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Abstract—Locally caching contents at the network edge con-
stitutes one of the most disruptive approaches in 5G wireless
networks. Reaping the benefits of edge caching hinges on solv-
ing a myriad of challenges such as how, what and when to
strategically cache contents subject to storage constraints, traffic
load, unknown spatio-temporal traffic demands and data sparsity.
Motivated by this, we propose a novel transfer learning-based
caching procedure carried out at each small cell base station. This
is done by exploiting the rich contextual information (i.e., users’
content viewing history, social ties, etc.) extracted from device-
to-device (D2D) interactions, referred to as source domain. This
prior information is incorporated in the so-called target domain
where the goal is to optimally cache strategic contents at the
small cells as a function of storage, estimated content popularity,
traffic load and backhaul capacity. It is shown that the proposed
approach overcomes the notorious data sparsity and cold-start
problems, yielding significant gains in terms of users’ quality-of-
experience (QoE) and backhaul offloading, with gains reaching
up to 22% in a setting consisting of four small cell base stations.

Index Terms—caching, transfer learning, collaborative filter-
ing, data sparsity, cold-start problem, 5G

I. INTRODUCTION

Caching at the network edge is one of the five most promis-
ing innovations in 5G wireless networks [1]. Recently, it was
shown that caching can significantly offload different segments
of the infrastructure including radio access network (RAN)
and core network (CN), by intelligently storing contents closer
to the users. As opposed to pushing contents on a best-
effort basis ignoring end-users’ behavior and interactions, we
are witnessing an era of truly context-aware and proactive
networking [2]. Undoubtedly, edge caching has taken recent
5G research activities by storm as evidenced by the recent
literature in both academia and industry [2]–[12] (to cite a
few).

Although caching has been well-studied in wired networks,
caching over wireless remains in its infancy. The idea of
femtocaching was proposed in [3], in which small base sta-
tions (SBSs) called helpers with low-speed backhaul but high
storage units carry out content delivery via short-range trans-
missions. Randomly distributed SBSs with storage capabilities
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are studied in [4], characterizing the outage probability and
average delivery rate. A stochastic-geometry based caching
framework for device-to-device (D2D) communications is
examined in [5] where mathematical expressions of local and
global fractions of served content requests are given. From
a game theoretic standpoint, various approaches have been
studied such as multi-armed bandits under unknown content
popularity [6], many-to-many matching [8] and joint content-
aware user clustering and content caching [11]. Other works
include information-theoretic studies looking at fundamentals
of local and global caching gains in [9], facility location based
approximation in [7], as well as multiple-input multiple-output
(MIMO) caching in [12], and coded caching in [10].

In [2], by exploiting spatio-social caching coupled with D2D
communication, we proposed a novel proactive networking
paradigm in which SBSs and user terminals (UTs) proactively
cache contents at the network edge. As a result, the overall
performance of the network in terms of users’ satisfaction
and backhaul offloading was improved. Therein, the proactive
caching problem assumed non-perfect knowledge of the con-
tent popularity matrix, and supervised machine learning and
collaborative filtering (CF) techniques were used to estimate
the popularity matrix leveraging user-content correlations.
Nevertheless, the content popularity matrix remains typically
large and sparse with very few users ratings, rendering CF
learning methods inefficient mainly due to data sparseness
and cold-start problems [13].

Given the fact that data sparsity and cold-start problems
degrade the performance of proactive caching, we leverage
the framework of transfer learning (TL) and recent advances
in machine learning [14]. TL is motivated by the fact that in
many real-world applications, it is hard or even impossible
to collect and label training data to build suitable prediction
models. Exploiting available data from other rich information
sources such as D2D interactions (called as source domain),
allows TL to substantially improve the prediction task in the
so-called target domain. TL has been applied to various data
mining problems such as classification and regression [14]. TL
methods can be mainly grouped into inductive, transductive
and unsupervised TL methods depending on the availability of
labels in the source and target domains. All these approaches
boil down to answering the following fundamental questions:
1) what information to transfer? 2) how to transfer it? and 3)
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when to transfer it? While "what to transfer" deals with which
part of the knowledge should be transferred between domains
and tasks, "when to transfer" focuses on the timing of the
operations in order to avoid negative transfer, especially when
the source and target domains are uncorrelated. On the other
hand, "how to transfer" deals with what kind of information
should be transferred between domains and tasks.

The main contribution of this work is to propose a TL-
based content caching mechanism to maximize the backhaul
offloading gains as a function of storage constraints and
users’ content popularity matrix. This is done by learning and
transferring hidden latent features extracted from the source
domain to the target domain. In the source domain, we take
into account users’ D2D interactions while accessing/sharing
statistics of contents within their social community as prior
information in the knowledge transfer. It is shown that the
content popularity matrix estimation in the target domain can
be significantly improved instead of learning from scratch with
unknown users’ ratings. To the best of our knowledge, this is
perhaps the first contribution of unsupervised transfer learning
in cache-enabled small cells.

The rest of the paper is organized as follows. The network
model under consideration is provided in Section II, accom-
panied with the caching problem formulation in both source
and target domains. Section III presents the classical CF-
based caching and that of the proposed transfer learning. The
numerical results capturing the impact of various parameters
on the users’ satisfaction and backhaul offloading gains are
given in Section IV. We finally conclude and delineate future
directions in Section V.

II. NETWORK MODEL

Let us assume an information system denoted by S(S) in
the source domain and an information system denoted by S(T )

in the target domain. A sketch of the network model is shown
in Fig. 1.

A. Target Domain

Let us consider a network deployment consisting of Mtar

SBSs from the setMtar = {1, . . . ,Mtar} and Ntar UTs from
the set Ntar = {1, . . . , Ntar}. Each SBS m is connected to
the core network via a limited backhaul link with capacity 0 <
Cm <∞ and each SBS has a total wireless link capacity C ′m
for serving its UTs in the downlink. We further assume that
E[Cm] < E[C ′m]. UTs request contents from a library Ftar =
{1, . . . , Ftar}, where each content f has a size of L(f) and a
bitrate requirement of B(f). Moreover, we suppose that users’
content requests follow a Zipf-like distribution PFtar (f),∀f ∈
Ftar defined as [15]:

PFtar (f) =
Ω

fα
(1)

where Ω =
(∑Ftar

i=1
1
iα

)−1
and α characterizes the steepness

of the distribution, reflecting different content popularities.
Having such a content popularity in the ordered case, the
content popularity matrix for the m-th SBS at time t is given

Cache-enabled 
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D2D-based
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limited
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Figure 1: An illustration of the network model which consists
of two information systems S(S) and S(T ). Due to the lack
of prior information in the target domain, the information
extracted from users’ social interactions and their ratings in
the source domain is transferred to the target domain.

by Pm(t) ∈ RNtar×Ftar where each entry Pmn,f (t) represent
the probability that the n-th user requests the f -th content.

In order to avoid any kind of bottleneck during the delivery
of users’ content requests, we assume that each SBS has a
finite storage capacity of Sm and caches selected contents
from the library Ftar. Thus, the amount of requests SBSs
satisfy from their local caches is of high importance to avoid
peak demands and minimize the latency of content delivery.
Our goal is to offload the backhaul while satisfying users’
content requests, by pre-fetching strategic contents from the
CN at suitable times and cache them at the SBSs, subject to
their storage constraints. To formalize this, suppose that D
number of requests from the set D = {1, ..., D} are made by
users during T time-slots. Then, a request d ∈ D within time
window T is served immediately and is said to be satisfied, if
the rate of delivery is equal or greater than the content bitrate,
such that:

L(fd)

τ ′(fd)− τ(fd)
≥ B(fd) (2)

where fd is the requested content, L(fd) and B(fd) are the
size and bitrate of the content, τ(fd) is the arrival time of the
request and τ ′(fd) the end time delivery. Given these defini-
tions, the users’ average satisfaction ratio can be expressed
as:

η(D) =
1

D

∑
d∈D

1

{
L(fd)

τ ′(fd)− τ(fd)
≥ B(fd)

}
(3)



where 1 {...} is the indicator function which returns 1 if the
statement holds and 0 otherwise. Suppose that the instanta-
neous backhaul rate for the content delivery of request d at
time t is given by Rd(t) ≤ Cm, ∀m ∈ Mtar. Then, the
average backhaul load is defined as:

ρ(D) =
1

D

∑
d∈D

1

L(fd)

τ ′(fd)∑
t=τ(fd)

Rd(t). (4)

Now, denote X(t) ∈ {0, 1}Mtar×Ftar as the cache decision
matrix of SBSs, where xm,f (t) equals 1 if the f -th content is
cached at the m-th SBS at time t, and 0 otherwise. Therefore,
the backhaul offloading problem can be formally expressed as:

minimize
X(t),Pm(t)

ρ(D) (5)

subject to Lmin ≤ L(fd) ≤ Lmax, ∀d ∈ D,
Bmin ≤ B(fd) ≤ Bmax, ∀d ∈ D,
Rd(t) ≤ Cm, ∀t,∀d ∈ D,∀m ∈Mtar,

R′d(t) ≤ C ′m, ∀t,∀d ∈ D,∀m ∈Mtar,∑
f∈Ftar

L(f)xm,f (t) ≤ Sm, ∀t, ∀m ∈Mtar,∑
n∈Ntar

∑
f∈Ftar

Pmn,f (t) = 1, ∀t,∀m ∈Mtar,

xm,f (t) ∈ {0, 1}, ∀t,∀f ∈ Ftar,∀m ∈Mtar,

ηmin ≤ η(D)

where R′d(t) is the instantaneous wireless link rate for request
d and ηmin is the minimum target satisfaction ratio respectively.
In order to solve this problem, a joint optimization of the cache
decision X(t) and the content popularity matrix estimation
Pm(t) is needed. Moreover, solving (5) is very challenging
due to:

i) limited backhaul and wireless link capacity as well as the
limited storage capacity of SBSs,

ii) large number of users with unknown ratings and library
size,

iii) SBSs need to track, learn and estimate users’ content
popularity/rating matrix Pm(t) for cache decision while
dealing with data sparsity.

For simplicity, we drop now the index of the SBSs and
assume that the content popularity is stationary during T time
slots, thus Pm(t) is denoted as Ptar. Moreover, for sake of
exposition, we restrict ourselves to caching policies in which
the contents are stored during the peak-off hours, thus X(t)
remains fixed during the content delivery and represented as
X. In the following, we examine the source domain which we
exploit when dealing with the sparsity of Ptar in the target
domain.

B. Source Domain

As advocated in [2], we leverage the existence of a D2D-
based social network overlay made of users’ interactions
within their social communities, referred as the source domain

in the sequel. Specifically, this source domain contains the be-
haviour of users’ interactions within their social communities,
modelled as a Chinese restaurant process (CRP) [16]. This
constitutes the prior information used in the transfer learning
procedure.

In the CRP with parameter β, every customer selects an
occupied table with a probability proportional to the number
of occupants, and selects the next vacant table with probability
proportional to β. More precisely, the first customer selects
the first table with probability β

β = 1. The second customer
selects the first table with probability 1

1+β , and the second
table with probability β

1+β . After the second customer selects
the second table, the third customer chooses the first table with
probability 1

2+β , the second table with probability 1
2+β and

the third table with probability β
2+β . This stochastic Dirichlet

process continues until all customers select their seats, defining
a distribution over allocation of customers to tables.

In this regard, the content dissemination in the social
network is analogous to the table selection in a CRP. If
we view this network as a CRP, the contents as the large
number of tables, and users as the customers, we can make
an analogy between the content dissemination and the CRP.
First, suppose that there exist ND2D users in this network.
Let FD2D = F0 + Fh be the total number of contents in
which Fh represents the number of contents with viewing
histories and F0 is the number of contents without history.
Denote also ZD2D ∈ {0, 1}ND2D×FD2D as a random binary
matrix indicating which contents are selected by each user,
where zn,f = 1 if the n-th user selects the f -th content and 0
otherwise. Then, it can be shown that [16]:

P (ZD2D) =
βFhΓ(β)

Γ(β +ND2D)

Fh∏
f=1

(mf − 1)! (6)

where Γ(.) is the Gamma function, mf is the number of users
assigned to content f (i.e., viewing history) and Fh is the
number of contents with viewing histories with mf > 0.

In the target domain, the caching problem boils down to
estimating the content popularity matrix which is assumed to
be largely unknown, yielding degraded performance (i.e., very
low cache hit ratios, slow convergence, etc.). Moreover, this
degradation can be more severe in cases where the number of
users and library size is extremely large. Therefore, in order
to handle these issues and cache contents more efficiently, we
propose a novel proactive caching procedure using transfer
learning which exploits the rich contextual information ex-
tracted from users’ social interactions. This caching procedure
is shown to yield more backhaul offloading gains compared
to a number of baselines, including random caching and the
classical CF-based estimation methods [2].

III. TRANSFER LEARNING: BOOSTING CONTENT
POPULARITY MATRIX ESTIMATION

First, we start by explaining the classical CF-based learning,
then detail our proposed TL solution.



A. Classical CF-based Learning

The classical CF-based estimation procedure is composed of
a training and prediction phase. In the training part, the goal is
to estimate the content popularity matrix Ptar ∈ RNtar×Ftar ,
where each SBS constructs a model based on the already
available information (i.e., users’ content ratings). Let Ntar
and Ftar represent the set of users and contents associated with
Ntar users and Ftar contents. In particular, Ptar with entries
Ptar,ij is the (sparse) content popularity matrix in the target
domain. Rtar = {(i, j, r) : r = Ptar,ij , Ptar,ij 6= 0} denotes
the set of known user ratings. In the prediction phase, in order
to predict the unobserved ratings in Ntar, low-rank matrix
factorization techniques are used to estimate the unknown
entries of Ptar. The objective here is to construct a k-rank
approximate popularity matrix Ptar ≈ NT

tarFtar, where the
factor matrices Ntar ∈ Rk×Ntar and Ftar ∈ Rk×Ftar are
learned by minimizing the following cost function:

minimize
(i,j)∈Ptar

∑
(i,j)∈Ptar

(
nTi fj − Ptar,ij

)2
+ (7)

µ
(
||Ntar||2F + ||Ftar||2F

)
where the sum is over the (i,j) user/content pairs in the training
set. In addition, ni and fj represent the i-th and j-th columns
of Ntar and Ftar respectively, and ||.||2F denotes the Frobenius
norm. In (7), the parameter µ provides a balance between
regularization and fitting training data. Unfortunately, users
may rate very few contents, causing Ptar to be extremely
sparse, and thus (7) suffers from severe over-fitting issues and
engenders poor performance.

B. TL-based Content Caching

To alleviate data sparsity, solving (7) can be done more
efficiently by exploiting and transferring the vast amount of
available user-content ratings (i.e., prior information) from
a different-yet-related source domain. Formally speaking, let
us denote the source domain as S(S), and assume that this
domain is associated with a set of ND2D users and FD2D

contents denoted by ND2D and FD2D respectively. Addition-
ally, the user-content popularity matrix in the source domain
is given by matrix PD2D ∈ RND2D×FD2D and likewise let
RD2D = {(i, j, r) : r = PD2D,ij , PD2D,ij 6= 0} represent
the set of observed user ratings in the source domain. The
underlying principle of the proposed approach is to smartly
"borrow" carefully-chosen user social behavior information
from S(S) to better learn S(T ).

The transfer learning procedure from S(S) to S(T ) is com-
posed of two interrelated phases. In the first phase, a content
correspondence is established in order to identify similarly-
rated contents in both source and target domains. In the second
phase, an optimization problem is formulated by combining
the source and target domains for knowledge transfer, to
jointly learn the popularity matrix Ptar in the target domain.
In this regard, we suppose that both source and target domains
correspond to one information system s ∈ {S(S), S(T )},
that is made of Ns users and Fs contents given by Ns

and Fs respectively. In each system s, we observe Ps with
entries Ps,ij . Let Rs = {(i, j, r) : r = Ps,ij , Ps,ij 6= 0}
represent the set of observed user ratings in each system
and the set of shared contents is given by F̃ . Moreover, let
N ∗ = ND2D ∪ Ntar and F∗ = FD2D ∪ Ftar be the union
of the collections of users and contents, respectively, where
N∗ = |N ∗| and F ∗ = |F∗| represent the total number of
unique users and contents in the union of both systems.

In the proposed TL approach, we model the users N ∗ and
contents F∗ by a user factor matrix N ∈ Rk×N∗ and a content
factor matrix F ∈ Rk×F∗ , where the i-th and j-th columns of
these matrices are given by ni and fj , respectively. The aim is
to approximate the popularity matrix Ps ≈ NT

s Fs by jointly
learning the factor matrices N and F. This is formally done
by minimizing the following cost function:

minimize
(i,j)∈Ps

∑
s

(
αs

∑
(i,j)∈Ps

(
nTi fj − Ps,ij

)2)
+ (8)

µ
(
||N||2F + ||F||2F

)
where the parameter αs is the weight of each system. By doing
so, PD2D and Ptar are jointly factorized, and thus the set of
factor matrices FD2D and Ftar become interdependent as the
features of a shared content are similar for knowledge sharing.
A practical TL-based caching procedure is sketched in Fig. 2.

Cache-enabled 
small base station

Cache Most Popular
Contents

1) User/Content
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2) Solve
Optimization Problem in (8)

Collect Content Ratings 
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Peak-o� hours (i.e. during nights)

Corresponded
ratings

Observed
ratings

Learned
content

popularity

Rtar RD2D

Rs

Ps

Figure 2: An illustration of the proposed TL-based caching
procedure.

IV. NUMERICAL RESULTS AND DISCUSSION

The objective of this section is to validate the effectiveness
of the proposed TL caching procedure and draw key insights.
In particular, we consider the following caching policies for
comparison:

1) Ground Truth: Given the perfect rating matrix Ptar, the
most popular contents are stored greedily.

2) Random caching [2]: Contents are cached uniformly at
random.
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Figure 3: Evolution of the aggregate backhaul load and users’ satisfaction ratio.

3) Collaborative Filtering [13]: The content popularity ma-
trix Ptar is estimated via CF from a training set with
4% of ratings. Then, the most popular contents are stored
accordingly.

4) Transfer Learning: Ptar and PD2D matrices are jointly
factorized via TL by using a training set with 12% of
ratings and perfect user-content correspondence. Then the
most popular contents are stored accordingly.

In the numerical setup, having contents cached according to
these policies, the SBSs serve their users according to a traffic
arrival process. This process is drawn from a Poisson process
with intensity λ. The storage size of SBSs, content lengths,
capacities of non-interfering wireless and backhaul links are
assumed to have same constant values individually, in order
to showcase the performance of the caching policies. The
numerical results of users’ satisfaction ratio and backhaul load
are obtained by averaging out 1000 Monte-Carlo realizations.
The simulation parameters are summarized in Table I, unless
stated otherwise.

The dynamics of users’ satisfaction ratio and backhaul
load with respect to the storage size, demand shape in the
source domain, traffic intensity and backhaul capacity are
given in Fig. 3. The results are normalized to show the various
percentage gains, whereas the actual values are shown in Table
I. In the following, we discuss in detail the impact of these
parameters.

1) Impact of the storage size (Sm): The storage size is
indeed one of the crucial parameter in cache-enabled SBSs,
and it is expected that higher storage sizes result in better
performance in terms of satisfaction ratio and backhaul of-
floading. According to this setup, we would like to note that
the biggest improvement in satisfaction ratio and decrement
in the backhaul load is achieved by the ground truth baseline

Table I: Simulation Parameters

Parameter Description Default-Varied Values

Mtar Number of SBSs 4

Ntar Number of UTs 32

Ftar Library size 32 contents

L Content length 1 MBit

B Bitrate requirement 1 MBit∑
C′m Total wireless capacity 32 MBit/s

T Time slots 128 seconds

α Zipf parameter 2

β CRP concentration parameter 2 - [2 ∼ 100]∑
Sm Total storage size 6 - [0 ∼ 32] MBit∑
Cm Total backhaul capacity 1 - [1 ∼ 8] MBit/s

λ Traffic intensity 1 - [1 ∼ 3] demand/s

where the content popularity is perfectly known. The random
approach on the other hand has the worst-case performance.
The CF approach exhibits similar performance as the random
approach due to the cold-start problem, whereas the satisfac-
tion ratio and backhaul offloading gains of TL are close to the
ground truth baseline. In particular, it is shown that the TL
policy outperforms its CF counterpart, with satisfaction and
backhaul offloading gains up to 22% and 5% respectively.

2) Impact of the demand shape in the source domain (β):
The demand shape in the source domain, characterized by the
CRP concentration parameter β provides meaningful insights
to our problem. In fact, as β increases, the demand shape tends
to be more uniform, requiring higher storage sizes at the SBSs
to sustain the same performance. In a storage limited case,
we see that the satisfaction ratio decreases and the backhaul
load increases with the increment of β. Compared to the CF



approach, the gains of TL are around 6% for the satisfaction
gains and 22% for the backhaul offloading. However, the gap
between TL and CF becomes smaller as β increases.

3) Impact of the traffic intensity (λ): As the average number
of request arrivals per time slot increases, bottlenecks in the
network are expected to occur due to the limited resources
of SBSs, resulting in less satisfaction ratios. This is visible in
the high arrival rate regime, whereas the relative backhaul load
remains constant. It can be shown that the ground truth caching
with perfect knowledge of content popularity outperforms
the other policies while the random approach has the worst
performance. On the other hand, the performance of TL is in
between these approaches and has up to 3% satisfaction gains
and 18% of backhaul offloading gain compared to the CF.

4) Impact of the backhaul capacity (Cm): The total back-
haul capacity is assumed to be sufficiently smaller than the ca-
pacity of wireless links. The increment of this capacity clearly
results in higher satisfaction ratios in all cases. Note that any
content not available in the caches of SBSs is delivered via the
backhaul. Therefore, increasing the backhaul capacity avoids
the bottlenecks during the delivery, thus yielding higher users’
satisfaction. On the other hand, the backhaul load remains
constant in this setting. It can be seen that TL approach has
satisfaction ratio gains of up to 6% and backhaul offloading
of up to 5% compared to the CF approach.
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Figure 4: Evolution of the backhaul load with respect to the
perfect correspondence ratio.

5) Impact of source-target correspondence: We have so
far assumed that the user/content correspondence between
the target and source domains is perfect. This is a strong
assumption and such an operation requires a more careful
treatment to avoid negative transfer. Here, we relax this
assumption by introducing a perfect correspondence ratio. This
ratio represents the amount of perfect user/content matching
between both source and target domains. A ratio of 0 means
that 100% of correspondence is done uniformly at random
and 1 is equivalent to the perfect case. It is shown in Fig.
4 that TL has a poor performance in the low values of this

ratio, with similar performance as the random caching due
to the negative transfer. However, as this ratio increases, the
performance of TL improves, outperforming the CF with a
ratio of 0.58. This underscores the importance of such an
operation for the positive transfer and is left for future work.

V. CONCLUSIONS

We proposed a novel transfer learning-based caching pro-
cedure which was shown to yield higher users’ satisfaction
and backhaul offloading gains overcoming the data sparsity
and cold start problems. Numerical results confirmed that
the overall performance can be improved by transferring a
judiciously-extracted knowledge from a source domain to a
target domain via TL. An interesting future work is assess-
ing the performance of TL-based caching using real traces.
Another avenue of research is extending the current model to
predictive scheduling and predictive offloading.
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