the algorithm.

Now suppose that k̂ and F ∗(k̂) > 0 are chosen by the
algorithm and that step 4) did not change the value of V k0 . We
will show that in this case player 0 will not have incentive to
change his power. There are F ∗(k̂) followers using carrier k̂,

http://www.3gpp.org/ftp/Specs/archive/36_series/36.932/36932-c00.zip
http://www.ericsson.com/res/docs/whitepapers/WP-Heterogeneous-Networks.pdf
http://www.ericsson.com/res/docs/whitepapers/WP-Heterogeneous-Networks.pdf


and these are players f(k̂, l), l ≤ F ∗(k̂). The leader’s SINR
is thus of the form:

γk̂0 =
gk̂0p

k̂
0

σ2 +
∑F∗(k̂)
l=1 hk̂

f(k̂,l)
pk̂
f(k̂,l)

If we substitute the power used by the followers by Lemma 1
into it, we obtain

γk̂0 =
gk̂0p

k̂
0

σ2 +
∑F∗(k̂)
l=1 hk̂

f(k̂,l)

γ∗(σ2+hk̂
0p

k̂
0 )

gk̂
f(k̂,l)

=
gk̂0p

k̂
0

σ2(1 + ηk̂,F∗(k̂)γ
∗) + ηk̂,F∗(k̂)γ

∗hk̂0p
k̂
0

=
gk̂0

ηk̂,F∗(k̂)γ
∗hk̂0

1− 1

1 +
pk̂0ηk̂,F∗(k̂)

γ∗hk̂
0

σ2(1+η
k̂,F∗(k̂)

γ∗)

 (9)

where ηk̂,F∗(k̂) =
∑F∗(k̂)
l=1

hk̂

f(k̂,l)

gk̂
f(k̂,l)

. Now we differentiate γk̂0

with respect to pk̂0 :

∂γk̂0

∂pk̂0
=

gk̂0

σ2(1 + ηk̂,F∗(k̂)γ
∗)(1 +

pk̂0ηk̂,F∗(k̂)
γ∗hk̂

0

σ2(1+η
k̂,F∗(k̂)

γ∗) )
2

(10)

=
gk̂0σ

2(1 + ηk̂,F∗(k̂)γ
∗)

(σ2(1 + ηk̂,F∗(k̂)γ
∗) + ηk̂,F∗(k̂)γ

∗hk̂0p
k̂
0)

2

=
1

pk̂0

σ2(1 + ηk̂,F∗(k̂)γ
∗)

gk̂0p
k̂
0

(γk̂0 )
2

Next we can transform (9) into

pk̂0 =
σ2(1 + ηk̂,F∗(k̂)γ

∗)γk̂0

gk̂0 − ηk̂,F∗(k̂)γ∗h
k̂
0γ

k̂
0

and substitute it into (11), obtaining

∂γk̂0

∂pk̂0
= γk̂0 (1− ηk̂,F∗(k̂)γ

∗h
k̂
0

gk̂0
γk̂0 ). (11)

The utility of the leader is

γk̂0

pk̂0
=

f(
gk̂0p

k̂
0

σ2(1+η
k̂,F∗(k̂)

γ∗)+η
k̂,F∗(k̂)

γ∗hk̂
0p

k̂
0

)

pk̂0
. (12)

The first order condition for the maximization of (12) is

0 =
∂(

R0f(γ
k̂
0 )

pk̂0
)

∂pk̂0
= R0

−f(γk̂0 ) + f ′(γk̂0 )
∂γk̂

0

∂pk̂0
pk̂0

(pk̂0)
2

.

If we substitute (11) into it we obtain

(γk̂0 −
hk0γ

∗ηk̂,F∗(k̂)

gk0
(γk̂0 )

2)f ′(γk̂0 ) = f(γk̂0 ). (13)

By (A2) there is a unique solution to this equation. Moreover,
this solution gives the maximum value of the macro cell’s

utility function, as (A1) implies that for γ → 0+ the utility
function is increasing. Thus the value of

p̃k̂0 =
γ∗∗
k̂,F∗(k̂)

(1 + γ∗ηk̂,F∗(k̂))σ
2

gk̂0 − γ∗γ∗∗k̂,F∗(k̂)ηk̂,F∗(k̂)h
k̂
0

associated with the solution to (13), γ∗∗
k̂,F∗(k̂)

, gives the biggest

possible value of the macro cell’s utility when F ∗(k̂) small
cells also use carrier k̂. If however p̃k̂0 defined above will be
smaller than

p̂k̂0(F
∗(k̂) + 1) =

σ2(gk̂
f(k̂,F∗(k̂)+1)

− g
S
f(k̂,F∗(k̂)+1)

f(k̂,F∗(k̂)+1)
)

hk̂0g
S
f(k̂,F∗(k̂)+1)

f(k̂,F∗(k̂)+1)

,

small cell f(k̂, F ∗(k̂)+1) will want to change his carrier to k̂.
Thus in that case the value of p̃k̂0 will have to be increased to
the value of p̂k̂0(F

∗(k̂) + 1) to avoid this situation. Similarly,
when p̃k̂0 will be bigger than

p̂k̂0(F
∗(k̂)) =

σ2(gk̂
f(k̂,F∗(k̂))

− g
S
f(k̂,F∗(k̂))

f(k̂,F∗(k̂))
)

hk̂0g
S
f(k̂,F∗(k̂))

f(k̂,F∗(k̂))

,

small cell f(k̂, F ∗(k̂)) will want to change his carrier from k̂

to Sf(k̂,F∗(k̂)). Thus in that case the value of p̃k̂0 will have to

be decreased to the value of p̂k̂0(F
∗(k̂)) to avoid it.

Next we show that none of the players will have an incentive
to change their carriers. For macro cell player 0 this is obvious,
because the algorithm chooses the carrier k̂ and the number
of small cells transmitting on it l̂ in order to maximize his
utility, so changing the carrier will obviously decrease his
utility. As far as small cells whose best carrier is not k̂
are concerned – each of them transmits on his best carrier
obtaining his maximal possible utility, so none of them will
have an incentive to change his carrier. Finally, let f be a small
cell whose Bf = k̂ such that f = f(k̂, l∗). If he transmits on
carrier k̂, the condition

gk̂
f(k̂,F∗(k̂))

(gk̂0 − γ∗∗k̂,F∗(k̂)γ
∗ηk̂,F∗(k̂)h

k̂
0) > (14)

g
S
f(k̂,F∗(k̂))

f(k̂,F∗(k̂))
(gk̂0 + hk̂0γ

∗∗
k̂,F∗(k̂)

),

which is assured by the algorithm, implies that also

gk̂
f(k̂,l∗)

(gk̂0 − γ∗∗k̂,l∗γ
∗ηk̂,l∗h

k̂
0) > g

S
f(k̂,l∗)

f(k̂,l∗)
(gk̂0 + hk̂0γ

∗∗
k̂,l∗

), (15)

as l∗ ≤ F ∗(k̂) (because this is true for all the small cells
transmitting on k̂) and thus

g
B

f(k̂,F∗(k̂))

f(k̂,F∗(k̂))

g
S
f(k̂,F∗(k̂))

f(k̂,F∗(k̂))

=
k̂

g
S
f(k̂,F∗(k̂))

f(k̂,F∗(k̂))

≤ k̂

Sf(k̂,l∗)
=
Bf(k̂,l∗)

Sf(k̂,l∗)



(because they are ordered by the algorithm in decreasing order

by their
g
Bf
f

g
Sf
f

). But (15) can be rewritten as

f(γ∗)gk̂
f(k̂,l∗)

(gk̂0 − γ∗∗k̂,F∗(k̂)γ
∗ηk̂,F∗(k̂)h

k̂
0)Rf(k̂,l∗)

γ∗σ2(gk̂0 + hk̂0γ
∗∗
k̂,F∗(k̂)

)
> (16)

f(γ∗)g
S
f(k̂,l∗)

f(k̂,l∗)
Rf(k̂,l∗)

γ∗σ2

But the LHS of the above inequality is f ’s utility when he uses
carrier k̂, while the RHS is his utility when he uses his second
best carrier. Thus he cannot gain by changing the carrier from
k̂. Similar arguments imply that a small cell f whose best
carrier is k̂ but who uses carrier Sf instead of it, will not be
interested in changing it to k̂.
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