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Abstract—The problem of finding an optimal sensing schedule
for a mobile device that encounters an intermittent WiFi access
opportunity is considered. At any given time, the WiFi is in any
of the two modes, ON or OFF, and the mobile’s incentive is
to connect to the WiFi in the ON mode as soon as possible,
while spending as little sensing energy. We introduce a dynamic
programming framework which enables the characterization of
an explicit solution for several models, particularly when the OFF
periods are exponentially distributed.

While the problem for non-exponential OFF periods is ill-
posed in general, a usual workaround in literature is to make
the mobile device aware if one ON period is completely missed. In
this restricted setting, using the DP framework, the deterministic
nature of the optimal sensing policy is established, and value
iterations are shown to converge to the optimal solution. Finally,
we address the blind situation where the distributions of ON
and OFF periods are unknown. A continuous bandit based
learning algorithm that has vanishing regret (loss compared to the
optimal strategy with the knowledge of distributions) is presented,
and comparisons with the optimal schemes are provided for
exponential ON and OFF times.

I. INTRODUCTION

The available WiFi connectivity in mobile environments can
be intermittent. In an effort to maximize WiFi connectivity
time, current smartphones keep scanning/sensing for WiFi con-
nection quite frequently, however, they loose precious battery
life in this process. The sensing schedule clearly depends on
the distributions of the ON and OFF periods of the WiFi APs.
This paper is an effort in finding the optimal sensing periods
given the knowledge of the ON and OFF period distributions.

Given a geographical area with a fixed number of WiFi
APs and a roaming mobile, the WiFi connection opportunity
can be modeled as a two-state Markov chain with {ON, OFF}
states. In [1], it is shown that the ON and OFF periods can
be well approximated by exponential distributions. Without
explicitly counting for the sensing cost, [1] also found the
optimal sensing durations that minimize the rate of missed ON
periods. The analysis, however, is not completely rigorous, for
example, the missed ON period in a given time period does not
depend on the length of the time period, which is anomalous.

A natural metric for finding the optimal sensing duration
is the sum of the expected length of the missed ON periods
and the expected sensing cost [2]. Even though [2] considered
this metric, however, for analysis, the metric was simplified,
for example by replacing some of the random variables with
their expectations. Optimal solutions to these approximations
for general ON and OFF distributions were presented in [2].
Some heuristic solutions [1], [3] have also been found that
modulate the sensing durations given the frequency of failure
of detection. Some other practical smart sensing protocols for
WiFi sensing can be found in [4], [5]. Sensing in cognitive

radio is also similar to this work [6], however there, the
unlicensed users sense to maximize their throughput without
harming the licensed users. The cognitive radio setting also
leads to a partially observed Markov decision process.

A critical assumption in [2] is that the system is reset
if one complete ON interval is lost/missed because of no
sensing epoch lying in that ON period. This assumption is
particularly required when the distribution of the OFF periods
is not exponential, since otherwise the problem becomes ill-
posed. See remark 1 for a detailed explanation. Under this
assumption, the problem is restricted to one OFF and one ON
period, where a policy schedules the channel senses till the
first ON state is detected or missed.

In this paper, we consider the metric as the sum of the
expected length of the missed ON periods and the expected
sensing cost similar to [2]. Unlike [2], [1], our approach
relies on a dynamic programming formulation. We solve for
the general problem when the OFF period is exponentially
distributed, while the ON periods are IID with any arbitrary
distribution. The DP framework also allows us to rectify the
anamolies in the past work concerning exponential ONs and
OFFs [1]. For the non exponentially distributed OFF periods,
we consider the restriction of one OFF and ON period similar
to [2], but do not change the metric to suit analysis as done
in [2]. Again posing the problem as a dynamic program, we
obtain structural results that show that the optimal policy is
deterministic, and which can be found via value iteration that
is shown to converge to the optimal solution. The restricted
problem can be seen as a generalization of [7], where the ON
period never expires.

Almost all prior work on smart WiFi sensing assumes the
knowledge of the distribution of the OFF and ON period
distributions. In practice, that can be obtained only via training,
however, is costly in terms of resources. To overcome this, we
propose a blind learning framework, where the learning algo-
rithm learns the optimal sensing duration iteratively, without
any training. The proposed algorithm is inspired by algorithms
for continuous bandit problems [8], [9], where each agent
has a continuum of strategies to choose and its objective is
to maximize a reward function, however, it does not know
the reward distribution conditioned on its choice. We show
that the proposed algorithm (following [9]) for finding the
optimum sensing durations has a vanishing regret as a function
of time, where regret is defined as the difference between
the reward of an optimal algorithm with the knowledge of
the distribution, and the blind learning algorithm. For lack
of space, we illustrate the vanishing regret only when the
underlying OFF-ON period distribution is exponential, but it
easily applies for any other distribution.
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II. SYSTEM MODEL

Consider a mobile device that is moving in and out of WiFi
APs’ transmission radii, and encounters intermittent WiFi
access opportunities in time, as shown in Fig. 1. We assume
that at time t, AP state is OFF if the mobile device is not in any
AP’s transmission radius, and ON otherwise. Thus, as shown
in Fig. 1, the mobile sees alternating ON and OFF periods,
where it can receive data only in the ON periods.
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Fig. 1. System model description

To detect ON periods, the mobile device employs sensing.
If on sensing at time t, the AP state is found ON, the device
gets connected to the AP till the end of that ON period. We
assume that the device learns about the disconnection as soon
as the ON period is over, by using either the rapid increase
in error probability or no useful data transmission. Otherwise,
if on sensing at time t, the AP state is OFF, then the mobile
decides to sleep and decides on the duration of the next sensing
epoch t+ b(t), as shown in Fig. 1.

To save on energy, mobile senses intermittently, and conse-
quently loses out on connecting to the AP as soon as the ON
period starts. In particular, the shaded region (missed data)
in Fig. 1 represents the lost opportunity because of intermit-
tent sensing. Longer sleep periods incur less sensing power
consumption but decrease the WiFi connectivity time utilized,
while shorter sleep periods increase the WiFi connectivity time
at the cost of increasing the sensing power consumption.

To strike a balance between the lost ON period time and
the sensing power consumption, we consider the problem of
finding the sensing intervals so as to minimize the sum of
expected lost opportunity for data reception and the expected
power for sensing. Now we make this formal.

Let the duration of the ith, i ≥ 1 OFF and ON period
be denoted by Xi and Yi, respectively, as shown in Fig. 1.
We assume that both Xi and Yi are independent for i ≥ 1.
The PDF of X and Y is denoted by fd(x) and fc(y), where
the subscript d and c represent disconnection and connection,
respectively.

If a sensing reveals the AP state to be ON, there is no
decision to make, and the mobile device stays connected
from there on till the end of the current ON period, and get
disconnected at the end of it, and the system restarts. The non-
trivial decision problem is when the current sense reveals the

AP state to be OFF. We define an ON period to be a discovered
ON period, if a sensing epoch lies in that ON period. In a
discovered ON period, useful ON time is the time between
the sensing epoch and the end of the discovered ON period.
An illustration is provided in Fig. 2. Time period between the
end of two consecutive discovered ON periods is defined to
be a session. Recall that system resets at the the end of each
discovered ON period, thus we focus on any one particular
session here onwards.

Ỹ

Missed Data
Y
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period

sense sense

Cost Ṽ

Useful ON time

Fig. 2. Illustration of sessions for learning algorithm

Let 1on(t) (1off(t)) denote the event that the AP is in ON
(OFF) state at time t. Poff(t) be the probability that the AP is
in OFF state at time t, and Poff(t+x|t ∈ ∗), be the probability
that the AP is in OFF state at time t+ x given that AP is in
state ∗, ∗ ∈ {OFF, ON} state at time t. We define the cost
between two sensing epochs at t and t+ b(t) in a session as

c(t, b(t)) = cs +M(t, b(t)), (1)

where cs is fixed sensing cost, and M(t, b(t)) is the missed/lost
ON time between time t and t + b(t). Then, the sensing
problem can be cast as a dynamic problem (DP),

V (t) = max
b(t)≥0

[E{c(t, b(t))}+Poff(t+b(t)|t ∈ off)V (t+b(t))],

(2)
where we have assumed that if at time t b(t) is selected as
the next sensing duration, the running cost is E{c(t, b(t))},
and the process restarts if AP is in OFF state at time t+ b(t),
which happens with probability Poff(t+ b(t)|t ∈ off).

Given that an OFF period is going on at time t, we define
the residual OFF time (time of the completion of OFF period)
at time t as rt, that has CDF Frt(x) = P (X > x|X > t),
where X represents the duration of the OFF period. Note that
Poff(t+ b(t)|t ∈ off) = rt(b(t)) in (2).

Remark 1: If the distribution of the OFF periods is not
exponential, then (2) is not well-defined. To see this, consider
that if for two consecutive sensing times t and t+b(t), the AP
state is OFF, the distribution of the residual OFF time starting
from t + b(t) (rt+b(t)) is not well-defined since we do not
know when the current OFF period started. To handle the non-
exponential distribution of the OFF periods, we will follow the
approach of [2] in Section III, where it is assumed that as soon
as any one complete ON interval is lost/missed because of no
sensing epoch lying in that ON period, the system is reset.

In light of Remark 1, in this section, we restrict our attention
to exponential distribution for the OFF period, while the ON



period is allowed to have any arbitrary distribution. Under
this assumption, we have that the optimal control b(t) does
not depend on t.

Lemma 2: The optimal control b(t) that solves (2) does not
depend on t, when OFF periods are exponentially distributed.

Proof: At time t, the next sensing duration b(t) is decided
only if t ∈ off. However, because of the memoryless property
of the OFF periods, the event that t ∈ off gives no information
about the future length of OFF and ON periods, the optimal
sensing duration b(t) does not depend on t.

With arbitrary ON period distribution, we need the fol-
lowing notation. Let Poff(y|z ↑) be the probability that the
AP is in OFF state at time y, y ≥ z given that a transition
from OFF to ON period happens at time z. Because of
memoryless property of the OFF period distribution,we do not
need such notation for transition from ON to OFF period, since
Poff(y|z ↓) = Poff(y|z ∈ off). To further the analysis, we next
find an expression for Poff(t).

Lemma 3:

Poff(t+ x|t ∈ off) =

P (rt ≥ x) +

∫ x

0

fd(z)Poff(t+ x|z ↑)dz, z ≥ t (3)

Poff(t+x|t ↑) =

∫ x

0

fc(w)Poff(t+x|w ∈ off)dw,w ≥ t.

(4)

Proof: The first expression is obtained by counting the
two exclusive events, i) the residual OFF time rt of the present
OFF period that is going on at time t exceeds x, and ii) the
present OFF period expires at time z (i.e. OFF to ON transition
happens at z), and taking the expectation of Poff(t + x|z ↑)
with respect to t ≤ z ≤ x. The second expression follows
similarly.

Corollary 4: For OFF period ∼ EXP (λd) and ON period
∼ EXP (λc), for x ≥ 0,

Poff(t+ x|t ∈ off) =
λc

λc + λd
+

λd
λc + λd

exp(−(λd + λc)x).

Note that Poff(t + x|t ∈ off) does not depend on the starting
time t as expected, because of the memoryless property of the
exponential distribution.

Proof: We use the Laplace transforms of (3) and (4) to
solve for Poff(t + x|t ∈ off). With OFF period ∼ EXP (λd)
and ON period ∼ EXP (λc), fd(w) = λd exp(−λdw) and
fc(w) = λc exp(−λcw). Denoting the Laplace transform of
fd(w) as f∗d (s), fc(w) as f∗c (s), Poff(t+x|t ∈ off) as P̂ of0 (s)
and Poff(t+ x|t ↑) as P of1 (s), we have from (3) and (4),

P̂ of0 (s) =
1

s+ λd
+ f∗d (s)P̂ of1 (s),

P̂ of1 (s) = f∗c (s)P̂ of0 (s).

Note that f∗c (s) = λc
s+λc

and f∗d (s) = λd
s+λd

. Hence

P̂ of0 (s) =
1

s+ λd

1

1− f∗d (s)f∗c (s)
, (5)

=
1

λd + λc

(
λc
s

+
λd

s+ λd + λc

)
. (6)

Taking the inverse transform, for x ≥ 0

Poff(t+ x|t ∈ off) =
λc

λc + λd
+

λd
λc + λd

exp(−(λd + λc)x).

Next, we find the expected running cost E{M(t, b(t))}
to compute the expected cost E{c(t, b(t)}. Again appealing
to the memoryless property of the exponential distribution,
E{M(t, b(t))} = E{M(b)} where we have shifted the starting
time to 0. We will use recursions similar to (3) and (4) and
Laplace transforms to find E{M(t)}.

Let Md(t) = E{M(t)} be the average missed ON period
time between times τ to t + τ , when τ ∈ off. Moreover, let
M↑(t) = E{M(τ, τ + t)} average missed ON period time
between times τ to t+ τ given that the OFF to ON transition
happens at time τ , and similarly let M↓(t) = E{M(τ, τ +
t)} given that the ON to OFF transition happens at time τ ,
where the LHS has no dependence on τ because of the Markov
property of ON and OFF periods. So without loss of generality,
we take τ = 0. Note that because of memoryless property of
OFF times Md(t) = M↓(t).

Lemma 5:

M↑(t) = t

∫ ∞
t

fc(x)dx+

∫ t

0

fc(x)(x+ M↓(t− x))dx, (7)

and

M↓(t) =

∫ t

0

fd(x)M↑(t− x)dx. (8)

Proof: To derive (7), we have broken the expectation
M↑(t) into two terms, where in the first we count the expected
length of the ON period that starts at time τ = 0 and continues
beyond time t, and in the second, we consider the case when
the ON period that starts at time τ = 0 finishes at some
time x < t and count for the expected loss with ON to OFF
transition happening at x. The second expression (8) follows
similarly.

Theorem 6: For OFF period ∼ EXP (λd) and ON period
∼ EXP (λc), the expected loss Md(t) is given by

Md(t) =
λd

λd + λc

(
t− 1− e−(λd+λc)t

λc + λd

)
. (9)

Proof: We take the Laplace transforms of (7) and (8) to
get

M∗↑(s) =
(f∗c (0)− f∗c (s))

s2
+ f∗c (s)M∗↓(s),

and M∗↓(s) = f∗d (s)M∗↑(s). So we have

M∗d(s) = M∗↓(s) = f∗d (s)
(f∗c (0)− f∗c (s))

s2(1− f∗c (s)f∗d (s))
.

Substituting for f∗c (s) = λc
s+λc

and f∗d (s) = λd
s+λd

, and taking
the inverse Laplace transform we obtain the result.

Remark 7: It is important to note that similar derivation for
Md(t) has been attempted in [1], however, there are glaring
errors in it. For example, the ON period loss Md(t) incurred
in time t does not depend on t, and is always less than 1.



Finally, we have all the intermediate results to solve for the
DP (2) when the OFF periods are exponentially distributed,
where b(t) = b, and the DP simplifies to

V (b) = max
b≥0

[E{c(b)}+ Poff(b)V (b)]. (10)

Theorem 8: The optimal sensing duration b satisfies the
following equation

d

db
V =

d

db

(
cs + Md(b)

1− Poff(b)

)
= 0, (11)

where M↓(b) = Md(b) can be found by substituting for
fc(x) and fd(x) in (7) and (8) and Poff(b) can be found by
substituting for fc(x) and fd(x) in (3) and (4).

Proof: Follows by rewriting (10), and taking the V terms
common, and equating the derivative of V with respect to b
to zero.

Corollary 9: For OFF period ∼ EXP (λd) and ON period
∼ EXP (λc), the optimal sensing duration b satisfies

e−(λc+λd)b
(

1 +
cs
λd

(λc + λd)
2 + b(λc + λd)

)
= 1. (12)

Proof: From Corollary 4 and Theorem 6, substituting for
Poff(b) and M↑(b) in (10), we get

V (b) =
cs + λd

λd+λc

(
b− 1−e−(λd+λc)b

λc+λd

)
λd

λc+λd

(
1− e−(λd+λc)b

) . (13)

Equating d
dbV = 0, we get (12). While this is a trascendental

equation, the numerical solution is easy, see Figure 4. It is
also easy to check that the second derivative of V is ≥ 0 and
hence the above solution is indeed the global minimum.

Similarly, we can find the optimal sensing duration b for
other ON period distributions as long as the OFF period
distribution is exponential.

III. NON EXP-OFF PERIOD

Recall from Remark 1 that in the framework of Section
II, we cannot solve for the optimal sensing durations when
the OFF period distribution is not exponential. To circumvent
this restriction, in this section we make an extra assumption
following [2], where if any complete ON period is missed
because of no sensing in that ON period, the mobile device
is made aware of that and the system is reset. Thus, the
problem (2) is now restricted to one OFF (X) and one ON
(Y ) period, and we want to choose the sensing durations so as
to minimize the sum of the expected missed ON period time
and the expected sensing cost.

Thus, in this case, the DP (2) is,

V (t) = max
b(t)≥0

[E{c(t, b(t))}+P (rt > b(t))V (t+ b(t))], (14)

where the cost function c(t, b(t)) is simplified and given
by c(t, b(t)) = cs + E{(b(t) − rt)1b(t)≥rt,Y >b(t)−rt} +
E{Y 1(Y≤b(t)−rt)}, where cs is the fixed sensing cost, while
the lost ON time is written as two terms, either the complete

one ON period Y is missed if b(t) is larger than rt + Y ,
otherwise, the missed ON time is (b(t)− rt).

Problem (14) is a generalization of problem considered in
[7], where the length of the ON period is infinite (not a
random variable) and the problem is to minimize the sum of
the expected time lost in detecting ON period and the expected
sensing cost. Note that in our setup, since the ON period
expires in finite expected time, solution of [7] does not apply.

We use a state space approach to derive results when the
ON and OFF periods have a general distribution. The state
space we consider is the set of non-negative real numbers. An
action b(t) is the duration of the next sleep period. We assume
that b(t) can take values only in a finite set (which is clearly
true in practice). Thus, the set of t reachable (with positive
probability) by any policy is countable and hence without loss
of generality we assume that the state space is discrete. Then
we have the following result.

Theorem 10: To solve (14), for any ON and OFF period
distribution, the following statements hold.

1) There exists an optimal deterministic stationary policy.

2) Let V 0 = 0, V k+1 = LV k, where
LV (t) = minb(t)[c(t, b(t)) + P (rt > b(t))V (t + b(t))]
and c(t, b(t)) is the per stage/running cost. Then V k

converges monotonically to the optimal value V ∗.

3) V ∗ is the smallest nonnegative solution of V ∗ = LV ∗. A
stationary policy that chooses at state (time) t an action
that achieves the minimum of LV ∗ is optimal.

Proof: 1) follows from the [ [10], Thm 7.3.6] that states
that if the state space is discrete (finite or countable) and the
action set for any state is finite, then there exists an optimal
deterministic stationary policy. These conditions are satisfied
in this case since the set of all actions (b’s) is assumed to be
finite, and the state space is countable. Similarly, 2) follows
from the [ [10], Thm 7.3.10] that states that if reward w for
action a at state s, w(s, a) ≥ 0, and state space is countable
and action space is finite for each state, then if V 0 = 0,
V n+1 = LV n converges monotonically to V ∗ and 3) follows
from [ [10], Thm 7.3.3].
Theorem 10 shows that it is sufficient to consider deterministic
policies without losing out on optimality, and randomized
strategies are not needed. Moreover, part 2) and 3) tell us that
the value iteration policy converges to the optimal solution for
any ON and OFF period distributions.

We now consider the special case when the OFF period
depends on the time at which it starts, but in the limit of very
large time t, it loses that dependence.

Theorem 11: Assume that the residual OFF time rt con-
verges in distribution to r, and define v(b) = c?(b)

1−P (r>b) . Then
1) limt→∞ V ∗(t) = minb v(b).

2) Assume that there is a unique b that achieves the
minimum of v(b) and denote it by b?. Then there is
some stationary optimal policy b(t) such that for all t
large enough, b(t) = b?.



Proof: Let V 0 = 0, and assume that V̄ k = limt→∞ V k(t)
exists for some k. Then from definitions used in Theorem 10,
we have

V̄ k+1 = lim
t→∞

LV k(t),

= lim
t→∞

min
b(t)

[c(t, b(t)) + P (rt > b(t))V k(t+ b)],

= min
b

[c?(b) + P (r > b)V̄ k],

where the last equality follows since rt converges in distribu-
tion to r, and from the bounded convergence theorem

lim
t→∞

c(t, b(t))→ c?(b).

Essentially, since rt converges in distribution to r, the per-
stage/running cost c(t, b(t)) becomes independent of t as t→
∞ (similar to the case when OFF periods are exponentially
distributed). Hence by convergence of V k to V ∗ by Theorem
10, the limit V̄ = limt→∞ V ∗(t) exists. Thus, there exists a
constant deterministic policy as t → ∞ which we denote by
b?. This gives V̄ = c?(b) + P (r > b)V̄ which on rearranging
gives (i). (ii) can be obtained by noting that b? performs better
than any other policy so the optimal solution b(t) must tend
to b? as t→∞
Therefore, if the residual OFF period distribution converges in
time, then the optimal sensing duration converges to a constant
after sufficiently long time.

Remark 12: The condition in Theorem 11 is trivially true
for exponentially distributed OFF period. A more non-trivial
example is when the OFF period has hyper-exponential dis-
tribution, for which the residual OFF time rt converges in
distribution to some r.

Remark 13: Theorem 10 and Theorem 11 are similar to
Propositions III.2 and III.3 in [7].

A. Example

Next, we consider an example where both the OFF and ON
periods are uniformly distributed between [0, Lf ] and [0, Lo],
respectively. To use Theorem 10, with sensing duration b(t),
we write down the sensing cost c(t, b(t)) and the probability
P (rt > b(t)) that at the next sensing epoch we again encounter
an OFF period.

For OFF period distributed uniformly between [0, Lf ], the
residual OFF time distribution

Frt(x) = P (rt > x) = P (X > x|X > t) =
Lf − x
Lf − t

, (15)

for t ≤ x ≤ Lf . Thus, P (rt > b(t)) =
Lf−b(t)
Lf−t , and to

compute cost c(t, b(t)), we calculate

E{(b(t)− rt)1b(t)≥rt,Y >b(t)−rt} =
L2
o

6 + (1− b(t))Lo2
Lf − t

,

and

E{Y 1(Y≤b(t)−rt)} =
b(t)2 − b(t)(Lf − t) +

L2
f+Lf t+t

2

3

2Lo
,

where the total cost c(t, b(t)) = cs + E{(b(t) −
rt)1b(t)≥rt,Y >b(t)−rt}+ E{Y 1(Y≤b(t)−rt)}.

Hence to solve for the optimal sensing durations b(t) via
the value iteration method, we start with V = 0, and write
V k+1 = LV k, where

LV (t) = min
b(t)

[c(t, b(t)) + P (rt > b)V (t+ b(t))],

where we substitute for c(t, b(t)) from above. From Theorem
10, these iterations converge to the optimal policy.

IV. LEARNING FRAMEWORK

In Sections II and III, we have derived the optimal sensing
duration assuming the knowledge of the distribution of the
OFF and ON periods. In practice, learning these distributions
is a problem in its own right. To obviate the need for exactly
learning the distribution (might take a long training time), in
this section, under the general model of Section II, we present
a continuous-armed bandit problem type formulation [8], [9],
where the algorithm learns the best sensing duration without
explicitly knowing the underlying OFF and ON period distri-
bution. For ease of exposition, we will assume that the OFF
and ON periods are exponentially distributed with unknown
parameters. The analysis carries over to all distributions for
which the cost V has continuous second derivatives.

An online learning algorithm chooses one possible sensing
duration b for each session (defined earlier), and receives a
reward that counts for the useful ON time and the cost incurred
(lost ON period time and sensing cost). Depending on past
choices of b, the algorithm modulates its choice of b in future
sessions in pursuit of larger rewards.

Ỹ

Missed Data
Y

Session

Discovered ON
period

sense sense

Cost Ṽ

Useful ON time

Fig. 3. Illustration of sessions for learning algorithm

The reward in session i is Ui = Ỹ − Ṽ , where as shown in
Fig. 3, Ỹ is the length of the useful ON period (or discovered
ON time), and Ṽ is the random variable whose expectation is
cost (13), that counts the sensing cost and missed ON periods
in each session. Note that there could be multiple sensing
epochs in each session, and the sensing cost of each session
is cs times the number of sensing epochs at which an OFF
period is sensed in that session. Let OFF period ∼ EXP (λd)
and ON period ∼ EXP (λc), with unknown parameters λd
and λc, where we assume that λd and λc are such that the
optimal b? ∈ [0, bmax] from Corollary 9.



OnlineLearning
1 Choose n

2 Divide [0, bmax] into n intervals Ik = bmax[
k−1
n

, k
n
], 0 ≤ k ≤ n

3 For each Ik , choose a point (sensing duration b) uniformly at random
4 For i = 1 : T

5 Choose that interval Ik that maximizes Ûk +
√

2 ln i
tk

,

where Ûk is the average (empirical) reward obtained from points
in interval Ik so far, and tk is the number of times interval Ik has
been chosen till session i and i is the overall number of sessions so far

6 Choose a point uniformly at random from the chosen interval Ik .

The online algorithm’s objective is to minimize the expected
regret,

min
b(i),i=1,...,T

E{R(T )},

by choosing action b(i) is session i, and

R(T ) =

T∑
i=1

U?i −
T∑
i=1

Ui, (16)

where U?i is the optimal reward knowing λd and λc, i.e.
playing optimal b from Corollary 9 in each session, and T
is the time horizon.

The learning algorithm called the OnlineLearning [9] to
find the sensing duration b to minimize the expected regret is
given at the top of the page.

Lemma 14: (Theorem 1 [9]) If the expected reward given a
strategy has continuous second derivatives, and finite number
of maximas, then the expected regret obtained by the Online-
Learning algorithm is bounded as follows,

E{R(T )} ≤ O
√
T log T ,

for n =
(

T
log T

)1/4
.

Thus, the average regret
(

E{R(T )}
T

)
goes to zero with the On-

lineLearning algorithm even without knowing the underlying
distributions.

Theorem 15: Using the OnlineLearning algorithm, the
normalized regret minb(i),i=1,...,T E{R(T )}

T goes to zero with
increasing number of sessions for finding the optimal sensing
duration without the knowledge of OFF and ON period
parameters λd and λc.

Proof: Note that the expectation V (13) of the cost func-
tion Ṽ has continuous second derivatives and finite number of
maximas for a fixed strategy b, and E{Ỹ } does not depend on
b because of memoryless property of exponential distribution.
Thus, the expected reward E{Ui} given b has continuous
second derivatives and finite number of maximas, and the
result follows from Lemma 14.

In Fig. 4, we demonstrate the performance of the Online-
Learning via simulation. We use λd and λc such that the
expected OFF period length and ON period length is 3 and 2,
respectively, and plot the optimal sensing duration and sensing
duration discovered by OnlineLearning algorithm as function
of the sensing cost cs. We see that the OnlineLearning
algorithm closely tracks the theoretical optimum computed
by Corollary 9. Furthemore, the average cost incurred while
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Fig. 4. Optimal sensing interval vs sensing cost
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Fig. 5. Average cost vs sensing cost

connecting to the AP, closely matches for the two algorithms,
as shown in Fig. 5.
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