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Abstract—This paper addresses the benefits of introducing
exclusion regions around both transmitters and receivers in
D2D wireless networks. Such exclusion regions offer protection
from interference at the expense of a sparser spatial reuse of
spectrum, bringing about a tradeoff whose resolution entails
optimizing the size of the exclusion regions as function of relevant
system parameters. Our figure of merit for this optimization
is the spectral efficiency. We first characterize this quantity
for a given size of the exclusion regions, and then proceed to
its optimization, altogether establishing the major benefits of
incorporating properly sized exclusion regions in the applicable
scheduling algorithms.

I. INTRODUCTION

The addition of device-to-device (D2D) communication
onto cellular and other infrastructure-based networks promises
sizable improvements in performance provided there is suffi-
cient spatial locality in the wireless traffic [1]–[6]. In overlay
mode, in particular, a swath of spectrum is reserved for
D2D traffic, thereby segregating it from both uplink and
downlink. On this dedicated spectrum, D2D communication
can achieve very dense bandwidth reuse and thereby very high
system spectral efficiency (bits/s/Hz per unit area). Without
a careful scheduling of the transmissions, however, a share
of the D2D links experience strong interference from nearby
unintended transmissions [7] and, as the density increases, this
interference may progressively clog the network.

One way to mitigate this problem is to ensure that all co-
channel D2D links, i.e., those occupying the same signaling
channel (meaning a time-frequency signaling resource), re-
spect certain exclusion regions. This restriction could then be
incorporated into the scheduling policies, where it would have
to be balanced with the need to service every link on one of
the channels.

While exclusion regions offer protection from interference,
thereby improving the link spectral efficiencies (bits/s/Hz per
link) of the co-channel links, they also result in a sparser
spectrum reuse and hence a tradeoff arises that requires an
optimization of the exclusion regions. This optimization, and
the ensuing benefits, are the theme of this paper.
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Exclusion regions have been studied in the context of
wireless ad-hoc networks [8]–[13], cognitive networks [14],
[15] and D2D networks [16]–[19]. The existing works on ad-
hoc networks explore this possibility in terms of transmission
capacity [8], [9], defined as the maximum permissible density
of simultaneous transmissions that satisfies a target receiver
SIR (signal-to-interference ratio) with a specified outage prob-
ability, or else in terms of interference statistics [10], [11].
In this paper, instead, we focus on the ergodic spectral
efficiency, arguably the most operationally relevant quantity
in contemporary systems [20]. The contributions of the work
are as follows:

• The analytical framework in [7] is extended to incorporate
exclusion regions.

• The spatially averaged link and system spectral efficien-
cies are characterized in integral form, and they are
further tightly approximated in closed form.

• By means of the foregoing analytical characterizations,
the average system spectral efficiency is optimized over
the size of the exclusion regions.

II. NETWORK GEOMETRY

We consider a D2D network with multiple links, each
consisting of a transmitter and its intended receiver. The focus
is on a specific channel occupied by a subset of co-channel
links selected from a pool of available links such that there
are no co-channel interferers within circular exclusion regions
around each receiver.

The locations of the available transmitters are modeled as a
homogeneous PPP (Poisson point process) Φ ⊂ R2 of density
λ, implying that on average there are λ available links per unit
area. Each available transmitter has its intended receiver at a
fixed distance r0, and at a random angle uniformly distributed
in [0, 2π). The exclusion regions around the receivers have a
radius δ · r0 where δ ≥ 0 is the ratio of the exclusion radius
to the intended link length r0.

The average number of co-channel links per unit area,
denoted by λ̃, depends on the exclusion radius δr0 and on
the type of channelization scheme as explained in the next
section. The establishment of exclusion regions results in
dependent thinning of the initial PPP Φ. Consequently, the
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Fig. 1. Co-channel links under type I and type II channelization schemes
performed on the same pool of available links.

locations of the co-channel transmitters no longer conform to
a homogeneous PPP.

III. CHANNELIZATION SCHEMES

To make the analysis as inclusive as possible, we consider
two types of channelization schemes motivated by the Matérn
hard core models type I and type II [21] commonly employed
in the analysis of wireless ad-hoc networks [8], [9], [11],
[18]. Though both types can achieve circular exclusion regions
around the receivers as depicted in Fig. 1, for the same
exclusion radius δr0 they result in a different λ̃.

A. Type I

In type I, an available link is allowed on the channel under
consideration only when there is no interfering transmitter
present inside the circle of radius δr0 centered at its receiver.
The link is thus allowed with probability p = e−λπδ

2r20 , which
is the void probability of the PPP Φ (the probability that within
a given area there exists no point of the PPP [22]) in the area
πδ2r20. Then, the average number of co-channel links per unit
area becomes

λ̃ = λ e−λπδ
2r20 , (1)

which is unimodal in λ. For a given δ, λ̃→ 0 as λ→∞. The
maximum value of (1) is λ̃ = 1

eπδ2r20
, achieved at λ = 1

πδ2r20
.

B. Type II

In type II, each available link is endowed with a random
mark, uniformly distributed in [0, 1], which may represent the
time stamp or the priority of that link. An available link is
allowed on the channel under consideration only when the
following two conditions are met:

1) No transmitter with a lower mark is present inside a
circle of radius δr0 around the link receiver.

2) No receiver with a lower mark is present inside a circle
of radius δr0 around the link transmitter.

Inspired by existing works on scheduling/channelization for
randomly distributed transceiver pairs [9], [11], [13], [18],
we adopt the following approach to compute λ̃: consider a
link with mark m. Since the marks are uniformly distributed
in [0, 1], the density of links with a mark lower than m is
mλ [22]. Condition 1 is based on the interfering transmitter
locations relative to the given link, and Condition 2 is based
on the interfered receiver locations, which also depend on the
corresponding transmitter locations through the link distance
r0. Combining all that, we identify the transmitter locations
that would violate Condition 2 and construct a resultant area,
denoted by AII, where no other transmitters must be present
for both conditions to be satisfied.

Lemma 1. The resultant area is

AII = π ξ(δ) r20 (2)

where

ξ(δ) = δ(δ + 1)− 2

π2

∫ δ+1

|δ−1|
r arcsin2

(
r2 + 1− δ2

2r

)
dr

(3)

Proof. See Appendix A. �

The probability of allowing a link with random mark m is
p = e−mλAII (which is the void probability of a PPP with
density mλ in the area AII [22]). Then, the average number
of co-channel links per unit area equals

λ̃ = λ

∫ 1

0

e−mλAIIdm (4)

=
1− e−λπξ(δ)r20

π ξ(δ) r20
(5)

where (5) follows from integration via (2). As per (5), λ̃ is
monotonically increasing in λ and, as λ→∞,

λ̃→ 1

π ξ(δ) r20
(6)

(Recall that, in contrast, in type I we observed that λ̃→ 0 for
λ→∞.).

Next, we develop an analytical model to characterize the
spectral efficiency of a given link in a system with exclusion
regions of radius δr0 and with the ensuing average number of
co-channel links per unit area, λ̃.

IV. SYSTEM MODEL

We place a receiver at the origin and locate its intended
transmitter at a distance r0. All interfering transmitters are
located outside a circular exclusion region B(0, δr0), centered
at the origin with radius δr0. The receiver at the origin observes

y =

√
P r−η0 H0 s0 + z (7)



where the first term is the signal from the intended transmitter
while the second term is the interference

z =

∞∑
j=1

√
P r−ηj Hj sj (8)

made up from contributions from all other co-channel trans-
mitters, with P the power measured at 1 m from its transmitter,
η > 2 the pathloss exponent, rj the distance between the jth
transmitter and the receiver at the origin, Hj the corresponding
fading, and sj the symbol transmitted by the jth transmit-
ter. The fading coefficients {Hj} are independent identically
distributed (IID) complex Gaussian random variables with
zero mean and unit variance, i.e., Hj ∼ NC(0, 1) with each
receiver privy only to the fading state of its own link. Likewise,
sj ∼ NC(0, 1).

Since our objective is to assess the impact of interfer-
ence and its mitigation, interference-limited conditions are
presumed with thermal noise neglected.

Shadow fading, not considered here, could possibly be
incorporated by adopting the approach in [23]. In a sense,
shadow fading distorts the spatial geometry, which in our case
would render the exclusion regions amorphous rather than
circular.

V. INTERFERENCE MODEL

A. Short-Term Distribution

Following the approach in [7], we model the short-term
distribution of z as zero-mean complex Gaussian with matched
conditional covariance σ2 = E

[
|z|2|{rj}

]
, where the expec-

tation is over the data and fading distributions. From (8), the
conditional covariance σ2, which represents the power of z for
given interferer locations, is seen to equal

σ2 =

∞∑
j=1

P r−ηj . (9)

Besides the central limit theorem, there are information-
theoretic arguments in favor of modeling the aggregate inter-
ference as complex Gaussian with a power dictated by the
locations of the interferers: if the exact distribution of the
interference is either unknown or ignored by the receiver,
with a decoder designed to handle Gaussian noise, then the
achievable spectral efficiency is precisely as if the interference
were indeed Gaussian [24].

B. Spatial Distribution

As mentioned, the locations of the interfering transmitters
do not conform to a PPP once exclusion regions are intro-
duced. Even though the mean interference at the receiver
could be computed exactly [10], [11], doing the same with the
spectral efficiency appears unwieldy. Thus, we approximate
the interferer locations with those of the points of a PPP Φ̃
of density λ̃ present outside B(0, δr0), an approach that has
been successfully applied to obtain the SIR distribution [8],
[9] and whose goodness for our purposes is validated later in
the paper.
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Fig. 2. CDF of link spectral efficiency for λ = 40 links/km2, r0 = 40 m
and pathloss exponent η = 4.5.

C. SIR

Applying our interference model, and recalling the intended
signal term from (7), the instantaneous SIR of a given link is

SIR =
P r−η0 E

[
|H0s0|2 |H0

]
σ2

(10)

= %|H0|2 (11)

where the expectation is over s0, conditioned on the known
fading coefficient, with

% =
r−η0∑∞
j=1 r

−η
j

(12)

the local-average SIR at the intended receiver.
Given the interferer distances {rj}, % becomes determined

and the instantaneous SIR in (10) is exponentially distributed
with conditional CDF (cumulative distribution function)

FSIR|%(γ) = 1− e−γ/%. (13)

VI. LINK SPECTRAL EFFICIENCY

A. Specific Network Geometry

For a specific network geometry, i.e., for a given %, the link
spectral efficiency is

C(%) = E
[
log2

(
1 + %|H0|2

)]
(14)

= e1/%E1

(
1

%

)
log2 e (15)

where E1(ζ) =
∫∞

1
t−1e−ζtdt is an exponential integral.

The following example validates the goodness of our inter-
ference model (Gaussian distribution and PPP approximation).

Example 1. Let λ = 40 links/km2 with an intended link length
of r0 = 40 m and with a pathloss exponent η = 4.5. Fig. 2



shows link spectral efficiency CDFs over many snapshots of
{rj}. The exact curves give the mutual information (obtained
through lengthy Monte-Carlo histograms and averaged over
many fading realizations) with the locations of the interferers
in (8) realized exactly under the respective channelization
schemes and values of δ. Very good agreements are observed
between these numerical values and Eq. (15) for type I with
δ = 0.8 and for type II with δ = 1.3.

Similarly good agreements are observed for a variety of
other settings, supporting our interference modeling approach.

B. Average Network Geometry
Next, we average the link spectral efficiency over all possi-

ble geometries.

Proposition 1. For given λ and δ, the link spectral efficiency
averaged over all network geometries is

C̄(λ, δ) = log2(e)

∫ ∞
0

1

γ + 1

· e
−πλ̃δ2r20

[
2
η
E 2+η

η
( γ

δη )+ γ2/η

δ2 Γ(1− 2
η )−1

]
dγ (16)

where λ̃ depends on λ and δ as per (1) for type I and (5)
for type II, while En(x) =

∫∞
1

e−xt

tn dt is the generalized
exponential integral and Γ(·) is the gamma function.

Proof. See Appendix B �

For δ = 0, i.e., when there is no channelization and all
available links are co-channel, taking limδ→0 C̄(λ, δ) in (16)
gives [7, Prop. 2]

C̄(λ, 0) = log2(e)

∫ ∞
0

1

γ + 1
e−γ

2/η π r20 λΓ(1− 2
η )dγ. (17)

Simplified versions of Prop. 1 and (17) can be obtained by
utilizing the approximation [25]

E1(ζ) ≈ 4
√

2π aNaM

N+1∑
n=1

M+1∑
i=1

√
bne
−4bnbiζ (18)

where N and M are positive integers that control the accuracy
while the coefficients aN , aM , bn and bi are computed as
described in [25, Sec. II]. Plugging this approximation into
(15) and averaging over all geometries via %, we obtain

C̄(λ, δ) ≈ 4
√

2π aNaM log2(e)

N+1∑
n=1

M+1∑
i=1

√
bn

· exp

{
−πλ̃ δ2r20

[
2

η
E 2+η

η

(
[4bnbi − 1]

δη

)
+

(4bnbi − 1)2/η

δ2
Γ

(
1− 2

η

)
− 1

]}
(19)

where we again recall that λ̃ is a function of λ and δ, as given
in (1) for type I and in (5) for type II. Similarly, for δ = 0,

C̄(λ, 0) ≈ 4
√

2π aNaM log2(e)

·
N+1∑
n=1

M+1∑
i=1

√
bn e

−(4bnbi−1)2/η π r20 λΓ(1− 2
η ). (20)
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Fig. 3. Average link spectral efficiency as function of λ with r0 = 40 m and
η = 4.5.

These closed forms, validated next, shall come handy in further
analyses.

Example 2. Fig. 3 compares the spatially averaged link
spectral efficiency in Prop. 1 with its approximation in (19),
computed with N = M = 50. The average link spectral
efficiencies are plotted for the case of no channelization
(δ = 0), for type I channelization with δ = 0.9 and for type
II channelization with δ = 1.5.

VII. SYSTEM SPECTRAL EFFICIENCY

The spatially averaged system spectral efficiency is obtained
by scaling the spatially averaged link spectral efficiency by the
average number of co-channel links per unit area, λ̃, giving

C̄(λ, δ) = λ̃ log2(e)

∫ ∞
0

1

γ + 1

· e
−πλ̃δ2r20

[
2
η
E 2+η

η
( γ

δη )+ γ2/η

δ2 Γ(1− 2
η )−1

]
dγ (21)

where, once more, λ̃ depends on λ and δ as per (1) for type
I and (5) for type II.

VIII. EXCLUSION REGION SIZE OPTIMIZATION

To maximize the average system spectral efficiency for a
given λ, the exclusion regions have to be optimally sized. This
optimization returns

C̄?(λ) = max
δ
C̄(λ, δ) (22)

and the argument that maximizes (22) is denoted by δ?(λ)
while the value of λ̃ that ensues is λ̃?(λ).

Example 3. Consider a D2D network with r0 = 40 m and
pathloss exponent η = 4.5. Figure 4 plots C̄?(λ) obtained
numerically for both type I and type II channelizations.



The figure also shows the average system spectral efficiency
without channelization, C̄(λ, 0). The δ?(λ) and λ̃?(λ) that in-
dicate the correspondingly optimal exclusion size and average
number of co-channel links per km2 are respectively plotted
in Figs. 5 and 6.

101 102 103 104 105
0

50

100

150

200

250

A
ve
ra
ge
sy
st
em

sp
ec
tra
le
ffi
ci
en
cy
(b
its
/s
/H
z/
km
²)

λ (links/km²)

No channelization
Type I
Type II

Fig. 4. Average system spectral efficiency (bits/s/Hz/km2) as function of λ,
for r0 = 40 m and η = 4.5, with optimized δ.

101 102 103 104 105
0

0.5

1

1.5

2

2.5

3

δ
(
) λ

λ (links/km²)

Type I
Type II

Fig. 5. Optimum δ as function of λ for r0 = 40 m and η = 4.5.

Example 3 has been repeated for other values of r0 and η
to verify that the qualitative behavior does not change. This
prompts the following observations:
• Both types of channelization dramatically outperform

the no-channelization baseline in terms of the optimized
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r0 = 40 m and η = 4.5, with optimized δ.

system spectral efficiency, with type II markedly superior
and monotonically improving in λ.

• The exclusion radius of type I diminishes with increasing
λ, while type II maintains it at a value greater than the
intended link distance, thereby protecting the links from
close-by interferers.

• Though type I achieves higher λ̃?(λ) than type II for
many values of λ, it is inferior in terms of both link and
system spectral efficiencies.

Next, we characterize the peak values of the optimized
system spectral efficiency under both types of channelization.

A. Type I

In this case, the peak value of the optimized system spectral
efficiency is

C̄?? = max
λ,δ
C̄(λ, δ) (23)

and the arguments that maximize (23) are denoted by λ? and
δI = δ?(λ?). In light of the transmission-capacity findings in
[8], we conjecture that λ? = 1

πδ2
I r

2
0

. We further conjecture that
δI is independent of the intended link distance r0.

To validate these conjectures, we observe that C̄(λ, δ) is
unimodal in both λ and δ and, utilizing the approximation
in (19), we differentiate C̄(λ, δ) w.r.t. λ and δ for arbitrary
r0. Armed with the resulting expression we analytically verify
that, indeed, for specific values of η and the corresponding δI

obtained numerically,

∂C̄(λ, δ)

∂λ
|δ=δI,λ= 1

πδ2
I
r20

≈ 0 (24)

∂C̄(λ, δ)

∂δ
|δ=δI,λ= 1

πδ2
I
r20

≈ 0 (25)



TABLE I
TYPICAL VALUES OF δI AND κI(η) FOR TYPE I

η δI κI(η)

3.8 0.8744 0.2282
4 0.8827 0.2482
4.5 0.8984 0.2976

where both zeroes are progressively approached as the accu-
racy of (19) is increased. For η = 4.5 and N = M = 50, e.g.,
the derivatives are within 10−16

r20
and 10−4

r20
of zero, respectively.

Substituting δ = δI and λ = 1
πδ2

I r
2
0

in (21), we can express
the peak system spectral efficiency in the simple form

C̄?? =
κI(η)

r20
(26)

where

κI(η) =
log2(e)

e π δ2
I

∫ ∞
0

1

γ + 1

· e
1
e

[
1− 2

η
E 2+η

η

(
γ

δ
η
I

)
− γ

2/η

δ2
I

Γ(1− 2
η )
]

dγ (27)

depends only on η. Values for δI and the corresponding κI(η)
for pathloss exponents spanning the entire range of interest for
D2D are given in Table. I.

Plugging δ = δI and λ = 1
πδ2

I r
2
0

into (1), the average number
of co-channel links per unit area corresponding to the peak is
obtained as

λ̃?(λ?) =
1

eπδ2
I r

2
0

. (28)

Thus, the average link spectral efficiency at the peak of the
optimized system spectral efficiency equals

C̄??

λ̃?(λ?)
= e π δ2

I κI(η) (29)

which is independent of the link distance r0 and a function of
only the pathloss.

Another interesting observation is that the share of system
area occupied by exclusion regions at the peak of the opti-
mized system spectral efficiency equals, on average

λ̃?(λ?)π δ2
I r

2
0 = 1/e. (30)

B. Type II

In the case of type II, the optimized system spectral effi-
ciency is bounded but monotonically increasing and thus its
peak value is

C̄?? = max
δ

lim
λ→∞

C̄(λ, δ) (31)

where

lim
λ→∞

C̄(λ, δ) =
log2(e)

π ξ(δ) r20

∫ ∞
0

1

γ + 1

· e
−δ2

ξ(δ)

[
2
η
E 2+η

η
( γ

δη )+ γ2/η

δ2 Γ(1− 2
η )−1

]
dγ (32)

TABLE II
TYPICAL VALUES OF δII AND κII(η) FOR TYPE II

η δII κII(η)

3.8 1.1455 0.2625
4 1.1556 0.2873
4.5 1.1738 0.3486

which follows from (16) and from the fact that λ̃ → 1
πξ(δ)r20

as λ→∞. We again conjecture that the δ that solves (31) is
independent of r0, and denote it by δII = δ?(∞).

Since we observe that (32) is unimodal in δ, for specific
values of η and arbitrary r0 we verify analytically that the
corresponding numerically obtained values of δII satisfy

∂C̄(∞, δ)

∂δ
|δ=δII

≈ 0 (33)

The differentiation is performed utilizing (19) with λ̃ =
1

π ξ(δ) r20
and with the lower limit of the integral in (3) relaxed

from r = |δ− 1| to r = δ− 1 in light of the fact that δII > 1
for the entire range of pathloss exponents relevant to D2D
(cf. Table. II). The left side of (33) approaches zero as the
accuracy of (19) is increased. For η = 4.5 and N = M = 50,
e.g., zero is approached to within 10−5

r20
.

Rewriting (32) with δ = δII, we can express C̄?? as

C̄?? =
κII(η)

r20
(34)

where

κII(η) =
log2(e)

π ξ(δII)

∫ ∞
0

1

γ + 1

· e
− δ2

II
ξ(δII)

[
2
η
E 2+η

η

(
γ

δ
η
II

)
+ γ2/η

δ2
II

Γ(1− 2
η )−1

]
dγ (35)

which depends only on η. Values for δII and the corresponding
κII(η) for typical pathloss exponents are given in Table II.

Letting λ → ∞ and substituting δ = δII in (5), we obtain
the average number of co-channel links per unit area at the
peak system spectral efficiency, λ̃?(∞) = 1

π ξ(δII) r20
. Then,

the average link spectral efficiency corresponding to the peak
system spectral efficiency can be expressed as

C̄??

λ̃?(∞)
= π ξ(δII)κII(η) (36)

which, interestingly enough, is independent of the link length
r0. The share of system area occupied by the exclusion regions
equals, on average,

λ̃?(∞)π δ2
II r

2
0 =

δ2
II

ξ(δII)
(37)

which depends only on the pathloss exponent.

IX. SUMMARY

As evidenced by Fig. 4, without a careful channelization
the performance of a D2D network progressively collapses—
because of interference—once the link density exceeds a



certain value that depends on the length of the links. With
properly sized exclusion regions, though, this phenomenon
is avoided. Although both types of channelization exhibit a
satisfactory behavior in that respect, type II is able to find
a markedly better tradeoff between the density of co-channel
links and their individual spectral efficiencies. Conveniently,
with type II the system spectral efficiency is monotonic in λ
and thus there is no need to curb the system load at some
fine-tuned value.

Compact forms for the optimum size of the exclusion
regions and for the resulting system spectral efficiencies have
been obtained as function of the key network parameters,
facilitating intuition as to the effect of altering quantities such
as the pathloss exponent or the length of the links.

APPENDIX A
PROOF OF LEMMA 1

Consider the D2D link represented by the segment AB
in Fig. 7, where A and B indicate the transmitter and the
receiver locations, respectively. Let us identify the possible
locations of other transmitters (with mark lower than AB)
that could violate the conditions in Sec. III-B. Condition 1
is violated by the presence of other transmitters within the
shaded circular region of radius δr0 around B, denoted by
BB. As for Condition 2, which is violated by the presence
of other receivers within a circle of radius δr0 centered at A,
the corresponding transmitter locations (r0 away from each
receiver at a uniformly distributed random angle) cannot be
farther than δr0 + r0 from A. Hence, the D2D link AB could
fail to satisfy the conditions only by the presence of lower-
mark transmitters within the circle of radius δr0 + r0 centered
at A and denoted by BA.

AB

r
r dr

dθ

δr0 r0+

δr0 dθ

r0

D

BA

θ

BB

E
r0

β

Fig. 7. Two neighboring D2D links under type II channelization scheme.

Since the presence of a lower-mark transmitter within BB

will certainly violate the Condition 1, BB is part of AII.

The presence of a lower-mark transmitter in the unshaded
region within BA would violate Condition 2 only if the distance
between its intended receiver and A is less than δr0. Consider
a lower-mark transmitter denoted by D at a distance r and
angle θ from A, as shown in Fig. 7. The presence of D can
violate Condition 2 for AB with probability

p1(r) =
1

π
arccos

(
r2 + r20(1− δ2)

2rr0

)
(38)

which is the probability that the distance between its intended
receiver E and A is less than δr0. This follows from the law of
cosines and the fact that the angle β formed at D, between A
and the D2D link DE, is uniformly distributed in [0, π]. Thus,
the integration of rdθ dr scaled by p1(r) within the unshaded
region is also part of AII.

For the transmitter D to be within the unshaded region, the
distance between B and D must be greater than δr0. Thus,
when δ > 1 as in the figure and D is within the unshaded
region, r varies in [δr0− r0, δr0 + r0] while the angle θ, within
the upper half of the unshaded region, varies in [0, θ′] where

θ′ = π − arccos

(
r2 + r20(1− δ2)

2rr0

)
.

Then, AII can be computed as

AII = πδ2r20 + 2

δr0+r0∫
δr0−r0

θ′∫
0

p1(r)rdrdθ (39)

= πδ2r20 +

δr0+r0∫
δr0−r0

πr

2
− 2r

π
arcsin2

(
r2 + r20(1− δ2)

2rr0

)
dr

(40)

= πr20δ(δ + 1)− 2r20
π

∫ δ+1

δ−1

r arcsin2

(
r2 + 1− δ2

2r

)
dr

(41)

where the first term in (39) is the area of BB and the second
term corresponds to the resultant area computed based on the
transmitter locations within the unshaded region in BA that
would violate Condition 2. Note that (41) is valid only for
δ > 1 as in Fig. 7. The result is generalized by replacing the
lower limit of the integral with |δ− 1|, which is the result in
Lemma 1. This is because, when 0 < δ < 1, a transmitter
present inside a circle of radius r0 − δr0 centered at A will
always have its intended receiver located at a distance farther
than δr0 from A and thereby cannot violate Condition 2.



APPENDIX B
PROOF OF PROPOSITION 1

The link spectral efficiency averaged over all possible
geometries is computed as

C̄(λ, δ) = E[C(%)] (42)
= E [E [log2(1 + SIR|%)]] (43)

= E
[∫ ∞

0

P[log2(1 + SIR|ρ) > t] dt

]
(44)

= E
[∫ ∞

0

log2 e

γ + 1
(1− FSIR|%(γ)) dγ

]
(45)

=

∫ ∞
0

log2 e

γ + 1

(
1− E

[
FSIR|%(γ)

])
dγ (46)

=

∫ ∞
0

log2 e

γ + 1
(1− FSIR(γ)) dγ (47)

where the outer and inner expectations in (43) are over % and
over the fading, respectively and (45) follows from the variable
change t = log2(1 + γ). We next compute FSIR(γ).

Putting (12) into (13), the conditional CDF of instantaneous
SIR becomes

FSIR|%(γ) = 1− e−γ rη0
∑∞
j=1 r−η

j (48)

= 1−
∞∏
j=1

e−γ rη0 r−η
j . (49)

Averaging (49) over the random interferer distances {rj},

FSIR(γ) = 1− EΦ

 ∞∏
j=1

e−γ rη0 r−η
j

 (50)

= 1− e−2πλ̃
∫∞
δr0

(
1−e−γ r

η
0 x
−η
)
xdx (51)

= 1− exp

{
−γ

2
η π r20λ̃

2

η

∫ γ
δη

0

1− e−u

u1+2/η
du

}
(52)

where (51) follows from the definition of the probability
generating functional of the PPP [22] and (52) follows from
the variable change γ rη0 x

−η = u. Employing integration by
parts in (52),

FSIR(γ) = 1− e
−πλ̃δ2r20

[
2
η
E 2+η

η
( γ

δη )+ γ2/η

δ2 Γ(1− 2
η )−1

]
. (53)

Plugging, (53) into (47) we obtain the claim in the proposition.
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