
Centralized Network Utility Maximization over
Aggregate Flows

Riten Gupta
UtopiaCompression Corporation
11150 West Olympic Blvd. #820

Los Angeles, CA 90064
Email: riten@utopiacompression.com

Lieven Vandenberghe
Electrical Engineering Dept.

University of California, Los Angeles
Los Angeles, CA 90095

Email: vandenbe@ee.ucla.edu

Mario Gerla
Computer Science Dept.

University of California, Los Angeles
Los Angeles, CA 90095
Email: gerla@cs.ucla.edu

Abstract—We study a network utility maximization (NUM)
decomposition in which the set of flow rates is grouped by source-
destination pairs. We develop theorems for both single-path
and multipath cases, which relate an arbitrary NUM problem
involving all flow rates to a simpler problem involving only the
aggregate rates for each source-destination pair. The optimal
aggregate flows are then apportioned among the constituent flows
of each pair. This apportionment is simple for the case of α-fair
utility functions. We also show how the decomposition can be
implemented with the alternating direction method of multipliers
(ADMM) algorithm.

I. INTRODUCTION

The last two decades have seen a great deal of research
in network utility maximization (NUM) [1] [2] [3], which
has cast light on traditional networking protocols [4] and
has facilitated the design of promising future protocols [5]
as well. Most NUM researchers have focused on developing
distributed solutions to various utility maximization problems.
These distributed solutions, which follow nicely from dual
decompositions [2], are ideal for internets, in which coop-
eration among flow sources cannot be assumed, and minimal
communication between links and nodes is desired. In recent
years there has been growing interest in the software defined
networking (SDN) paradigm, in which data and control planes
are separated [6] [7]. In this framework, certain network func-
tions such as flow control, congestion control, and throughput
optimization may be assigned to a central controller. Central
control is feasible for closed networks, such as in data centers
[8] or communication satellite networks [9].

In some networks with central control, the number of flows
K may be much larger than the number of source-destination
pairs N . For example, the Iridium satellite network employs
66 satellites and facilitates tens of thousands of flows [10].
A similar phenomenon may occur in small data centers. In
this paper, we study a primal decomposition in which the
set of flows is grouped into flow classes, each corresponding
to a source-destination pair. Many congestion control algo-
rithms inherently group flows by source-destination pair [11]
and several related primal decompositions have been studied,
for example in [2]. However, because the source-destination
decomposition is only applicable to centralized control, it has
received little attention. Given the recent popularity of SDN,
however, the decomposition may prove to be beneficial. To

this end, we develop a comprehensive theory of the source-
destination decomposition in this paper. (We also discuss
briefly in Section V a potential benefit of this decomposition
in a network with “semi-distributed” control.) We derive the-
orems that decompose a NUM problem with K variables into
one with only N variables, followed by an allocation problem
which apportions the aggregate rate for each class among the
class’s constituent flows. In some cases, this apportionment
is simple, In other cases, the alternating direction method of
multipliers (ADMM) algorithm can exploit the decompostion
numerically.

The remainder of the paper is organized as follows. In
Section II we present the aggregate flow decomposition and the
main results relating the original NUM problem to the simpler
aggregate flow problem. This analysis is extended to the mul-
tipath case in Section III. In Section IV we discuss numerical
algorithms, which exploit the aggregate flow decomposition.
Finally, in Section V, we conclude the paper.

II. OPTIMIZATION OVER AGGREGATE FLOWS

Consider a communication network with M nodes and L
links (edges). Let N be the number of source-destination pairs
in use among all flows. Then N ≤ M(M − 1). Number the
source-destination pairs 1, . . . , N and call the set of flows in
pair i the ith flow class. Let Ki be the number of flows in
class i. Then the total number of flows is K =

∑N
i=1Ki. Let

ui,k be the rate of the kth flow in class i. Finally, define the
L×N binary routing matrix R as

Rl,i =

{
1, traffic of class i passes through link l
0, otherwise.

Note that all flows within a class follow the same path.
Consider the following utility maximization problem.

maximize
{ui,k}

N∑
i=1

Ki∑
k=1

fi,k(ui,k)

subject to
N∑
i=1

Ki∑
k=1

Rl,iui,k ≤ cl, l = 1, . . . , L (1)

where fi,k is a utility function for the kth flow in class i, cl is
the capacity of link l, and the constraints imply that no link is
overloaded. Next, let xi =

∑Ki

k=1 ui,k be the aggregate rate of

ar
X

iv
:1

70
3.

00
52

5v
1

 [
cs

.N
I]

 1
 M

ar
 2

01
7

class i and consider the aggregate flow utility maximization
problem

maximize
{xi}

N∑
i=1

fi(xi)

subject to
N∑
i=1

Rl,ixi ≤ cl, l = 1, . . . , L (2)

where fi is an aggregate utility function for class i. The
domains of the utility functions fi,k and aggregate utility
functions fi are not stated here, but are usually subsets of
R+ as negative flow rates are not allowed.

A. Decomposition by Supremal Convolutions

Definition 1: Let the functions f1 and f2 be concave and
proper on Rn. The supremal convolution of f1 and f2 is

(f1 � f2)(x) = sup
{(x1,x2):x1+x2=x}

f1(x1) + f2(x2).

The supremal convolution of the concave functions f1 and
f2 is simply the negative infimal convolution of the convex
functions −f1 and −f2. By [12, Theorem 5.4], f1 � f2 is
concave. Observe that problem (2) is equivalent to problem
(1) when each fi is the Ki-fold supremal convolution

fi(xi) = sup
{ui,1,...,ui,Ki

}:∑
k ui,k=xi

∑
k

fi,k(ui,k) = (fi,1 � · · · � fi,Ki
)(xi)

and for each flow class i, the optimal subflow rates solve

maximize
{ui,k}

Ki∑
k=1

fi,k(ui,k), subject to
Ki∑
k=1

ui,k = x∗i

where x∗i is the solution of problem (2) (provided it exists)
with fi defined as above. Thus, when the utilities are concave
and proper, problem (1) can be decomposed into an aggre-
gate optimization and N optimizations over the subflows as
long as the supremal convolutions can be calculated. This
decomposition lends itself to parallel implementations, as the
N subproblems are independent.

Let f∗(y) = infx(xy − f(x)) denote the concave Fenchel
conjugate. From [12, Theorem 16.4], the conjugate supremal
convolution is (fi,1 � · · · � fi,Ki

)∗ =
∑
k f
∗
i,k. Thus the

concave closure of the supremal convolution is (
∑
k f
∗
i,k)∗.

By [12, Corollary 20.1.1], if the fi,k’s are closed and
∩krelint(domf∗i,k) 6= ∅, then fi,1 � · · · � fi,Ki is closed, so

fi = fi,1 � · · · � fi,Ki
= (
∑
k

f∗i,k)∗. (3)

B. Decomposition with Functions of Legendre Type

Definition 2: A pair (f,D) is of Legendre type if D is a
nonempty open convex set, f is a strictly concave differen-
tiable function on D and limn→∞ ‖∇f(xn)‖ = +∞ for any
sequence {xn} in D converging to a boundary point of D.

Although the Legendre type property applies to a pair
(f,D), we will refer to a function f as being of Legendre
type when (f, int(domf)) is of Legendre type. Note that when

domf = R++, the last condition in Definition 2 is equivalent
to limx↓0 f

′(x) = +∞.
The (concave) Legendre conjugate (or Legendre transform)

[12] [13] of a pair (f,D), where D ⊂ R is open and f is
differentiable on D, is the pair (g, E) where g(y) = yf ′−1(y)−
f(f ′−1(y)) and E is the image of D under f ′.

From [12, Theorem 26.5], if fi,k is closed, D =
int(domfi,k), and D∗ = int(domf∗i,k), then (fi,k,D) is of
Legendre type if and only if (f∗i,k,D∗) is of Legendre type.
When these pairs are of Legendre type, (f∗i,k,D∗) is the
Legendre conjugate of (fi,k,D), which is the Legendre conju-
gate of (f∗i,k,D∗), so conjugation is involutory: (f∗∗i,k,D∗∗) =
(fi,k,D), and

(f∗i,k)′ = f ′−1i,k . (4)

Note that if the fi,k’s are closed and Legendre type, with
domain D and ∩krelint(domf∗i,k) 6= ∅, then

∑
k f
∗
i,k is

Legendre type (and therefore differentiable), and the supremal
convolution (

∑
k f
∗
i,k)∗ is closed and Legendre type.

Let the fi,k’s have domain D = R++. Since there are no
equality constraints in problems (1) and (2) and the inequality
constraints are all affine, Slater’s condition guarantees strong
duality for each problem as long as a feasible point exists in
the relative interior of the problem domain [13, Sec. 5.2.3],
which is RK++ for problem (1) and RN++ for (2). Clearly, setting
all optimization variables to a small ε > 0 yields such a point,
so strong duality holds for both problems. With Legendre type
functions, problem (1) is strictly concave with convex feasible
region and has a unique solution. Thus there is a unique
primal-dual optimal pair satisfying the Karush-Kuhn-Tucker
(KKT) conditions for problem (1) with Legendre-type utility
functions.

Theorem 1: Let the functions fi,k be closed, concave, and
Legendre type with domain R++ and ∩krelint(domf∗i,k) 6= ∅.
For each i, k, let gi,k = f∗i,k, gi =

∑
k gi,k, and fi = g∗i . Let

{x∗i } be a primal solution to problem (2) with this definition
of {fi}. Then (1) has unique primal solution

u∗i,k = g′i,k(f ′i(x
∗
i)), ∀i, k (5)

and the corresponding dual solutions of (1) and (2) are equal.
Note that fi = fi,1 � · · · � fi,Ki

.
Proof. First note that fi and gi,k are Legendre type and

therefore differentiable. Let hi,k = g′i,k for each i, k. From
(4) we have hi,k = f ′−1i,k . The Lagrangian for problem (1) is

L1(u,ρ) =
∑
i

∑
k

fi,k(ui,k)−
L∑
l=1

ρl(
∑
i

∑
k

Rl,iui,k − cl).

The KKT sufficient conditions for optimality of (1) are∑
i

Rl,i
∑
k

ui,k ≤ cl, ∀l (6)

ρ ≥ 0 (7)

ρl(
∑
i

Rl,i
∑
k

ui,k − cl) = 0, ∀l (8)

ui,k = hi,k(ρT ri), ∀i, k (9)

where ri is the ith column of R. Condition (9) is equivalent
to ∂L1/∂ui,k = 0. Now, let

hi =
∑
k

hi,k =
∑
k

g′i,k = g′i

for each i and consider problem (2) with fi = g∗i Since fi
is Legendre type, it is strictly concave and thus {x∗i } is the
unique solution to problem (2). Since, in addition, fi is closed,
we can use (4) to get hi = f ′−1i . The Lagrangian is

L2(x,λ) =
∑
i

fi(xi)−
∑
l

λl(
∑
i

Rl,ixi − cl).

The KKT conditions for problem (2) are thus∑
i

Rl,ixi ≤ cl, ∀l

λ ≥ 0

λl(
∑
i

Rl,ixi − cl) = 0, ∀l

xi = hi(λ
T ri), ∀i. (10)

Next, let (x∗,λ∗) be the primal-dual solution for problem (2)
and set ρ = λ∗. Then condition (7) is immediately satisfied.
Next let

ui,k = hi,k(λ∗T ri) = hi,k(f ′i(x
∗
i)), ∀i, k.

Then condition (9) is satisfied and using hi = f ′−1i =
∑
k hi,k,

and (10), we have∑
k

ui,k =
∑
k

hi,k(λ∗T ri) = hi(λ
∗T ri) = x∗i , ∀i

which ensures
∑
k u
∗
i,k = x∗i , and therefore conditions (6)

and (8) are satisfied. Finally, since the image of hi,k is R++,
ui,k > 0 for each i, k. �

C. Examples

Here we apply the aggregate flow decomposition to some
example utility maximization problems. Theorem 1 can be
applied to utility functions belonging to the family of α-
fair functions [14], while the decomposition using supremal
convolutions must be used for more general problems.

1) Weighted Logarithm Utilities: Let fi,k(ui,k) =
wi,k log ui,k with wi,k ≥ 0, so that the overall utility is a sum
of weighted logarithms of individual flows. These functions
belong to the class of α-fair utilities with α = 0 and are
appealing as they yield proportionally fair rate allocations
[14]. They are also clearly Legendre type so Theorem 1 can
be used. The Legendre conjugates can be calculated using
(4). We have f ′i,k(u) = wi,k/u, g′i,k(v) = wi,k/v, and
g′i(v) =

∑
k wi,k/v. Next f ′i(x) = g′−1i (x) =

∑
k wi,k/x

and fi(x) =
∑
k wi,k log x. Finally, using (5)

u∗i,k =
wi,k∑
k′ wi,k′

x∗i . (11)

Note that all of the above functions have domain R++. From
(11), the optimized aggregate flows should be apportioned to
the subflows in proportion to their weights. Note that the utility

function of problem (2) is also a sum of weighted logarithms,
where the ith weight is the sum weight of the ith class.

The weighted logarithm case can also be proven using
proportional fairness [15]. Let {x∗i } be the solution to problem
(2) with fi(xi) = wi log xi and let the subflow rates be

ui,k =
wi,k
wi

x∗i (12)

where {wi,k} are any non-negative weights such that∑
k wi,k = wi. From [15], the unique solution to (2) {x∗i }

is such that the rates per unit charge are proportionally fair.
That is, if {x̂i} is any other set of rates then∑

i

wi
x̂i − x∗i
x∗i

≤ 0. (13)

Now let {ûi,k} be any set of subflow rates not equal to those
found by (12) and let x̂i =

∑
k ûi,k. From (12) we have

wi/x
∗
i = wi,k/ui,k for all i, k. From (13) we have

0 ≥
∑
i

wi
x∗i

∑
k

(ûi,k − ui,k) =
∑
i

∑
k

wi,k
ûi,k − ui,k

ui,k

So the proportionally allocated solution is such that the rates
per unit charge are proportionally fair. Thus it is the unique
solution to (1) with fi,k(ui,k) = wi,k log ui,k.

2) Weighted Power Utilities (Negative Exponent): As an-
other example, let fi,k(ui,k) = −wi,ku−ai,k with a ≥ 1. These
functions are also part of the α-fair family. When a = 1, the
allocation satisfies minimum potential delay fairness and as
a → +∞, the allocation is max-min fair [14]. The utilities
are also of Legendre type and we can use Theorem 1. We
have f ′i,k(u) = awi,ku

−(a+1) and g′i,k(v) = (awi,k/v)
1

a+1 .
Next we have g′i(y) =

∑
k g
′
i,k(y) = f ′−1i (y). Thus f ′i(x) =

(a/xa+1)(
∑
k w

1
a+1

i,k)a+1 and the optimum subflow rates are

u∗i,k = g′i,k(f ′i(x
∗
i)) =

w
1

a+1

i,k∑
k′ w

1
a+1

i,k′

x∗i .

The utility functions for problem (2) are fi(xi) =

−x−ai (
∑
k w

1
a+1

i,k)a+1. Again, all of the above functions have
domain R++.

3) Quadratic Utilities: Quadratic functions are not of Leg-
endre type and are not necessarily increasing on R+, rendering
them unsuitable for use as utility functions. However, the ag-
gregate flow decomposition can be useful when implementing
a gradient projection algorithm. In a gradient projection al-
gorithm, steepest ascent iterations are followed by projections
onto the feasible set [16]. Such a projection is a quadratic
program (QP) that can be simplified by decomposing with
supremal convolutions.

Let {zi,k} be the set of variables obtained after an iteration
of steepest ascent for problem (1). This set must be projected
onto the routing polytope {{ui,k} :

∑
i

∑
k Rl,iui,k ≤ cl, l =

1, . . . , L}. The projection QP is problem (1) with quadratic
utility fi,k(ui,k) = − 1

2 (ui,k − zi,k)2, and domain {ui,k ≥
0}. (In this section all functions are equal to −∞ outside

their domains). Note that fi,k is not Legendre type. However
fi,k is closed, concave, and proper on R and has conjugate
f∗i,k(y) = − 1

2y
2 + zi,ky, with domain {y ≤ zi,k}. Thus any

point less than zi,min = mink zi,k lies in relint(domf∗i,k) for all
(i, k), and therefore (3) can be used to find fi. The conjugate
aggregate utility is f∗i (y) =

∑
k f
∗
i,k(y) = −Kiy

2/2 + z̄iy,
with domain {y ≤ zi,min}, where z̄i =

∑
k zi,k. The aggregate

function is obtained by conjugating f∗i , which yields fi(xi) =
− 1

2Ki
(xi−z̄i)2, with domain {xi ≥ z̄i−Kizi,min}. Finally, for

each class i, the subflows minimize
∑
k

1
2 (ui,k−zi,k)2 subject

to
∑
k ui,k = x∗i and ui,k ≥ 0 for each k, where x∗i is the

solution to the aggregate problem. (Thus x∗i ≥ z̄i−Kizi,min.)
The subflow problem is strictly convex and has unique solution
u∗i,k = zi,k + 1

Ki
(x∗i − z̄i).

4) Piecewise Linear Utilities: Piecewise linear functions
are important as they are often used as approximations of
functions that are difficult to work with analytically or are
incompletely known [17]. In this case Theorem 1 is not
applicable but supremal convolutions can be calculated using
(3). Let fi,k be concave and piecewise linear with non-negative
breakpoints 0 = c1 < c2 < · · · < cB and corresponding
non-negative slopes m1 > m2 > · · · > mB = 0, and let
fi,k(c1) = fi,k(0) = 0 and fi,k(x) = −∞ for x < 0. (The
number of breakpoints B need not be the same for all utilities.)
Then fi,k is closed and from [17, Sec. 8F], the conjugate of
fi,k is also concave and piecewise linear with breakpoints
0 = mB < mB−1 < · · · < m1 and corresponding slopes
cB > cB−1 > · · · > c1, and f∗i,k(m1) = 0. That is, the
breakpoints of f∗i,k are the slopes of fi,k and the slopes of
f∗i,k are the breakpoints of fi,k. Finally, domf∗i,k = R+ and
thus (3) can be used.

The aggregate utility function fi can be found with the
following prescription: For each fi,k, find f∗i,k by exchang-
ing breakpoints and slopes, as described above. Sum these
conjugates to find the conjugate of the aggregate utility
f∗i =

∑
k f
∗
i,k. Thus f∗i is piecewise linear and concave as

well. Finally, exchange slopes and breakpoints of f∗i to arrive
at fi.

Therefore, the piecewise-linear problem, which is a linear
program (LP) in K =

∑
iKi variables, can be decomposed

into one LP in N variables, followed by N parallel sub-LP’s,
the ith sub-LP having Ki variables.

III. EXTENSION TO MULTIPATH CASE

Now suppose that for each flow class i, traffic may be split
into subflows and routed over multiple paths. (Here, a subflow
refers to that portion of a flow routed over a certain path, as
opposed to a constituent flow of a flow class). Let J be the
number of paths and assume J is the same for all flow classes.
For each class i, define the L× J routing matrix Si as

[Si]l,j =

 1,
traffic on the jth path of class i
passes through link l

0, otherwise.

and let the overall L × NJ routing matrix be R =
[S1, . . . ,SN]. Finally, let ui,j,k be the rate on the jth path of

flow k of class i. The multipath utility maximization problem
is

maximize
{ui,j,k}

N∑
i=1

Ki∑
k=1

fi,k(

J∑
j=1

ui,j,k)

subject to
N∑
i=1

J∑
j=1

Ki∑
k=1

[Si]l,jui,j,k ≤ cl, ∀l

ui,j,k ≥ 0, ∀i, j, k. (14)

Letting xi,j =
∑
k ui,j,k be the aggregate rate on path j of

class i, the aggregate flow problem in the multipath case is

maximize
{xi,j}

N∑
i=1

fi(

J∑
j=1

xi,j)

subject to
N∑
i=1

J∑
j=1

[Si]l,jxi,j ≤ cl, ∀l

xi,j ≥ 0, ∀i, j. (15)

For these problems, explicit constraints for non-negativity of
the throughputs are added because, for example

∑
j ui,j,k can

be non-negative even with some negative subflows. Unlike the
single-path case, neither problem is strictly convex.

A. Multipath Supremal Convolution Decomposition

Let the fi,k’s be concave and proper on R with domfi,k ⊂
R+. For each i, k pair, define

φi,k(ui,k) =

{
fi,k(1

¯
T
Jui,k), ui,k ∈ RJ+

−∞, otherwise

where ui,k = [ui,1,k, . . . , ui,J,k]T . Then φi,k is concave and
proper on RJ (but not strictly concave, even if fi,k is) and
problem (14) is equivalent to

maximize
{ui,k}

∑
i=1

∑
k=1

φi,k(ui,k) (16)

subject to the link load constraints of (14). Define the aggre-
gate flow problem by

maximize
{xi}

∑
i=1

φi(xi) (17)

with the link load constraints of (15). Here φi(xi) is a function
from RJ to R and xi = [xi,1, . . . , xi,J]T . Similar to the argu-
ment in Section II-A, problem (17) is equivalent to problem
(16) with concave aggregate functions φi = φi,1 � · · · � φi,Ki

if for each flow class i, the optimal subflow rates solve the
problem

maximize
{ui,k}

Ki∑
k=1

φi,k(ui,k), subject to
Ki∑
k=1

ui,k = x∗i

where x∗i is the solution of problem (17) (provided it ex-
ists) with φi defined as above. If the fi,k’s are closed and
∩krelint(domf∗i,k) 6= ∅, then it can be shown that the same
is true of the φi,k’s and the aggregate functions can be found
using φi = (

∑
k φ
∗
i,k)∗ where φ∗(y) = infu(uTy − φ(u)).

B. Multipath Legendre-Type Case

As in the single-path case, when domfi,k = R++, strong
duality of (14) and (15) follows from Slater’s condition.
However, in the multipath case, neither problem is strictly
convex and uniqueness of the solutions cannot be guaranteed.

Theorem 2: Let fi,k, gi,k, fi, and gi satisfy the conditions of
Theorem 1 for all i, k. Let {x∗i,j} be a primal solution to (15)
with this definition of {fi}. Then a solution of the following
constrained system of linear equations∑

k

ui,j,k = x∗i,j , ∀i, j∑
j

ui,j,k = g′i,k(f ′i(x̄
∗
i)), ∀i, k (18)

ui,j,k ≥ 0, ∀i, j, k

(where x̄∗i =
∑
j x
∗
i,j), is a primal solution to (14). Further-

more, if λ∗ is the dual solution to (15) corresponding to the
link load constraints and µ∗i,j is the dual solution to (15)
corresponding to the non-negativitiy constraint of xi,j , then the
dual solution to (14) corresponding to the link load constraints
is ρ∗ = λ∗ and the dual solution to (14) corresponding to the
non-negativity constraint of ui,j,k is σ∗i,j,k = µ∗i,j , for each k.

Proof. Let hi,k = g′i,k = f ′−1i,k for each i, k and let ūi,k =∑
j ui,j,k. The Lagrangian for problem (14) is

L1(u,ρ,σ) =
∑
i,k

fi,k(ūi,k)−
L∑
l=1

ρl(
∑
i,j,k

[Si]l,jui,j,k − cl)

+
∑
i,j,k

σi,j,kui,j,k.

Setting the derivative with respect to ui,j,k to zero gives

f ′i,k(ūi,k) = [STi ρ]j − σi,j,k, ∀i, j, k. (19)

Thus, the following seven relations constitute the KKT condi-
tions for problem (14):∑

i,j,k

[Si]l,jui,j,k ≤ cl, ∀l (20)

ui,j,k ≥ 0, ∀i, j, k (21)
ρ ≥ 0 (22)
σ ≥ 0 (23)

ρl(
∑
i,j,k

[Si]l,jui,j,k − cl) = 0, ∀l (24)

σi,j,kui,j,k = 0, ∀i, j, k (25)

hi,k([STi ρ]j − σi,j,k) = ūi,k, ∀i, j, k. (26)

Next, turning to problem (15) with fi = g∗i , let hi =∑
k hi,k =

∑
k g
′
i,k = g′i for each i and let x̄i =

∑
j xi,j .

The Lagrangian is

L2(x,λ,µ) =
∑
i

fi(x̄i)−
L∑
l=1

λl(
∑
i,j

[Si]l,jxi,j − cl)

+
∑
i,j

µi,jxi,j .

Fig. 1. Small example graph

Fig. 2. Large example graph

The KKT conditions for problem (15) are∑
i,j

[Si]l,jxi,j ≤ cl, ∀l

xi,j ≥ 0, ∀i, j
λ ≥ 0

µ ≥ 0

λl(
∑
i,j

[Si]l,jxi,j − cl) = 0, ∀l

µi,jxi,j = 0, ∀i, j
x̄i = hi([S

T
i λ]j − µi,j), ∀i, j

Now set ρ = λ∗ and σi,j,k = µ∗i,j for all i, j, k and let
{u∗i,j,k} be a solution to (18). Then it can be seen that all KKT
conditions (20)–(26) are satisfied, and furthermore, using (19)∑

j,k

u∗i,j,k =
∑
k

hi,k(f ′i(x̄
∗
i)) = hi(f

′
i(x̄
∗
i)) = x̄∗i

which ensures
∑
j,k u

∗
i,j,k =

∑
j x
∗
i,j . �

Note that when J = 1, the second equation of problem (18)
reduces to (5) which guarantees that the first equation and the
non-negativity condition hold.

The subflow allocation problem given by (18) can be
decomposed into N parallel problems (one for each class
i). Let ui,k = [ui,1,k, . . . , ui,J,k]T , ui = [uTi,1, . . . ,u

T
i,Ki

]T ,
xi = [xi,1, . . . , xi,J]T , and define the matrices Ai = 1

¯
T
Ki
⊗IJ

and Bi = IKi
⊗ 1

¯
T
J . Then the ith optimal subflow vector u∗i

solves [
Ai

Bi

]
ui =

[
x∗i
gi

]
(27)

ui ≥ 0

TABLE I
COMPARISON OF ADMM, CP, AND GRAD. PROJ. FOR SMALL GRAPH EXAMPLE

ADMM Gradient Projection Chambolle-Pock
N f∗ lmax niter t (sec) f∗ lmax niter t (sec) f∗ lmax niter t (sec)
10 -92.084 10.000 194 0.0193 -92.085 10.000 431 1.1607 -92.084 10.000 74 0.0030
15 -136.800 10.000 207 0.0259 -136.809 10.000 500 1.2534 -136.800 10.000 112 0.0050
20 -182.002 10.000 304 0.0446 -182.002 10.000 590 1.6405 -182.002 10.000 258 0.0130
25 -243.806 10.000 296 0.0508 -243.806 10.000 1288 3.4499 -243.806 10.000 225 0.0130
30 -289.040 10.000 296 0.0574 -289.040 10.000 2029 5.9341 -289.040 10.000 256 0.0170

where gi = [g′i,1(f ′i(x̄
∗
i)), . . . , g

′
i,Ki

(f ′i(x̄
∗
i))]

T .
Note that the only component of (27) that depends on

the utility functions is gi. As an example, for the case
of weighted logarithm utilities (see Section II-C1) with
fi,k(u) = wi,k log u, we have gi = (x̄∗i /w̄i)wi, where
wi = [wi,1, . . . , wi,Ki

]T , and w̄i =
∑
k wi,k.

IV. AGGREGATE DECOMPOSITION WITH ADMM

Here we show that the alternating direction method of
multipliers (ADMM) algorithm [18] can inherently decompose
problem (1) into an optimization over aggregate flows and N
parallel optimizations over the constituent flows. Assume that
the utility functions fi,k have domain R+.

A. ADMM Algorithm

To apply ADMM to problem (1) we recast it as

minimize
{ui,k∈R+,xi∈R,yl∈R}

∑
i

∑
k

−fi,k(ui,k) + h(y)

subject to
∑
k

ui,k = xi, i = 1, . . . , N

y = Rx (28)

where x = [x1, . . . , xN]T and y = [y1, . . . , yL]T . The
function h indicates that the links are not overloaded. That
is h(y) = 0 if y ≤ c, and +∞ otherwise, with c =
[c1, . . . , cL]T . The augmented Lagrangian for problem (28)
is

Lr(u,x,y,λ,ρ) =
∑
i

∑
k

−fi,k(ui,k) + h(y) + λT (s− x)

+ ρT (y −Rx) +
r

2
(‖x− s‖2 + ‖Rx− y‖2)

where s = [
∑
k u1,k, . . . ,

∑
k uN,k]

T . Here λ ∈ RN and ρ ∈
RL are the dual variables and r is the penalty parameter. The
ADMM method involves repeated minimizations of Lr over
(u,y), and then x. The minimizer with respect to x is x =
A−1b where A = I+RTR and b = s+RTy+(λ+RTρ)/r.
Minimization of Lr with respect to y is decoupled from that
of u and is achieved by a simple projection of Rx−ρ/r onto
the box {y : y ≤ c}. Finally, minimization with respect to u
involves N parallel minimizations of the form

minimize
{ui,k∈R+}

∑
k

−fi,k(ui,k) + λi(
∑
k

ui,k − xi)+

r

2
(
∑
k

ui,k − xi)2. (29)

B. Numerical Examples

Here we apply the ADMM algorithm with the aggregate
flow decomposition to a few example cases and compare
performance against a gradient projection algorithm and the
primal-dual algorithm of Chambolle and Pock [19]. We ex-
amine two sample graphs. The first, which we call the small
graph, shown in Figure 1, has M = 6 nodes and L = 14
links. The maximum number of source-destination pairs is
Nmax = 30. The second example graph, the large graph
is shown in Figure 2. This represents the topology of the
Iridium low earth orbit satellite constellation [10], and includes
M = 66 satellites (nodes) and L = 192 links (the actual
topology changes as satellites enter and exit polar regions).
The dark nodes in Figure 2 represent satellites linked to ground
stations which connect flows to terrestrial networks. Thus, we
assume all flows either originate or terminate at one of these
nodes. The resulting maximum number of source-destination
pairs is Nmax = 750. For both example graphs, we set all link
capacities to 10 units. Thus c = 10 · 1

¯L
. In all examples, the

number of flows in any flow class (source-destination pair) is
uniformly distributed between 10 and 20. The total number of
flows is thus 15N on average. Finally, the path (route) for each
source-destination pair is found using Dijkstra’s algorithm.

1) ADMM with Weighted Logarithm Utilities: We let the
utility function for the kth flow of class i be fi,k(ui,k) =
wi,k log ui,k with weights wi,k chosen uniformly from (0, 1)
and solve the optimization problem with ADMM. The min-
imizer of the augmented Lagrangian with respect to the
individual flows {ui,k} is found by solving (29) for each i
which gives

u∗i,k =
2wi,k

ψi +
√
ψ2
i + 4rw̄i

> 0,

where ψi = λi−rxi and w̄i =
∑
k wi,k. The ADMM iteration

is then given by

ψ
(n+1)
i =λ

(n)
i − rx(n)i

u
(n+1)
i = 2wi[ψ

(n+1)
i + ((ψ

(n+1)
i)2 + 4rw̄i)

1/2]−1

y(n+1) = [Rx(n) − ρ(n)/r]+

x(n+1) = A−1(s(n+1) + λ(n)/r + RT (y(n+1) + ρ(n)/r))

λ(n+1) = λ(n) + r(s(n+1) − x(n+1))

ρ(n+1) = ρ(n) + r(y(n+1) −Rx(n+1))

where [·]+ represents projection onto the box {y : y ≤ c},
and s(n+1) = [

∑
k u

(n+1)
1,k , . . . ,

∑
k u

(n+1)
N,k]T .

TABLE II
PARAMETERS FOR SMALL GRAPH EXAMPLE

ADMM Grad Proj Chambolle-Pock
N r pct α σ τ θ
10 20 10−4 1.07× 10−2 1.0 0.020 1.0
15 20 10−4 1.07× 10−2 1.0 0.015 1.0
20 20 10−4 1.31× 10−2 1.0 0.015 1.0
25 20 10−4 6.17× 10−3 1.0 0.015 1.0
30 20 10−4 6.19× 10−3 1.0 0.013 1.0

2) Gradient Projection Optimizer: We compare the ADMM
algorithm with a simple gradient projection optimizer. The
gradient projection optimizer utilizes Theorem 1 with aggre-
gate utilities fi(xi) = w̄i log xi and optimal subflow rates
u∗i,k = wi,kx

∗
i /w̄i (see Section II-C1). The update rule for

the aggregate problem is

∇f(x(n))i = w̄i/x
(n)
i

x(n+1) = PR(x(n) + α∇f(x(n)))

where α > 0 is a step size and PR is the function which
projects onto the routing polytope {x : Rx ≤ c,x ≥ 0}. In all
examples that follow, PR , which solves a QP, is implemented
using the CVXOPT QP solver [20].

3) Chambolle-Pock Optimizer: Problem (1) can be solved
with the Chambolle-Pock (CP) algorithm by writing it as

minimize
{u∈RK

++}
−
∑
i

∑
k

fi,k(ui,k) + g(Qu)

where u is the concatenation of the N subflow rate vectors
{ui} and g is the indicator function of the box {y : y ≤ c}.
The L×K matrix Q is defined by

Q = [r1, . . . , r1︸ ︷︷ ︸
K1

, . . . , rN , . . . , rN︸ ︷︷ ︸
KN

]

The algorithm requires evaluation of the proximal operators
[12] of σg∗ and τf where f(u) = −

∑
i,k fi,k(ui,k), g∗

is the convex conjugate of g, and σ and τ are positive
constants. Using Moreau’s theorem [12, Theorem 31.5] we
get proxσg∗(z) = z− σ[z/σ]+ (again [·]+ signifies projection
onto {y : y ≤ c}). The proximal operator of τf is

proxτf (z)i,k =
zi,k +

√
z2i,k + 4τwi,k

2
.

The algorithm consists of the following iteration

y(n+1) = proxσg∗(y
(n) + σQv(n))

u(n+1) = proxτf (u(n) − τQTy(n+1))

v(n+1) = u(n+1) + θ(u(n+1) − u(n))

where θ ∈ [0, 1].
4) Algorithm Comparison with Small Graph: Each iteration

of ADMM contains three sparse (0-1 matrix)-vector multiplies
with R and RT and one N × N set of linear equations
with the same coefficient matrix A. The CP iterations contain
two multiplications with the sparse 0-1 matrices Q and QT .

Finally, each iteration of the gradient projection algorithm
solves a QP (with sparse constraint matrix G = [RT ,−IN]T).
Thus, the gradient algorithm has the highest per-iteration cost,
followed by ADMM and CP.

The algorithms’ performances are summarized in Table I
for various numbers of source-destination pairs N . For each
algorithm, the converged objective value f∗ is shown, along
with the maximum link load lmax, the number of iterations
niter, and the optimization time t. In Table II the algorithm
parameters are listed, including the ADMM penalty param-
eter r, the gradient projection step-size α, and the percent
threshold (pct). This value is used as the stopping criterion
for ADMM (i.e., when the augmented Lagrangian changes
by less than pct percent, stop). Also shown are the three
CP parameters σ, τ , and θ. The gradient projection step-
sizes and CP parameters are individually tuned for fastest
convergence. The optimization times are averaged over 10
runs (with identical random number generator seeds). All
simulations were performed using Python/Numpy, and the
projection step in the gradient projection algorithm uses the
CVXOPT QP solver (which in turn uses the CHOLMOD
sparse Cholesky solver). The optimization time of ADMM and
CP is plotted versus N in Figure 3. From Table I, the number
of CP iterations required for this example is consistently less
than the number of ADMM iterations. As it has a lower
per-iteration cost, the convergence time of CP is lower. The
gradient projection algorithm has the highest per-iteration cost
as well as the largest number of iterations, and thus converges
slowest. Note that, without the aggregate flow decomposition
(Theorem 1), the gradient projection optimizer would be far
slower.

5) Algorithm Comparison with Large Graph: Next, we
repeat the experiment using the large graph. Table III shows
the results along with the algorithm parameters. The gradient
projection algorithm has been omitted as its convergence times
are far greater than ADMM and CP. The optimization times
for the ADMM and CP algorithms are plotted in Figure
4. In this example, as N increases, the number of ADMM
iterations grows slower than the number of CP iterations. Thus,
although the CP per-iteration cost is lower, the larger number
of iterations for large N renders CP slower than ADMM.

V. CONCLUSION

We have shown that for many types of utilities, the solution
to a K-flow NUM problem can be found by solving a simpler
N -variable problem. This principle holds for both single-
path and multipath NUM problems. The results of this paper
have applicability for software-defined networks in which a
controller must solve the global NUM problem. These results
can also be beneficial for networks consisting of several hub-
spoke clusters. For example, with N clusters and Ki sources in
the ith cluster, the problem (2) can be substituted for problem
(1). This simpler problem could then be solved in a distributed
manner by the hub nodes, which would in turn allocate subflow
rates to the spoke nodes.

TABLE III
COMPARISON OF ADMM AND CP FOR LARGE GRAPH EXAMPLE

ADMM Chambolle-Pock
N r pct f∗ lmax niter t (sec) σ τ θ f∗ lmax niter t (sec)
50 40 10−4 -1326.781 10.000 100 0.0358 10.0 3.0× 10−4 1.0 -1326.780 10.000 70 0.0120
75 40 10−4 -2002.522 10.001 162 0.0777 10.0 2.0× 10−4 1.0 -2002.522 10.000 314 0.0760

100 40 10−4 -2589.978 10.000 179 0.1093 10.0 5.0× 10−4 0.1 -2589.978 10.000 745 0.2280
125 40 10−4 -3333.174 10.007 208 0.1529 10.0 4.9× 10−4 0.1 -3333.174 10.000 843 0.3119

Fig. 3. Optimization time comparison with small graph example

Fig. 4. Optimization time comparison with large graph example

VI. ACKNOWLEDGEMENTS

The first author wishes to thank Dr. Joseph Yadegar from
UtopiaCompression Corporation and Dr. You Lu of Google
for insightful conversations regarding this work. This research
was partly supported by the United States Air Force under
contract number FA9453-14-C-0060. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the United
States Air Force.

REFERENCES

[1] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, pp. 237–252, 1998.

[2] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, Aug. 2006.

[3] M. Chiang, S. H. Low, R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition,” Proceedings of IEEE, 2006.

[4] S. H. Low, “A duality model of TCP and queue management algorithms,”
Networking, IEEE/ACM Transactions on, vol. 11, no. 4, pp. 525–536,
2003.

[5] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: motivation,
architecture, algorithms, performance,” IEEE/ACM Transactions on Net-
working (ToN), vol. 14, no. 6, pp. 1246–1259, 2006.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[7] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
vol. 17, no. 2, pp. 30–32, 2009.

[8] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement. ACM, 2010, pp. 267–280.

[9] A. Donner, M. Berioli, and M. Werner, “MPLS-based satellite constel-
lation networks,” Selected Areas in Communications, IEEE Journal on,
vol. 22, no. 3, pp. 438–448, 2004.

[10] S. R. Pratt, R. A. Raines, C. Fossa, and M. A. Temple, “An operational
and performance overview of the IRIDIUM low earth orbit satellite
system,” Communications Surveys & Tutorials, IEEE, vol. 2, no. 2, pp.
2–10, 1999.

[11] D. Bertsekas and R. Gallager, Data Networks. Upper Saddle River,
NJ: Prentice Hall, 1992.

[12] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[14] R. Srikant and L. Ying, Communication Networks: An Optimization,

Control, and Stochastic Networks Perspective. Cambridge University
Press, 2013.

[15] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[16] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[17] R. T. Rockafellar, Network Flows and Monotropic Optimization. Wiley-

Interscience, 1984.
[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[19] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathematical
Imaging and Vision, vol. 40, no. 1, pp. 120–145, 2011.

[20] M. Andersen, J. Dahl, and L. Vandenberghe, CVXOPT: A Python
Package for Convex Optimization, www.cvxopt.org, 2015.

	I Introduction
	II Optimization Over Aggregate Flows
	II-A Decomposition by Supremal Convolutions
	II-B Decomposition with Functions of Legendre Type
	II-C Examples
	II-C1 Weighted Logarithm Utilities
	II-C2 Weighted Power Utilities (Negative Exponent)
	II-C3 Quadratic Utilities
	II-C4 Piecewise Linear Utilities

	III Extension to Multipath Case
	III-A Multipath Supremal Convolution Decomposition
	III-B Multipath Legendre-Type Case

	IV Aggregate Decomposition with ADMM
	IV-A ADMM Algorithm
	IV-B Numerical Examples
	IV-B1 ADMM with Weighted Logarithm Utilities
	IV-B2 Gradient Projection Optimizer
	IV-B3 Chambolle-Pock Optimizer
	IV-B4 Algorithm Comparison with Small Graph
	IV-B5 Algorithm Comparison with Large Graph

	V Conclusion
	VI Acknowledgements
	References

