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Université Catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

Luca Sanguinetti and Giacomo Bacci

Dip. Ingegneria dell’Informazione, University of Pisa, Italy

and Consorzio Nazionale Interuniversitario per

le Telecomunicazioni (CNIT), Parma, Italy

Abstract—This paper presents an energy-efficient power allo-
cation for relay-aided heterogeneous networks subject to coupling
convex constraints, that make the problem at hand a generalized
Nash equilibrium problem. The solution to the resource allocation
problem is derived using a sequential penalty approach based on

the advanced theory of quasi variational inequality, which allows
the network to converge to its generalized Nash equilibrium in a
distributed manner. The main feature of the proposed approach
is its decomposability, which leads to a two-layer distributed
algorithm with provable convergence.

I. INTRODUCTION

The wireless research community has deployed a massive

effort to study and design transmission techniques taking into

account the cost of energy in wireless communications [1].

Towards this end, the concept of link capacity per unit cost

originally proposed in [2] has been widely adopted in many

different contexts. Just to name few examples, the problem

of energy efficient precoding for wireless terminals equipped

with multiple antenna capability is studied in [3], whereas [4]

and [5] investigate energy efficient link adaptation strategies

for wideband systems.

From an architectural point of view, the hypothesis of

improving the energy efficiency (EE) performance through

a very dense deployment of self-organizing, low-cost, and

low-power base stations has been investigated in [6]. This

perspective has stimulated an intense research activity on

heterogeneous networks, which are founded on the idea of

multiple radio access technologies and transmission techniques

coexisting in the same area to ensure the most efficient usage

of the spectrum resource with the minimum waste of energy

[7].

A common way of designing such heterogeneous multiuser

systems is by optimizing the (weighted) sum of the users ob-

jective functions. Despite its promise, solution methods based

on “socially-efficient” optimization are often too demanding,

the main difficulty lying in adopting distributed techniques
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with limited signaling among the users. On the contrary, game-

theoretical approaches based on competition among users lead

to alternative distributed algorithms that present advantages in

term of robustness of convergence, scalability, and required

quantity of message passing [8]. In this perspective, the design

of wireless devices capable of self-enforcing the negotiated

agreements on the resource usage has been investigated in

[9]–[11]. In [9], the authors proposed an accurate analysis of

the equilibrium point for a group of competitive users aiming

at maximizing their information rate in parallel Gaussian multi

access channels. However, this capacity-based approach is not

energy-efficient since the selfish behavior of players tends

to increase transmit power beyond what is reasonable. To

overcome this obstacle, in [10] a power allocation game was

proposed to maximize the EE of the users’ links. Although

interesting, the framework developed in [10] does not provide

a theoretically convergent algorithm. This gap has been re-

cently fulfilled in [11] by making use of the quasi variational

inequality (QVI) framework that was originally introduced

in [12] and successfully used in different fields such as

economics and biology (see [13] and references therein). The

main objective of this work is to apply the approach proposed

in [11] to relay-aided heterogenous networks in which different

types of users may pursue different objectives. Moreover,

minimum performance requirements will be guaranteed by

imposing feasible strategy sets including also coupling convex

constraints.

Notation: Matrices and vectors are denoted by bold letters:

IL, 0L, and 1L are the L × L identity matrix, the L × 1
all-zero column vector, and the L× 1 all-one column vector,

respectively. The set of positive real numbers (including 0) is

denoted by R+, and (·)T denotes transposition. The notation

[x]+ stands for max(0, x), W (·) denotes the Lambert W
function [14], defined to be the multivalued inverse of the

function z = W (z)eW (z) for any z ∈ C, with C being the set

of complex numbers, and E{·} denotes statistical expectation.

II. SYSTEM SCENARIO

Two-tier networks are a promising solution to reduce the

energy consumption in cellular networks. Operationally, in

a two-tier network small cells are integrated into existing

macro-cellular networks, so that the latter can ensure wide-area



coverage, whereas the small cells can carry most of the data

traffic for low-mobility users within their short radio coverage.

More specifically, we consider the uplink of the two-tier

network depicted in Fig. 1 composed by one macro base

station (MBS) serving M macro users (MUs), by a number of

small cells serving a total of S small-cell users (SCUs), and R
relay stations (RSs), each serving at most one MU. The RSs

are assumed to be fixed and used to forward the received signal

to the MBS by means of a regenerative decode-and-forward

(DF) strategy. The total number of users in the network is thus

given by K = M + S +R. In addition to this, we call:

1) M1 the set of MUs whose communication with the

MBS takes place in a single hop;

2) M2 the set of MUs whose communication with the

MBS takes place in two hops (with the aid of relays);

3) S the set of SCUs that communicate with their associ-

ated small-cell base station;

4) R the set of RSs that communicate with the MBS.

We consider a two-time-slot transmission pattern, which is

half-duplex in the sense that transmission and reception at

the RSs do not occur simultaneously in the same frequency

band. During the first time slot, the nodes belonging to the set

I1
∆
= {M1 ∪ M2 ∪ S} are active, while the RSs are silent.

During the second time slot, the relays decode the messages

of the two-hop MUs and forward them to the MBS while the

two-hop MUs stay in the idle mode. This means that the set of

active users during the second time-slot is I2
∆
= {M1∪R∪S}.

We assume that the direct link between two-hop MUs and

MBS is negligible due to large path-loss attenuation.

The performance achieved by a generic node k is mea-

sured by a two-dimensional payoff (utility) vector uk =
[uk,1, uk,2]

T , in which uk,1 and uk,2 denote the value of the

kth objective function during the first and second time slots,

respectively. Given the different classes of users populating

the two-tier network described above, the utility uk,i achieved

by the kth transmitter at the ith time slot depends on user k’s

type (as better detailed in the next section).

More in details, assuming to have a multicarrier system

with N subchannels, each user can maximize its own pay-

off by regulating its own transmit power vector pk,i =
[pk,i(1), pk,i(2), . . . , pk,i(N)]T , where pk,i(n) ≥ 0 denotes

node k transmit power over subchannel n ∈ {1, . . . , N} and

time slot i ∈ {1, 2}.1 In doing so, only local channel state

information (CSI) is assumed to be available at node k. This

amounts to saying that the kth node has only knowledge of

Hk,k(n) for n = 1, 2, . . . , N , where Hj,k(n) is the channel

transfer function over the nth subchannel between transmitter

j and transmitter k’s receiver.

As is known, the optimization of the network through

centralized power control strategies is extremely challenging,

as it requires the coordination among heterogeneous entities,

thus making its solution weakly scalable and adaptive [8].

A possible way to overcome this obstacle is to make use of

1Using the notation introduced above, it follows that pk,1 = 0N if k ∈ R,
and, analogously, pk,2 = 0N if k ∈M2.

Fig. 1: Two-tier relay-assisted wireless network.

distributed (albeit suboptimal) algorithms based on a nonco-

operative game theoretical approach (e.g., [9], [15]).

III. ANALYSIS OF THE GAME

The aim of this section is to study the power control

problem as the solution of a non-cooperative game G =
(K, {Ak}, {uk}), where the set of users K and user k’s utility

uk have been introduced in Sect. II, and Ak ⊆ R2N
+ is the

power strategy set available to each user k. Aiming at studying

the solution of G, the best response for each type of players

is first derived and then used to define a QVI problem whose

solution will coincide with the equilibrium of the game [11].

A. Macro-cell users

Following the aforementioned non-cooperative approach,

we assume that MUs (at each time step i) target the

maximization of their own information rates under a con-

straint on the maximum total power consumption. Other-

wise stated, the best response Bk,i(·) taken by a MU user

k ∈ {M1 ∪ M2} to a specific power allocation profile

p\k,i = pi \ pk,i = [pT
1,i, . . . ,p

T
k−1,i,p

T
k+1,i, . . . ,p

T
K,i]

T ,

with pi = [pT
1,i, . . . ,p

T
K,i]

T , can be expressed as a function

Bk,i : R
N(K−1)
+ → RN

+ , such that [11]

Bk,i

(

p\k,i

)

= arg max
pk,i∈R

N
+

uk,i(pi) s.t. 1T
Npk,i ≤ Pk,i (1)

with Pk,i being user k’s maximum available total transmit

power during time slot i and such that Pk,i > 0 ∀k ∈ M1

and ∀i ∈ {1, 2}, and Pk,1 > 0 and Pk,2 = 0 ∀k ∈ M2,

respectively. In addition, uk,i(pi) denotes the user k’s utility

function, which is given by

uk,i(pi) = Rk(pi) =
N
∑

n=1

log2 (1 + ϕk,i(n)pk,i(n)) (2)

where Rk(pi) is the achievable information rate on the link

between the kth MU and the MBS, and

ϕk,i(n) =
|Hk,k(n)|

2

σ2
k(n) +

∑

j 6=k |Hj,k(n)|
2
pj,i(n)

(3)



denotes user k’s equivalent channel gain over subchannel n,

which accounts for the AWGN power σ2
k(n) and the multi-

access interference. The set of feasible strategies for the MUs

is then given by Ak = Ak,1 ×Ak,2 with

Ak,i = {pk,i ∈ R
N
+ : 1T

Npk,i ≤ Pk,i}. (4)

Using [9], the best response (1) is given by the waterfilling

mapping

Bk,i(p\k,i) = wfk,i
(

p\k,i, µk,i

)

(5)

where the nth component of the waterfilling operator is

[

wfk,i(p\k,i, µk,i)
]

n
=

[

1

µk,i

−
1

ϕk,i(n)

]+

(6)

and µk,i is such that 1T
Npk,i = Pk,i. Note that if Pk,2 = 0

then
[

Bk,2(p\k,2)
]

n
= 0.

B. Small-cell users

When dealing with SCUs, not only the rate maximization,

but also the interference reduction between macro-cell and

small-cell networks comes into play. Consequently, the best

response taken by each user k ∈ S can still be expressed by

(1), but with a different utility function, defined as

uk,i(pi) = Ek(pi) =
Rk(pi)

Ψk + 1T
Npk,i

(7)

where Rk(pi) is given in (2), Ψk is the (non-radiative) circuit

power consumed at transmitter k [5], [10], and the set of

feasible powers is defined as in (4).

Adapting the results derived in [16] for the problem at hand,

user k ∈ S’s best response Bk,i

(

p\k,i

)

can be still expressed

by the waterfilling operator (5), provided that the water level

µk,i is replaced by

λk,i = max{µk,i, νk,i} (8)

where µk,i is such that 1T
Npk,i = Pk,i whereas

νk,i = e(βk,i−1)−W(αk,i·e
βk,i−1) (9)

represents the water level that provides the maximum achiev-

able EE, measured as in (7), for a given interference allocation

p\k,i without any constraint. In addition,

αk,i =
1

N

(

Ψk −
∑N

n=1

1

ϕk,i(n)

)

(10)

βk,i =
1

N

N
∑

n=1

ln (ϕk,i(n)). (11)

Following the same line of reasoning proposed in [11], a

key ingredient to reformulate the power control problem as a

solvable QVI is the mapping tk,i : R
N(K−1)
+ → R+, providing

the inverse of the total power dissipation when Pk,i tends to

infinity, and defined as

tk,i(p\k,i) =
1

Ψk + 1T
Nzk,i(νk,i)

(12)

where

zk(νk,i) = wfk,i(p\k,i, νk,i) (13)

with νk,i defined as in (9) and such that the condition

Rk

(

zk,i(νk,i),p\k,i

)

− νk,i(Ψk + 1T
Nzk,i(νk,i)) = 0. (14)

is satisfied [5]. Hence, combining (7) with (14), νk,i is found

to explicitly represent the unconstrained EE achievable by a

user k ∈ S for a given p\k,i.

C. Relay nodes

In the spirit of greening the network infrastructures, the

powers selected by the RSs are also dynamically adapted to

maximize the EE of the relay-destination transmission, simi-

larly to what considered by SCUs. RSs might also guarantee

some minimum performance in terms of rates to the two-hop

MUs, by keeping their information rate above a threshold.

Hence, the best response taken by a RS k ∈ R is in the form2

Bk,2

(

p1;p\k,2

)

= arg max
pk,2∈R

N
+

uk,2(p2) (15)

s.t. 1T
Npk,2 ≤ Pk,2 (16)

Rk(p2) ≥ Rπ(k)(p1) (17)

where the utility uk,2(p2) is defined as in (7), the constraint

(16) accounts for the maximum total power Pk,2, whereas the

constraint (17) is introduced to guarantee a minimum rate to

the MU π(k) served by the RS k, with π : R → M2 being

the function that associates the relay k with its served MU

π(k) ∈ M2. The set of feasible strategies for the RSs is then

given by

Ak,2 = {pk,2 ∈ R
N
+ : 1T

Npk,2 ≤ Pk,2, Rk(p2) ≥ Rπ(k)(p1)}.
(18)

Note that, since (17) depends on the power allocation p1 taken

in the first time slot, RS k’s best response is a function Bk,2 :

R
N(2K−1)
+ → RN

+ , which depends on both p1 and p\k,2.3

Using the results in [5] and [16], similarly to the case

reported in Sect. III-B, (15) can be computed in a closed form

using (5), with a water level

λk,2 = min {νk,2, ξk,2} (19)

where νk,2 is defined as in (9), and

ξk,2 = N

√

1

2Rπ(k)(p1)

∏N

n=1 ϕk,2(n) (20)

2Since RSs are not active in the first time slot, we report all quantities for
the second time slot i = 2 only.

3For the sake of notation, from now on we will harmonize the best-response

functions for all users in the network, such that Bk,i : R
N(2K−1)
+ → RN

+

∀k ∈ K, meaning that Bk,i
(

p\k,i;p\i

)

is now a function of both the
opponents’ power allocation p\k,i in time slot i, and the total power allocation

p\i in the other time slot \i, with \i = 2 if i = 1, and \i = 1 if i = 2. Note
that this notation is adopted in the remainder of the paper for mathematical
convenience only, as it is straightforward to verify that p\i has no practical

impact on Bk,i when k ∈ {M1 ∪M2 ∪S}. An analogous modification can

be applied to the mappings tk,i, such that tk,i : R
N(2K−1)
+ → R+ ∀k ∈ K.



corresponds to the power allocation yielding the minimum to-

tal power expenditure when the minimum-rate constraint (17)

is met with equality, under the assumption that µk,2 ≤ ξk,2,

with µk,i defined as in Sect. III-A, that ensures that the

investigated problem is feasible.

Analogously to Sect. III-B, we can define a mapping tk,2 :

R
N(2K−1)
+ → R+ using (12), provided that νk,2 is replaced

by the water level λk,2 defined in (19).

D. Generalized Nash equilibrium problem

Given the best-response functions reported in the sub-

sections above, we can now investigate the solution of the

associated game G. Observe that introducing the minimum

rate constraint (17) at the relay side imposes a coupling among

the feasible per-slot strategy sets Dk,i ⊆ RN
+ , thus making the

distributed technique developed in [10] not directly usable.

The problem of finding the equilibrium of games with

coupled constraints, called a generalized Nash equilibrium

problem (GNEP), consists in computing the generalized Nash

equilibrium (GNE) points p⋆, defined as the fixed point(s) of

the joint best-response function B(p), defined as

B(p) =
∏2

i=1

∏

k∈K Bk,i

(

p\k,i;p\i

)

. (21)

Otherwise stated, p⋆ = [(p⋆
1)

T
, (p⋆

2)
T
]T is a GNE of G if and

only if p⋆ ∈ B(p⋆).
Interestingly, the equilibrium point of the game can be

obtained as the solution of a QVI problem, as stated in the

following proposition. For the sake of notation, let us first

introduce the following definitions. For all k ∈ K, let Pk,i be

the set defined as

Pk,i =
{

pk,i ∈ R
N
+ : hk(pk,i)

∆
= 1Tpk,i − Pk,i ≤ 0

}

.

(22)

For all k ∈ {S ∪ R}, let us also define the point-to-set maps

Qk,i(p\i;p\k,i) =
{

pk,i ∈ R
N
+ : gk,i(pk,i;p\k,i,p\i) ≤ 0

}

(23)

where

gk,i(pk,i;p\k,i,p\i)
∆
= Ψk + 1Tpk,i −

1

t⋆k,i(p\i;p\k,i)
(24)

with tk,i defined as in Sects. III-B and III-C.

Finally, let p = [pT
1 ,p

T
2 ]

T be the generic strategy profile of

G, and define the set-valued function D(p) =
∏

k∈K Dk(p),
where Dk = Dk,1 ×Dk,2, as

Dk,1 =











Pk,1, if k ∈ {M1 ∪M2}

Pk,1 ∩ Qk,1(p2;p\k,1), if k ∈ S

0N , if k ∈ R

(25)

Dk,2 =











Pk,2, if k ∈ M1

Pk,2 ∩ Qk,2(p1;p\k,2), if k ∈ {S ∪ R}

0N , if k ∈ M2.

(26)

Proposition 1: The GNEP can be modeled as

(p− p⋆)T F(p⋆) ≥ 0 ∀p ∈ D(p⋆) (27)

where F : R2NK
+ → R

2NK
+ is the vector F(p) collecting the

mappings

Fk,i(pk,i,p\k,i) = −∇pk,i
Rk,i(pk,i,p\k,i). (28)

Proof: Consider the QVI in (27), where F is a continuous

mapping and D is a set-valued function with closed and

convex images. Under these conditions, and since D can be

described by the parametric inequalities in (22) and (24), the

QVI can be reformulated as a system of constrained equations

via its Karush-Kuhn-Tucker (KKT) conditions, as discussed in

[13]. Thus, if a point p⋆ jointly satisfies the KKT conditions

of (27), then p⋆ is a solution of the QVI. For the sake of

briefness, we leave to the reader the easy task of verifying

that the solution of the KKT system, associated to the kth user

operating in the time slot i, corresponds to the best response

Bk,i whose expressions have been discussed in the previous

subsections. Consequently, the power allocation vector p⋆

solving (27) is a GNE of the game.

IV. SEQUENTIAL PENALTY APPROACH

A common approach to deal with coupling constraints in

game theory is the definition of a pricing scheme aiming

at imposing those constraints to the users in a distributed

fashion [17]. In this section, we make use of the proposed

QVI formulation to derive a distributed algorithm to achieve

the GNE of the game.

In spite of the huge potential of the QVI modeling, relatively

few studies have been devoted to the numerical solution

of finite-dimensional QVIs. Among them, [18] proposes a

sequential penalty approach that enables the solution of the

QVI via a sequence of modified VIs, in which the mapping

F is decreased by a penalty term.

Formally, consider the iteration j, and let {ρ(j)} be a

sequence of positive scalars satisfying ρ(j) < ρ(j+1) and

tending to ∞. Define also a sequence of 2K-dimensional

vectors {γ(j)} whose elements are computed as

γ
(j)
k,i =















[

γ
(j−1)
k,i + ρ(j−1) gk,i

(

p
(j−1)
k,i ;p

(j−1)
\k,i ,p

(j−1)
\i

)]+

,

if k ∈ {S ∪R}

0, if k ∈ {M1 ∪M2}.

(29)

For any k ∈ K, the vector p(j) = [(p
(j)
1 )T , (p

(j)
2 )T ]T ∈ P ,

where P =
∏2

i=1

∏

k∈K Pk,i, can be then obtained as the

solution of the following VIs:

(

p− p(j)
)T (

F(p(j)) + γ
(j)

)

≥ 0 ∀p ∈ P. (30)

In the sequel, we will discuss the convergence property of

the proposed sequential penalty approach. In this sense, a key

ingredient is the continuity of the coupling constraints with

respect to the set of power allocation strategies p, as stated in

the following proposition.

Proposition 2: Assuming that the maximum available pow-

ers Pk,2, for all RSs k ∈ R, guarantee the feasibility of the

associated best response problems, then gk,i(pk,i,p\i;p\k,i),



with k ∈ S ∪ R, is a continuous function with respect to all

variables, and the solution of (30) converges to the GNE as

j → ∞.

Proof: The proposition will be proved by contradiction.

First, from (24), note that gk,i is continuous if and only if

tk,i(p\i;p\k,i) is a continuous mapping. Then, assume that

there exists a pair (k, i) for which we can find two paths,

d′,d′′ ∈ RN(2K−1) such that d′ 6= d′′, and

lim
ǫ→0

tk,i(p̌\k,i − ǫ d′) 6= lim
ǫ→0

tk,i(p̌\k,i − ǫ d′′) (31)

where p̌\k,i
∆
= [pT

\i;p
T
\k,i]

T . This implies that there exist two

distinct values of the Lagrangian multiplier νk,i, i.e. ν(d
′)

and ν(d
′′), fulfilling condition (14). At the same time, we

also know that νk,i represents the maximum achievable value

of energy-efficient utility (7) for a given interference level.

Since a fractional program with a concave numerator and a

linear denominator has a unique solution, this contradicts (31),

thus concluding the first part of the proof. Eventually, it can

easily be verified that, under the aforementioned continuity

condition, the problem at hand fulfills the hypothesis of [18,

Theorem 3], which guarantees the convergence of the penalty

approach as j → ∞.

V. DISTRIBUTED IMPLEMENTATION

Before studying the distributed implementation of the se-

quential penalty approach, let us consider the penalized VI

problem (30), where γ
(j) is assumed to be a fixed exogenous

parameter. This problem has been largely investigated in the

literature and its solution can be obtained through the simul-

taneous iterative waterfilling with pricing (IWFP) algorithm

outlined in Table I, whose convergence is guaranteed at the

condition that mapping F is strongly monotone [17].

In the remainder of this section, we propose a two-layer

distributed algorithm in which the outer layer updates the

pricing vector, while the inner layer solves the corresponding

penalized VI problem via the IWFP algorithm. The design

guideline for the outer-layer algorithm is provided by the

following proposition.

Proposition 3: Assume that the solution p⋆ of the penalized

VI problem

(p− p⋆)T (F(p⋆) + γ
⋆) ≥ 0 ∀p ∈ P (32)

provides the GNE of the game G. Then the pricing vector γ⋆

must solve the nonlinear complementarity problem NCP(Φ),
formulated as

find γ � 0 (33)

subject to Φ(γ) � 0 (34)

γk,i[Φ(γ)]k,i = 0 ∀k and ∀i ∈ {1, 2} (35)

where the mapping R
2K → R

2K is defined as

[Φ(γ)]k,i =











1
tk,i(p⋆

\i;p
⋆
\k,i

) −Ψk − 1Tp⋆
k,i

if k ∈ {S ∪ R}

0, if k ∈ {M1 ∪M2}

(36)

initialize m = 0, ω
(0)
k,i
� 0, ∀k ∈ K, ∀i ∈ {1, 2}

repeat

set m← m+ 1,

compute ω
(m)
k,i

= wfk,i(ω
(m−1)
k,i

, µk,i + γk,i), ∀k ∈ K

until a suitable stop criterion is achieved.

output pk,i (γ) = ω
(m)
k,i

, ∀k ∈ K

TABLE I: Simultaneous IWFP algorithm

where, for the sake of readability, the dependence of p⋆ from

γ has been omitted.

Proof: Consider (32) and write down its KKT conditions

∀k ∈ K and ∀i:

Fk,i(p
⋆
k,p

⋆
\k,i) + γ⋆

k,i + µk,i = 0 (37)

0 ≤ µk,i ⊥ hk(pk,i) = 0.

According to (29), we have that γ⋆
k,i must be equal to

γ
(j)
k,i

∆
=

[

γ
(j−1)
k,i + ρ(j) gk,i(p

(j−1)
k,i ;p

(j−1)
\k,i ,p

(j−1)
\i )

]+

(38)

for j → ∞. Now, since Proposition 2 assures the convergence

of the sequential penalty approach to a bounded solution, γ
(∞)
k,i

must be bounded too. At the same time, recalling that ρ(j) →

∞ when j → ∞ and γ
(j)
k,i is a nonnegative scalar, we have

[

γ
(∞)
k,i + ρ(j) gk,i(p

(∞)
k,i ;p

(∞)
\k,i ,p

(∞)
\i )

]+

< ∞ (39)

only if gk,i(p
(∞)
k,i ;p

(∞)
\k,i ,p

(∞)
\i ) ≤ 0. Then, the stationarity

condition (37) holds with γ⋆
k,i 6= 0 only when the coupling

constraint gk,i(·) is met with equality. Finally, by simply

looking at (24), the proof follows.

Taking advantage of the result stated by Proposition 3, the

following distributed algorithm is then proposed.

1) Inizialize j = 0, p(0) � 0, and γ
(0) = 02K

2) Compute tk,i
(

p
(j)
\i ;p

(j)
\k,i

)

using (12), ∀k and ∀i.
3) Set j = j + 1.

4) Compute p(j) by solving the VI problem (30) via the

IWFP algorithm depicted in Table I.

5) Compute the vector whose elements are

[Φ̃]k,i =
1

tk

(

p
(j−1)
\i ;p

(j−1)
\k,i

) −Ψk − 1Tp
(j)
k,i . (40)

6) Set γ
(j)
k,i =

[

γ
(j−1)
k,i − ρ(j)[Φ̃]k,i

]+

.

7) Repeat from 2) and 6) until the maximum number

of iterations is reached or a suitable stop criterion is

achieved.

Finally, it is worth noting that the proposed distributed ap-

proach is equivalent to the projection method with variable

steps described in [19, Algorithm 12.1.4], which provides

a convergent procedure for the QVI problem whenever the

hypothesis of [19, Theorem 12.1.8] are fulfilled.
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Fig. 2: Average power consumption at the relay nodes.
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VI. NUMERICAL RESULTS AND CONCLUDING REMARKS

In this section, further insight into the performance of

the proposed distributed algorithm is inferred via numerical

simulations. The case of S = 4 SCUs coexisting in the

same geographic area with M1 = 2 one-hop and M2 = 2
two-hop MUs is discussed. The following system setup is

used: i) the average SNR on the generic kth channel de-

fined as SNRk = E{|Hk,k(n)|
2}/σ2

k(n) is set to 0 dB for

the MUs and 6 dB for the SCUs and the RSs; ii) the

average signal to interference ratio is defined as SIRk =
E{|Hk,k(n)|

2}/(
∑

j 6=k E{|Hj,k(n)|
2}); iii) the interference

channel is composed of N = 16 subchannels; iv) the max-

imum normalized power is fixed to Pk,i = N for any active

node k at time step i; v) the circuit power is set to Ψk = 1
for all k; vi) the starting point of the distributed algorithm is

the uniform power allocation strategy, i.e. p
(0)
k,i = 1N .

Fig. 2 presents the average power consumption of the relay

nodes. Note that the relay strategy consists in maximizing their

EE while guaranteeing at least the same information rate of

the source-to-relay link. As apparent, at the equilibrium, this

enables a consistent power saving even if a minimum rate is

guaranteed to MUs. Finally, a comparison of the end-to-end

spectral efficiency obtained by the MUs as function of the

interference level has been reported in Fig. 3.

Conclusions: In this paper, we have developed a distributed

power control strategy for relay-aided heterogeneous networks.

Thanks to a proper reformulation of the optimization problem

as a QVI, the transmission power of each terminal is chosen

so as to maximize the preferred utility function, which can be

either the information rate or the energy efficiency (possibly

subject to a minimum rate constraint). By making use of a

sequential penalty approach, we have demonstrated that the

GNE problem associated to the proposed heterogeneous game

can be solved in a distributed manner.
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