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Abstract: We consider an extension of Erdős-Rényi graph known in literature as Stochastic
Block Model (SBM). We analyze the limiting empirical distribution of the eigenvalues of the
adjacency matrix of SBM.We derive a fixed point equation for the Stieltjes transform of the limiting
eigenvalue empirical distribution function (e.d.f.), concentration results on both the support of the
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Carectéristiques Spectrales
des Matrices Aléatoires

pour
Stochastic Block Model

Résumé : Nous considérons une modele des graphes aleotoires connue dans la littérature
par son nom de «Stochastic Block Model(SBM) ». Nous analysons la distribution empirique
des valeurs propres de la matrice d’adjacence du SBM. Nous obtenons une equation de point
fixe pour la transformation de Stieltjes de cette fonction, et nous montrons l’existence d’un trou
spectral dans la distribution. En outre, nous derivons les résultats similaires pour la matrice de
Laplace normalisé et nous discoutons des applications potentielles des résultats généraux dans
les études d’épidémies et marches aléatoires.

Mots-clés : Theorie spectrale de graphes, Matrices Aléatoires, Graphes Aléatoires, Stochastic
Block Model
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1 Introduction

Systems consisting of a huge number of interacting entities are often represented by complex
networks to capture the essence of their interactions. They are used to model systems from the
most disparate fields: interactions among atoms in matter, biological molecules, nodes of the
Internet networks, documents in the web, social networks, connectivity of users in a wireless
network, etc. Due to the typical gigantic dimensions of the systems targeted in this field, it is
essential to gain understanding and master the system via few fundamental parameters which
are able to characterize the macroscopic features of the system.

One important approach to study complex networks is based on the theory of random graphs.
The first natural random graph model of complex networks is Erdős-Rényi graph [12] where edges
between nodes appear with equal probabilities. This model has many appealing analytical prop-
erties but unfortunately does not model important properties of many real complex networks.
In particular, the Erdős-Rényi graph fails in describing community structures in complex net-
works. To mitigate this shortcoming the more refined Stochastic Block Model (SBM) has been
introduced, first studied in [9] to the best of our knowledge. In SBM, the nodes are divided into
subsets (communities) such that nodes within a given community have a link between them with
a higher probability than nodes from different communities.

Random graphs can generate a variety of random matrices, e.g. adjacency matrix, standard
Laplacian, normalized Laplacian. The spectral properties of those random matrices are funda-
mental tools to predict and analyze the complex network behavior, the performance of random
algorithms, e.g. searching algorithms, on the network, but also to design algorithms. For exam-
ple, the convergence properties of a random walk on a graph are dependent on the gap between
the first and the second largest eigenvalues of its normalized Laplacian [8]. This is of particular
significance in random search algorithms deployed widely for information retrieval in big data
systems. The community detection problem relies on the properties of several of the largest
eigenvalues of the adjacency matrix and their corresponding eigenvectors, e.g. [20]. The cost of
epidemic spread is characterized by the spectral properties of the adjacency matrix [7].

Recently, there has been a stream of works on SBM in community detection problems [10,17,
18]. In [10], the authors investigate detectability of communities in a SBM graph by analyzing
phase transition in the spectrum of the adjacency matrix using methods from statistical physics.
The authors of [17] analyze a similar problem in the context of labeled stochastic matrices with
two communities and provide theoretical evidence for detectability thresholds in [10]. There, the
nodes are randomly categorized into communities, with symmetric probabilities and the goal is
to detect the correct community to which a node belongs. All these works focus on the case of
diluted graphs, i.e. when the expected degrees are bounded irrespectively of the network size.
In [18] the authors also study the detectability problem in the two community case. There, the
scaling law of probabilities is not clearly defined. The case of dense graphs has been studied
in [13] for M communities.

In this contribution, we analyze the limiting empirical distribution of the eigenvalues of
the adjacency matrix of SBM. We find that the Stieltjes transform of the limiting distribution
satisfies a fixed point equation and provide an explicit expression in the case of symmetric
communities. Furthermore, we obtain tight bound on the support of the asymptotic spectrum,
and concentration bounds on the extremal eigenvalues. Additionally, we derive the asymptotic
spectrum of the normalized Laplacian matrix in the dense regime of edge probabilities and
subsequently discuss potential applications of the general results in epidemics and random walks.

In comparison to the previous works on SBM [10,13,17,18] we consider the dense and sparse
regimes when the expected degrees scale not slower than logc(n), for some c ≥ 4.

In contrast to the classical Erdős-Rényi graph, the limiting eigenvalue e.d.f. of SBM adjacency
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4 Konstantin & Laura & Arun

matrix does not follow the semicircular law anymore and there are M largest eigenvalues outside
the support of the e.d.f. The concentration results on the extreme eigenvalues become more
complex. Specifically, the result in [21], if directly applied, leads to a weaker bound on the edge
of the e.d.f. support than the one we derive here. The authors of [10, 17, 18] consider only the
case of two communities and their work does not include the study the limiting e.d.f. In [13] a
general M community SBM is analyzed in the quite dense regime, i.e. when the average degree
is of the order n/log(n).

2 Mathematical Notation and Definitions

Throughout this paper, 1C is a C-dimensional column vector with unit entries and JC = 1C1TC is
a square matrix whose entries are all equal to 1. The notations fn = O(gn) and fn = o(gn) mean
that limn→∞

|fn|
|gn| ≤ c for some constant c > 0 and limn→∞

fn
gn

= 0, respectively. We say that
f(x) dominates g(x) asymptotically and we write f(n) ∈ ω(g(n)) if asymptotically for n→ +∞,
|f(n)|> k|g(n)| for any constant k > 0. By δy(x) we denote the Kronecker delta function equal
to one when x = y and zero everywhere else and the ceiling function that maps a real number
to the smallest following integer is denoted by d·e. The indicator function of a subset A of a set
X is denoted by χA(x) and, for any x ∈ X , χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. The
field of complex numbers is represented by C, the operator =(·) maps a complex number onto
its imaginary part and C+ denotes the open half space of complex numbers with nonnegative
imaginary part, i.e., z ∈ C+, iif =(z) > 0. Given a random variable X and a distribution D, the
notation X ∼ D indicates that the random variable X follows the probability distribution D and
PX(x) denotes its cumulative distribution function.

Given an n × n Hermitian matrix H, we index its eigenvalues in nonincreasing order and
denote by λi(H) the i-th eigenvalue of H, i.e. λ1(H) ≥ λ2(H) ≥ λ3(H)... ≥ λn(H). The
operator ‖·‖2 denotes the Euclidian norm of a vector when the argument is a vector and spectral
norm1 when the argument is a matrix, i.e.

‖H‖2= sup
‖x‖2≤1,‖y‖2≤1

xTHy. (1)

The empirical spectral distribution (e.s.d.) of a Hermitian matrix H, is defined as:

FH(x, n) =
1

n

n∑
i=1

δλi(H)(x) (2)

An important tool that is used in Random Matrix Analysis is the Stieltjes transform. It is
extensively used to study various properties of the limiting spectral distribution such as the
limiting shape and speed of convergence. Refer to [2] for more details. The Stieltjes transform
sF (z) of a probability distribution F (x) is defined as the Riemann-Stieltjes integral

sF (z) =

∫
dF (x)

x− z
(3)

for z ∈ C+.

1The spectral norm coincides also with the induced 2-norm.

Inria
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3 Stochastic Block Model and its Representations

We consider a complex network with n nodes and M communities Ωm, for m = 1, . . . ,M, of
equal sizes K = n/M , which is assumed to be an integer. This complex network is described
by an undirected random graph referred to as Stochastic Block Model (SBM) with M blocks,
one for each community. If two nodes belong to different communities, then there is an edge
between them with probability p0(n). Given two nodes belonging to the same community Ωm,
there exists an edge between them with probability pm(n), 1 ≤ m ≤M . Throughout this paper,
for the sake of conciseness, we adopt the short notation pm for the probabilities pm(n), keeping
in mind that the dependence on n is implicit. For a random graph as defined above, we can
define a number of related random matrices whose spectral characteristics are relevant to capture
related properties of the network. In this work we focus on two classes of random matrices for
the SBM: the adjacency matrix and the normalized Laplacian matrix.
SBM adjacency matrix A

Without loss of generality, we assume that nodes belonging to the same community are
clustered together and ordered from community 1 to community M, i.e. node i belongs to

community Ωm if
⌈
i

K

⌉
= m. The SBM adjacency matrix A is a symmetric matrix and its

element Aij is a Bernoulli variable with parameter pm, m = 1, . . .M, if the corresponding nodes

i and j belong to the community Ωm, i.e.
⌈
i

K

⌉
=

⌈
j

K

⌉
= m, and with parameter p0 otherwise.

Let us denote by B(pm) a Bernoulli probability distribution with parameter pm, then

Aij = Aji ∼ B(pm), if i, j ∈ Ωm

Aij = Aji ∼ B(p0), if i ∈ Ω` and j ∈ Ωm, ` 6= m.
(4)

We implicitly assume that the diagonal elements of the matrix A are randomly distributed
according to a given Bernoulli probability distribution. This corresponds to the assumption that
the random graph has cycles of unit length with a certain probability. There are definitions
of complex networks that do not admit cycles of unit length, which corresponds to matrices A
with diagonal elements deterministically equal to zero. It is worth noting that the results on the
asymptotic spectrums of adjacency matrices in this contribution hold for both these definitions
under the assumptions made.

For further studies, it is convenient to normalize the matrix A by a scaling factor2 γ(n) in
general depending on n such that the support of the limiting eigenvalue distribution function
stay finite and positive. Then, we consider the normalized SBM adjacency matrix Â = γ(n)A
and we express it as the sum of a deterministic matrix A equal to its expectation and a random
matrix with zero mean random entries Ã, i.e.

Â = A+ Ã. (5)

Consistently with the definitions in (4) and (5), A, the expectation of matrix A, is a finite rank
matrix of the following form:

A = P ⊗ JK (6)

2We use the short notation γ when it is not necessary to emphasize the dependency on n.
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6 Konstantin & Laura & Arun

being P the M ×M

P = γ(n)


p1 p0 . . . p0

p0 p2
. . . p0

. . .
. . . . . .

p0 . . . . . . pM

 . (7)

In general, for pm 6= p0 and m = 1, . . . ,M, the matrix P has rank M and thus, also A has rank
M.

The random centered SBM adjacency matrix is also a symmetric matrix whose elements
follow the distributions

C(pm, γ) =

{
γ(1− pm), w.p. pm;
−γpm, w.p. 1− pm;

m = 0, 1, . . . ,M, (8)

having zero mean and variance σ2
m = γ2(1− pm)pm. Consistently, with the definitions in (4) and

(5) {
Ãij = Ãji ∼ C(pm, γ) if i, j ∈ Ωm

Ãij = Ãji ∼ C(p0, γ) if i ∈ Ω` and m ∈ Ωm with ` 6= m.
(9)

It is worth noting that the entries of this random matrix depend of the matrix size.
Random SBM normalized Laplacian matrix L

Let us define the random variable

Di =

n∑
j=1

Aij (10)

corresponding to the degree of node i. Then, the symmetric SBM normalized Laplacian matrix
L is defined as

Lij = Lji =


1− Aii

Di
, if i = j;

− Aij√
DiDj

, otherwise.
(11)

4 Useful Existing Results

4.1 Erdős Rényi Graphs and Wigner matrices

A random graph where all the pairs of nodes have equal probability p(n) of having an edge,
independently of the presence of other edges is well-known as Erdős-Rényi (ER) graph. It is
straightforward to verify that an SBM graph with M = 1, corresponding to a complex network
with a single community, reduces to an ER graph. As for random SBM graphs, we can consider
representations of random ER graphs by classes of random matrices. In this paper, we focus on
random ER adjacency matrices AER. The upper diagonal elements of the Hermitian matrix AER

are independent and identically distributed (iid) according to B(p(n)), a Bernoulli distribution
with parameter p(n), i.e. AER

ij = AER
ji ∼ B(p(n)). As for random SBM adjacency matrices,

Inria



Spectral Properties of Random Matrices for Stochastic Block Model 7

we consider a matrix ÂER normalized by the scalar γ(n) = (
√
np(n)(1− p(n)))−1, i.e. ÂER =

γ(n)AER, and decompose it as
ÂER = A

ER
+ ÃER,

where A
ER

= γ(n)p(n)Jn and the centered ER adjacency matrix is given by

ÃER
ij = ÃER

ji ∼ C(p(n), (
√
np(n)(1− p(n)))−1) ∀i ≥ j, i = 1, . . . n. (12)

The parameter p(n) depends on the network size n and, thus, also the average degree of a node
i

di,av = E

∑
j

Ai,j

 = np(n). (13)

Based on the average node degree di,av, the ER graphs are classified as dense, if di,av = O(n),
sparse if di,av = o(n) and di,av →∞, and diluted if di,av = O(1) [6] .

Closely related to the centered ER adjacency matrix is the Wigner matrix defined as a
Hermitian matrix W whose upper diagonal entries are zero mean independent random variables
with variance equal to σ2.

It is worth noting that the centered ER adjacency matrix is a special case of Wigner matrices
with a well defined distribution C(p(n), (

√
np(n)(1− p(n)))−1)) equal for all the entries.

The properties of the eigenvalue spectrum of both Wigner matrices and ER adjacency ma-
trices have been intensively studied. In this section, we recall the results on the limiting spectral
distributions and the spectral norms of these random matrices. Defined the empirical spectral
distribution (e.s.d.) of a Hermitian matrix H of size n as in (2), the limiting spectral distribution
FH(x) is the deterministic limiting distribution, if it exists, of the random e.d.f. as the size of
the matrix H tends to infinity. The spectral norm of a matrix is defined in (1).

4.2 Limiting e.s.d. of Centered ER Adjacency Matrices
A key role in the convergence of the e.s.d. of large random Hermitian matrices is played by the
following assumption.

Assumption 1 [15, 16, Chapter 1] The Hermitian matrix H with zero mean independent up-
per diagonal entries Hij of variance σ2

ij such that limn→+∞ supi,j=1,...n σ
2
ij = 0 satisfies the

Lindeberg’s condition, i.e. for any δ > 0

lim
n→∞

max
i=1,...n

n∑
j=1

∫
|x|>δ

x2dPHij
(x) = 0. (14)

This assumption essentially implies that the tails of the distributions characterizing the random
variables Hij diminish as n→∞. Under such an assumption, the sequence of the e.s.d. converges
weakly to a limiting eigenvalue distribution in the almost sure sense as stated by the following
proposition.

Proposition 1 [15,16, Chapter 1] The Wigner matrix W with zero mean independent random
entries Wij satisfies Assumption (1) and additionally, all the equal variances satisfy σ2

i,j = σ2/n

with 0 < σ2 < +∞. Then, the sequence of the e.s.d. converges weakly to a the Wigner semicircle
law in the almost sure sense, i.e. for any bounded continuous function f∫

f(x)FWn(x)dx
a.s.−−→

∫
f(x)µsc(x, σ

2)dx,

RR n° 8703



8 Konstantin & Laura & Arun

where FWn(x) denotes an e.d.f. of the Wigner matrix of size n and µsc(x, σ
2) is the Wigner

semicircular distribution with parameter σ2 given by

µsc(x, σ
2) =

1

2πσ2

√
(4σ2 − x2)+. (15)

This result can be immediately specialized to normalized centered ER adjacency matrices
ÂER. Since for the matrix ÃER it holds σ2

ij = n−1, for i, j = 1, . . . n, the conditions of Proposition
(1) are satisfied if the limit (14) holds, i.e. if for any τ > 0

lim
n→+∞

(1− p)χ
(

1− p ≥ τ
√
np(1− p)

)
+ pχ

(
p ≥ τ

√
np(1− p)

)
= 0. (16)

It is straightforward to verify that this condition is equivalent to the condition p ≥ (τ2n+ 1)−1

for any τ > 0. Then, we can state the following corollary.

Corollary 1 Let us consider a normalized centered ER adjacency matrices ÃER with p(n) ∈
ω(n−1) as n→∞. Then, the sequence of the e.s.d. converges weakly to a the Wigner semicircle
law in the almost sure sense, i.e. for any bounded continuous function f∫

f(x)F Ã
ER

(x)dx
a.s.−−→

∫
f(x)µsc(x, 1)dx.

Then, whether the e.s.d. of a centered ER adjacency matrix converges to a semi-circle dis-
tribution depends the convergence rate of p(n) to zero as n → +∞. It is difficult to state any
results on the limiting eigenvalue e.d.f. when p(n) = c

n because for this probability, Assumption
(1) does not hold. It is known that for diluted graphs, there is no explicit expression for the
limiting eigenvalue e.d.f. but it displays atoms [6]. For this reason in the following we limit our
attention to probabilities p(n) such that p(n) ∈ ω(n−1), i.e. for the dense and sparse regime.
This is tantamount to stating that

√
npn(1− pn)→∞ [11].

4.3 Spectral Norm of the Centered ER Adjacency Matrix

Let us observe that, if the multiplicity of an eigenvalue does not scale with n, the definition of
the e.d.f. implies that, in the limit for n → +∞, the eigenvalue e.s.d. is not able to capture
the existence of this eigenvalue in the spectrum matrix. Then, Corollary (1) can only provide a
lower bound of the spectral norm of the normalized centered ER adjacency matrix ÃER. Hence,
it is important to find an upper bound on the spectral norm of ÃER to better understand its
spectral properties. The following result comes in handy.

Lemma 1 [21] Let W be a Wigner matrix with independent random elements Wij , i, j = 1, . . . n
having zero mean and variance at most σ2(n). If the entries are bounded by K(n) and there exist
a constant C ′ such that σ(n) ≥ C ′n−1/2K(n) log2(n), then there exists a constant C such that
almost surely

‖W‖2≤ 2σ(n)
√
n+ C(K(n)σ(n))1/2n1/4 log(n). (17)

By applying Lemma (1) to the normalized centered adjacency matrix ÃER we obtain the
following concentration result.

Inria



Spectral Properties of Random Matrices for Stochastic Block Model 9

Corollary 2 Let us consider the normalized centered adjacency matrix ÃER. If the probability
p(n) satisfies the inequality p(n) ≥ C ′ log4(n)n−1 for some constant C ′ > 0, then there exists a
constant C > 0 such that almost surely

‖ÃER‖2≤ 2 + C 4

√
1− p(n)

np(n)
log n. (18)

Proof: From the definition of ÃER it results σ = n−1/2. Then, condition σ ≥ C∗n−1/2K log2(n)

in Lemma 1 implies K ≤ (C∗ log2 n)−1. Additionally, the bound on the elements ÃER
ij implies

1− p√
n(1− p)p

≤ K. Thus, √
1− p
np

≤ K ≤ (C∗ log2 n)−1. (19)

Then, K exists if
√

1− p
np

≤ (C∗ log2 n)−1 or if p satisfies the more stringent constraint

p ≥ C ′n−1 log4 n,

where C ′ is a constant depending on C∗. Inequality (18) is obtained from (17) setting K =√
1− p
np

. �

Let us observe that for spectral norm of matrix ÃER is lower bounded by the extreme of the
support of the limiting e.s.d. F Ã

ER
(x). Additionally, if for any δ > 0, p > δn−1 log4 n, then the

spectral norm is concentrated around the extreme of the support of F Ã
ER

(x).

4.4 Spectrum of the Normalized ER Adjacency Matrix
In the previous Section (4.2) and (4.3) we focused on the spectral properties of the normalized
centered ER adjacency matrix ÃER while in this section we analyze the spectral properties of
the normalized ER adjacency matrix ÂER and the effect of the mean component A

ER
on it. The

following lemma plays a key role to establish a fundamental relation between the eigenvalue e.d.f.
F Ã

ER
(x) studied in the previous sections and F Â

ER
(x).

Lemma 2 [3] If FA(x), FB(x) are the eigenvalue e.d.f. of A , B, Hermitian matrices of size
n, then

|FA(x)− FB(x)|≤ rank(A−B)

n
.

We recall that A
ER

= ÂER − ÃER has unit rank for any n. Then, asymptotically for n → ∞,
the limiting eigenvalue distribution of the matrix ÂER converges to the semicircular law as
the limiting eigenvalue distribution of the matrix ÃER. As for ÃER, the limiting eigenvalue
distribution of the matrix ÂER provides only a lower bound for the spectral norm that requires
independent study.

The spectral norm of the two matrices ÂER and ÃER are different, because the largest eigen-
value changes when a unit rank matrix is added to a Hermitian matrix. From Bauer-Fike theorem
for Hermitian matrices [19], we have

|λi(ÂER)− λi(A
ER

)|≤ ||ÃER||2 (20)

RR n° 8703



10 Konstantin & Laura & Arun

for 1 ≤ i ≤ n.
Let us note that λ1(A

ER
) = nγ(n)pn and λi(A

ER
) = 0 for i ≥ 2. Then, from (20), asymptot-

ically as n → +∞, ‖ÃER‖2
a.s.→ 2. Thus, we get the following concentration result for the largest

eigenvalue of the perturbed matrix ÂER∣∣∣∣∣λ1(ÂER)−

√
np(n)

1− p(n)

∣∣∣∣∣ ≤ 2. (21)

We notice that, for dense and sparse networks,

√
np(n)

1− p(n)
� 2. Hence the above result implies

that λ1(ÂER)→ nγ(n)pn. Thus, the following lemma holds.

Lemma 3 [11] Let ÂER satisfies the conditions of Corollary 2. Then,

λn1 (ÂER)
n→∞,a.s.−−−−−−→

√
np(n)

1− p(n)
,

i.e., the largest eigenvalue of ÂER tends to the largest eigenvalue of the mean matrix A
ER

as
n→∞.

4.5 Limiting Spectral Distribution of Centered Hermitian Matrices
In this section we present a useful existing result on centered symmetric matrices H with in-
dependent upper diagonal entries whose distributions have in general different variances. This
result provides the Stieltjes transform of the limiting eigenvalue distribution as n → +∞ as
solution of a nonlinear system of n equation.

Proposition 2 [15, 16, Chapter 1] Let the symmetric matrix H satisfy Assumption 1. Addi-
tionally, the variances σ2

ij of its entries satisfy the conditions

sup
n

max
i=1,2,..n

∑
j

σ2
ij <∞

and infi,j nσ
2
ij = c > 0. Then, as n → +∞, almost surely FH(x, n), the random e.s.d. of the

n×n matrix H converges for any x to a deterministic distribution function SHn (x) whose Stieltjes
transform s(z) is given by

sn(z) =

∫
dSHn (x)

x− z
=

1

n

n∑
i=1

ci(z, n),

where ci(z, n) is the unique solution to the system of equations

ci(z, n) =


−zI −(δpl n∑

s=1

cs(z, n)σ2
sl

)n
p,l=1

−1

ii

,

i = 1, 2, ..n

in the class of analytic functions

A = {=(z)=(ci(z, n)) > 0,=(z) 6= 0}.

Inria



Spectral Properties of Random Matrices for Stochastic Block Model 11

5 Results for Adjacency Matrix of M community Model

5.1 Finding the Spectrum of Centered Adjacency Matrix

In this section we consider the normalized centered SBM adjacency matrix Ã with γ(n) =
(np∗(1 − p∗))−1 where p∗ = maxm=1,...M pm. Additionally, we assume that all the probabilities
pm scales at the same rate, i.e. limn→+∞

pi
pj

= cij for some cij > 0, and pm(n) ∈ ω(n−1) as
n→ +∞. Then, it is straightforward to verify that the conditions of Proposition 2 are satisfied
and the following corollary holds.

Corollary 3 Let Ã be the normalized centered SBM adjacency matrix defined in (8) with
γ(n) = (np∗(1 − p∗))−1 and p∗ = maxm=1,...M pm. If pm(n) ∈ ω(n−1) and pm(n) = O(p0(n))
for all m = 1, . . .M, then, almost surely, the eigenvalue e.d.f. converge weakly to a distribution
function whose Stieltjes transform is given by

s(z) =

M∑
m=1

cm(z) (22)

cm(z) being the unique solution to the system of equation

cm(z) =
−1/M

z + ςmcm(z) + ς0
∑
` 6=m c`(z)

, (23)

with ς` = lim
n→+∞

p`(1− p`)
p∗(1− p∗)

, that satisfies the conditions

=(c`(z))=(z) > 0 for =z > 0. (24)

The above result implies that in general the asymptotic eigenvalue e.d.f. of an SBM is not a
semicircular law any longer.

5.2 Spectrum of the Full Adjacency Matrix

The result above gives the spectrum of the matrix Ã. Let us recall the definition of matrix Â as
given in (5)

Â = Ã+A.

Using Lemma 2 on the finite rank perturbation, we deduce that the asymptotic eigenvalue e.d.f.
of Â and Ã are the same. However, their spectra differ in the extreme eigenvalues.

5.3 Extreme Eigenvalue of Adjacency Matrix
Using the Bauer-Fike Theorem on perturbation of eigenvalues of Hermitian matrices, for matrices
Â, A, and Ã, we have

|λi(Â)− λi(A)|≤ ‖Ã‖2.

This is useful in getting asymptotic characterization of the M largest eigenvalues of Â. Since
A has M non-zero eigenvalues, this result says that the first M largest eigenvalues of Â are
concentrated around these eigenvalues, within an error of the order of the spectral norm of Ã.
The other eigenvalues of Â are below the spectral norm of Ã, and hence they fall inside the
continous part of the limiting e.d.f. To use this result, we need a bound on the spectral norm of
the centered SBM adjacency matrix Ã. We strengthen the result in Theorem 1.4 in [21] to derive
a tighter bound on the spectral norm of Ã.
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12 Konstantin & Laura & Arun

Theorem 1 Let Ã be a normalized centered SBM adjacency matrix defined in (9) and satisfy-
ing the same conditions as in Corollary 3. Additionally, p0(n) satisfies the inequality p0(n) ≥
C ′n−1 log4 n for some constant C ′ > 0 and sup p0(n)(1−p0(n))

p∗(n)(1−p∗(n)) is bounded. Then, there exists a
constant C > 0 such that almost surely

‖Ã‖2≤ 2
√
M−1 (1 + (M − 1)ς0) + C 4

√
1− p0(n)

np0(n)
log(n)

with ς0 defined as in Corollary 3.

Proof: Much of the proof follows that of Theorem 1.3 in [21]. We first bound the spectral
norm of the unnormalized centered adjacency matrix Ã

′
= Ã/γ(n). At the end of the proof,

we use this bound to derive a bound on the spectral norm of Ã, which gives us the result. We
use the idea that spectral norm, which is the largest dominating eigenvalue in absolute value,
can be bounded by the trace of the matrix raised to an even exponent, and that the larger the
exponent, the sharper the bound:

||Ã
′
||2k2 = max

1≤i≤n
|λi(Ã

′
)|2k≤ (

n∑
i=1

|λi(Ã
′
)|2k) = (tr(Ã

′
)2k).

The method of proof is the popular moment method orginated by Füredi and Komlós, which
bounds the moments of the e.s.d. of the matrix by bounding the expected trace of the matrix
using combinatorial arguments [14].

Once we obtain a bound on the expected spectral norm, we can use Markov inequality, to
bound the tail probabilities.

Pr{||Ã
′
||2≥ λ} ≤

E||Ã′ ||2k2
λ2k

≤ Etr(Ã
′
)2k

λ2k
(25)

If A is a standard Wigner matrix, for fixed k, the right hand side of the above equation is n
times the 2kth moment of the empirical spectral distribution, which by Semicircle law tends to
Ck. Therefore, for such matrices, if k were chosen to be a fixed number independent of n, the
right hand side tends to infinity for large n, making it rather useless. Therefore we choose k to
be a function of n. The idea is that when k is a slowly increasing function of n, the semicircle
law still holds, and since Ck ≤ 4k, the upper bound tends to 0, for any λ ≥ 2. Here, we extend
this idea to Wigner matrix displaying community structure.

Next, we need to find a bound on the quantity Etr(Ã
′
)2k. To do this we expand the trace as

a summation of expectation over cycles of length 2k of vertices in the set {1, 2, 3, ...n}

Etr(Ã
′
)2k = E

∑
i1,i2,i3,....i2k

Xi1,i2Xi2,i3 ....Xi2k,i1 ,

where {i1, i2...i2k, i1} form a cycle over edges such that ij ∈ {1, 2, 3, ...n}, for each 1 ≤ j ≤ 2k.
Each edge {ij−1, ij} corresponds to a random variable Xij−1,ij .

We can partition the graphs based on the number of unique vertices that appear in the graph,
called the weight of the graph, denoted by t, 1 ≤ t ≤ 2k. We can represent the original graph
on 2k edges and 2k vertices equivalently by using a condensed undirected connected graph on t
vertices. An edge exists in this graph if and only if it exists in the original graph and if it exists
more than once in the original graph(walk), then this edge has a weight equal to the number of
times this edge is traversed by the walk. Since each such random variable is zero mean and since
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Spectral Properties of Random Matrices for Stochastic Block Model 13

each variable is independent, if an undirected edge {ij−1, ij} has a weight equal to 1, that is it
only appears once in the walk, then the whole term becomes zero. So we need only consider the
contribution of those graphs that have every edge appearing at least twice.

By virtue of independence and zero mean property, if t is greater than k+ 1, and because the
number of edges required for connectivity is greater than or equal to t + 1, there must at least
be k + 1 edges in the graph. Since the total number of edges is 2k in the walk, this means there
exists an edge that appears only once, making the contribution of such a term zero. Hence we
must have 1 ≤ t ≤ k + 1. Thus we can bound the quantity of interest as below:

Etr(Ã
′
)2k ≤

k+1∑
t=1

∑
G∈Gt,n,2k

EXG,

where Gt,n represents a set of graphs on t vertices drawn from {1, 2, ..n} with 2k edges.
An edge e = {ij−1, ij} such as described above, is called an innovation edge, if the vertex ij is

such that ij 6∈ {i1, i2, ...ij−1}, i.e., it appears for the first time in e. The other edges in the graph
either overlap the innovation edges or are interconnections between two vertices that already
exist in the graph. Since in our case the random variables are bounded in absolute value by 1(
since they are Bernoulli), the contribution over all the edges other than the innovation edges can
be bounded by 1. For any graph on t vertices, there must be exactly t− 1 innovation edges and
each edge must have at least weight 2. The contribution to the expectation of each such edge
would have a weight of at most σ2

i , 0 ≤ i ≤ M depending on whether the edge is between two
communities or within some community i. This bound is exact if each such edge has a weight
two; if it has weight more than two, then this is an upper bound. Then, by independence, the
contribution of the group of edges can be bounded by the product. Therefore, the following is
true:

|Eai1,i2ai2,i3...ai2k,i1 |≤ ( max
1≤i≤M

σ2
i )(t−1−i)(σ2

0)i,

where i are integers such that 0 ≤ i ≤ t− 1.
This corresponds to choosing out of t edges, i edges such that the vertices of those edges belong

to two different communities. Once we choose such i edges we need to choose the communities
from which the corresponding vertices emerge. For convenience, we can assume the vertices have
a preferred ordering. The first such vertex can then be chosen from any of the M communities.
Once such a community is chosen, if the next edge is upper bounded by maxi σ

2
i , the next vertex

of the edge can be chosen only in 1 way, because this corresponds to an edge belonging to the
same community. If the edge is bounded by σ2

o , then the community to which the next vertex
belongs can be chosen in at most M − 1 ways, since this edge corresponds to an edge between
communities. Corresponding to each selection of a community to which the edge can belong, the
vertices can be chosen in (n/M)t ways.

Therefore, we can finally bound the full term as follows:

EtrÃ′2k ≤
k+1∑
t=1

M(n/M)t
t−1∑
i=0

(
t− 1

i

)
(M − 1)(t−1−i)(σ2

0)(t−1−i)( max
1≤j≤m

σ2
j )iW (k, t).

The inner summation on the variable i turns out to be the Binomial expansion. W (k, t) is
the number of equivalent graphs of t fixed vertices with 2k edges and is related to the number
of the Catalan number Ct. We use a bound on this quantity which is available in [21]:

W (k, t) ≤
(

2k

2p− 2

)
pN2k+N+1(N + 2)N ,
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14 Konstantin & Laura & Arun

where N = 2k − 2(t− 1). Finally, we get:

EtrÃ′2k ≤
k+1∑
t=0

nt(σ2n)t−1W (k, t),

where,

σ2 =
1

M
(max

i
σ2
i + (M − 1)σ2

o). (26)

As in [21] it can be shown that when 2k = aσ1/2n1/4, for some a, the term within the summation
is bounded by a geometric series with growth factor 1/2. Using this fact we finally obtain:

Etr(Ã
′
)2k ≤ 2n(2σ

√
n)2k.

Substituting the above in equation (25), and using λ = 2σ
√
n+ C(σ)1/2n1/4 log(n) we have:

Pr{||Ã
′
||2≥ 2σ

√
n+ C(σ)1/2n1/4 log(n)} ≤ 2n

(
2σ
√
n

2σ
√
n+ C(σ)1/2n1/4 log(n)

)2k

= 2n(1− Cσ1/2n1/4 log(n)

2σ
√
n+ Cσ1/2n1/4 log(n)

)2k

≤ 2n(1− Cσ1/2n1/4 log(n)

3σ
√
n

)2k

≤ 2n exp(−c log(n)k

3
√
σn1/4

)

= 2n exp(−ca log(n)/3),

where the second inequality above follows from the assumption that σ ≥ C
′
n−1/2 log2(n), the

third inequality because e−x ≥ 1−x, and the last equality by the form of k. Now since the right
hand side is summable in n for appropriate constants c and a, by Borel-Cantelli Lemma [4], we
have:

||Ã
′
||≤ 2σ

√
n+ C(σ)1/2n1/4 log(n) a.s.

for σ ≥ C
′
Kn−1/2 log2(n), where K = 1. This is the same identity as in [21] except with the

appropriate definition of σ from (26).
In the above, since Ã

′
is unnormalized, we were able to upper bound each variable by K = 1.

It is easy to redo the above proof for the matrix Ã, where because of the normalization, we have
the upper bound on the matrix entries, K = 1−p0√

np∗(1−p∗)
. One can easily see that the condition

σ ≥ KC ′n−1/2 log2(n) holds when p0 ≥ C
′
n−1 log4(n), and the bound on Ã becomes:

||Ã||2 ≤ 2σ
√
n+ C(Kσ)1/2n1/4 log(n)

≤ 2
1

M
(1 + (M − 1)ς0) + C

(
1− p0√

np0(1− p0)

)1/2(
p0(1− p0)

p∗(1− p∗)

)1/4

(
(M − 1)p0(1− p0) + p∗(1− p∗)

np∗(1− p∗)

)1/4

n1/4 log(n)

≤ 2
1

M
(1 + (M − 1)ς0) +

C

n1/4

(
1− p0
p0

)1/4

log(n),
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Spectral Properties of Random Matrices for Stochastic Block Model 15

where we used the fact that supn
p0(1−p0)
p∗(1−p∗) is finite, and C is an arbitrary constant. �

5.4 Eigenvalues of the Mean Matrix
By the result above on the spectral norm of the zero mean matrix, we know that the largest
eigenvalue of the matrix is somewhere close to the edge of the spectrum. But when the mean
matrix is added to this matrix, the largest eigenvalue escapes the bounded spectrum. Namely,
since the mean matrix has rank M , by interlacing inequalities on the sum of two Hermitian
matrices, we can see that there are exactly M eigenvalues outside the bounded spectrum. Recall
that

Â = Ã+A

By the Bauer-Fike Theorem we have

|λi(Â)− λi(A)|≤ ‖Ã‖. (27)

From Theorem 1 we have that asymptotically almost surely ‖Ã‖≤ 2ς + δ with
ς =

√
M−1 (1 + (M − 1)ς0) and δ → 0. For i > M , λi(A) = 0. Therefore, we see that λi(Â) for

i > M lies below the spectral norm of Ã.

5.4.1 Eigenvalues of A

Let the eigenvalues of P in (6) be µi, 1 ≤ i ≤M . They depend on the probabilities pi, 0 ≤ i ≤M
and the following relationship holds between the eigenvalues of Â and µi.

Lemma 4 Under the conditions in Proposition 1 the M eigenvalues of Â, outside the continuous
spectrum of Â are given as:

|λi(Â)− µi|≤ 2ς + δ (28)

for 1 ≤ i ≤M .

Thus, we conclude that asymptotically, the M largest eigenvalues of the adjacency matrix con-
verge to those of the mean matrix almost surely.

To complete this argument, we need the approximate locations of µi’s. By Gershgorin disc
theorem [19], the µi’s should satisfy:∣∣∣∣ µiMγ(n)n

− pi
∣∣∣∣ ≤ p0(M − 1). (29)

Note on special case of Symmetric SBM :

When the probabilities p1 = p2 = p3.. . . . = pM = p∗, we can significantly simplify the
equations (23) and achieve useful insight into the shape of the spectrum. In this case we have
that ςm = 1 for m = 1, 2, ..M and the fixed point equation (23) becomes:

Mcm(z) =
−1

z + cm(z) + ς0
∑
` 6=m c`(z)

.

We see that the equations are symmetric, hence, by uniqueness property of Corollary 3, we must
have that c1(z) = c2(z) = c3(z) = . . . = cM (z) = c(z), and s(z) = Mc(z), which leads to

s(z) =
−1

z + (1+(M−1)ς0)
M s(z)

.
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Figure 1: Plot showing approximate asymptotic eigenvalue locations of the adjacency Matrix

This is the same as the equation for the Stieltjes transform of the semicircular law given in
equation (15), with σ2 ≡ (1+(M−1)ς0)

M . Thus, we see that in the symmetric scenario, the spectrum
of the adjacency matrix becomes a semicircle law, and the upper bound in Theorem 1 becomes
exact. Similarly, the eigenvalues of the mean matrix become:

µ1 =

√
n

M
√
p1(1− p1)

(p1 + (M − 1)p0). (30)

and

µi =

√
n

M
√
p1(1− p1)

(p1 − p0). (31)

for i = 2, 3, . . . ,M . Thus, from Lemma 4, the largest eigenvalue of the Â converges to (30) above,
and the next M −1 largest eigenvalues converge to (31), i.e., the second largest eigenvalue of the
adjacency matrix has multiplicity M − 1.

In Figure 1 we show diagramatically the general form of the asymptotic histogram of the
scaled adjacency matrix of an SBM, with approximate locations of its various components all
probabilities scale as logc(n) for some c > 4. We observe that under these conditions, there
is sufficient separation between the continuous part of the spectrum and the discrete extremal
eigenvalues.

6 Spectral Distribution of Normalized Laplacian Matrix
We recall that the normalized Laplacian Matrix is given by

L = I −D−1/2AD−1/2. (32)

For the sake of simplicity, we consider the case of two blocks, i.e., M = 2, and probabilities
pi, 0 ≤ i ≤ 2 that are not dependent on the size of the matrix n.

Let P
′

= D−1/2AD−1/2. We show that asymptotically, the e.s.d. of the matrix 1
2

√
nP

′

converges to the e.s.d. of the matrix 1√
n
A
′′
, defined as

A
′′

ij =


Aij/(p1 + p0), if i, j ∈ Ω1

Aij/(p2 + p0), if i, j ∈ Ω2

Aij/
√

(p1 + p0)(p2 + p0) otherwise

Inria



Spectral Properties of Random Matrices for Stochastic Block Model 17

Consequently, the following holds.

Lemma 5 The distribution of matrix 1
2

√
nP

′
is given by:

ci =
−1/2

z + σ
′
ici + σ

′
0cj

, (33)

for i, j = 1, 2 and i, j = 2, 1 respectively. where σ
′

1 =
σ2
1

(p1+p0)2
, σ
′

2 =
σ2
2

(p2+p0)2
, σ
′

0 =
σ2
0

(p0+p1)(p0+p2)

and the limiting distribution has a spectrum whose Stieltjes transform is given by c(z) = c1(z) +
c2(z).

Since
√
n
2 L =

√
n
2 −

√
n
2 P

′
, its distribution has a bulk component that lies around

√
n/2, with

an approximate width of 2
√

max(σ
′
1, σ

′
2) + σ

′
0. This matrix also has an eigenvalue at 0, by the

property of Laplacian.
In the two-community case, it can be seen from simulations that there exists one more eigen-

value outside the bulk, which remains to be properly characterized.
Proof of the lemma: We follow the steps in the proof of Theorem 1.1 in [5]. The first step

is a form of uniform strong law of large numbers called Kolomogorov-Marcinkiewicz-Zygmund
strong law of large numbers. Since the elements of the matrix A are independent and have finite
fourth moments from Lemma 2.3 in [5] we have the following as true:

n∑
j=1

Aij =
n

2
(p1 + p0 + δ

(1)
i ), (34)

where maxi|δ1i |= o(1) for 1 ≤ i ≤ n/2 and

n∑
j=1

Aij =
n

2
(p2 + p0 + δ

(2)
i ), (35)

where maxi|δ2i |= o(1) for 1 + n/2 ≤ i ≤ n.
From equations (34) and (35) we have uniform convergence for 1 ≤ i ≤ n, with the error,

maxi(δ
(1)
i , δ

(2)
i ) = o(1):

Di =

n∑
j=1

Aij =
n

2
(pk + p0) + εi, (36)

where pk = p1 if i ∈ Ω1 and pk = p2 if i ∈ Ω2, and maxi|εi|= ε = o(1) uniformly.

Next step is to use Hoffman-Wielandt inequality [1] to bound the error between the e.s.d. of
A
′′
√
n
and

√
n
2 P

′
.

We have using Hoffman-Wielandt inequality and bound on Stieltjes transforms found in [2]:

|s
F

1√
n

A
′′ (z)− s

F

√
n
2

P
′ (z)|≤

c

n=z
∑
ij

|
√
n

2
P
′

ij −
1√
n
A
′′

ij |2,

where z ∈ C+.
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Figure 2: Comparison plot between empirically obtained spectrum (bar graph), and explicit
solution(line) of 2-community SBM adjacency matrix

For any i, j, we have
√
n

2
P
′

ij =

√
n

2

Aij√
DiDj

=

√
n

2

Aij√
n/2(pk + p0 + εi)n/2(pl + p0 + εj)

=
Aij√

n(pk + p0)(pl + p0)
(1 +O(εi))(1 +O(εj))

=
A
′′

ij√
n

(1 +O(ε)), (37)

where i ∈ Ωk and j ∈ Ωl and ε is infinitesimally small. The last equality follows because εi and
εj tend to 0 uniformly for large n. Thus by Hoffman Wielandt inequality we have:

|s
F

1√
n

A
′′ (z)− s

F

√
n
2

P
′ (z)|≤

c

n2=z
∑
ij

|A
′′

ij |2O(ε2)→ 0

a.s.

The last relation follows from the strong law of large numbers on variables A
′′

ij and since
ε = o(1). Hence we have the result. �

7 Example Application: Epidemic Spreading
In this section, we discuss an important potential application of the result we derived above for
adjacency matrices, namely, in the topic of epidemic spreading. We refer to the recent paper [7].
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In this work, the authors study an epidemic process over a random network of nodes. The spread
of the epidemic from one node to another is governed by the Random network, i.e., a node can
only infect another if there exists an edge between the two nodes. They present a concise result
delineating the relationship between the expected cost of the epidemic per node denoted by
CD(n)(disease cost) [7], and the largest eigenvalue of the modified adjacency matrix; namely,

CD(n) ≤ αcd
1− λ1(M)

, (38)

where M = (1 − δ)I + βA is the matrix which governs the dynamics of the system [7], with
β being the probability of infection, δ is the probability of recovery of any node, and cd is the
cost parameter. We direct the reader to the original paper for more details. A is as usual the
adjacency matrix of the random graph.
We examine the epidemic spread on a graph which follows SBM with M communities. We know
that in this case λ1(A)→ n/Mµ1 as n→∞ a.s. under certain conditions. Also by (29) we have
that µ1 ≤ p1 + (M − 1)p0, therefore we obtain:

λ1(M) = (1− δ) + βλ1(A) ≤ 1− δ + β(n/Mµ1).

This yields,
CD(n) ≤ αcd

δ − βn/M(p1 + (M − 1)p0)
. (39)

If p1 � pi, for i ≥ 2, then we can venture to say that this bound is tight, and that the community
with the largest edge probability governs the disease cost.

8 Numerical Results
In this section we provide simulation results to demonstrate the results obtained above. More
specifically, we corroborate our results on the spectrum of adjacency matrix by comparing the
spectrum obtained by simulating a 2-community SBM with the distribution obtained by inverting
the Stieltjes transform, which is an explicit solution of the simultaneous equations (23). In the
simulations, we use a matrix of size n = 104. For a 2-community system, the solution amounts to
solving explicitly the resulting quartic equation and choosing the solution branch that satisfies the
conditions (24). The inverse relationship between the limiting e.s.d. and the Stieltjes transform
thus obtained, is given by the well known Stieltjes inversion formula:

f(x) = lim
y→0
=sF (x+

√
−1y)/π, (40)

where f(x) is the p.d.f. corresponding to the c.d.f. F (x), whenever the limit exists.
Figure 2 shows the histogram of normalized adjacency matrix 1√

n
A and compares it to the

theoretical spectrum obtained as above for n = 104, and several values of edge probabilities.
In the second part of this section we turn our attention to the extremal eigenvalues of the

adjacency matrix for a 3-community SBM of size n = 999. Over several independent runs, we
get values of the top 4 eigenvalues of the matrix A, for 0.3 ≤ p1 ≤ 0.48, 0.15 ≤ p2 ≤ 0.33,
0.08 ≤ p3 ≤ 0.26 and 0.03 ≤ p0 ≤ 0.031, randomly picked. We note that as expected in (Figure
3), there are three eigenvalues outside the bulk, which agree very well with the expected values,
i.e., the non-zero eigenvalues of A. In addition, it can also be seen that the upper bound in
Theorem 1 is remarkably tight for the simulated probabilities.

Next, we consider the spectrum of the normalized Laplacian matrix. In fact we consider the
spectrum of the following matrix which we denote L̃, which is given by:L̃ =

√
n/2−

√
n/2L. By
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Figure 3: Extremal eigenvalues of 3-community SBM normalized matrix compared to expected
values.

assertion its spectrum is given by the solution of (33). We explicitly solve this equation for a
two-community model, and compare it to numerically obtained results for a matrix whose size
is n = 999 for various values of the probabilities p1, p2 and p0 (Fig.4).

9 Conclusion

In this work we studied in detail the spectra of adjacency and normalized Laplacian matrices
of an SBM with M communities. In particular, we analyzed the limiting empirical distribution
of the eigenvalues of the adjacency matrix of SBM. We find that the Stieltjes transform of the
limiting distribution satisfies a fixed point equation and provide an explicit expression in the
case of symmetric communities. Furthermore, we obtained a tight bound on the support of the
asymptotic spectrum, and concentration bounds on the extremal eigenvalues.

As future work we plan to analyze the structure of the eigenvectors and develop more detailed
applications to graph clustering and network sampling. It will be also interesting to consider
SBM models where sizes of communities are not uniform.
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Figure 4: Histogram of 2-community L̃ for various edge probabilities compared to theoretical
spectrum
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