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Abstract—One limiting factor to the performance of mobile ad
hoc networks is the amount of interference that is experienced
by each node. In this paper we will use the well established
Random Waypoint Mobility Model (RWPM) to represent such
a network of mobile devices, and show that the connectivity
of a receiver at different parts of the network domain varies
significantly. This is a result of a large portion of the nodes in the
RWPM being located near the centre of the domain resulting in
increased levels of interference between neighbouring devices. A
non-trivial trade-off therefore exists between the spatial intensity
of interfering signals and non-interfering (useful) ones. Using
tools from stochastic geometry, we derive novel closed form
expressions for the spatial distribution of nodes in a rectangle and
the connection probability for an interference limited network
indicating the impact an inhomogeneous distribution of nodes
has on a network’s performance. Results can therefore be used
to analyse this trade-off and optimize network performance, for
example through dynamic transmission schemes and adaptive
routing protocols.

I. INTRODUCTION

A mobile ad hoc network (MANET) is a self-configuring
network of mobile devices making direct wireless links with
each other rather than a central router; the topology of the
network evolves with time as links are continually being
made and broken. This network has various advantages over
networks which have a fixed topology or a centralized struc-
ture including scalability (can continue to add more nodes),
flexibility (can create temporary ad hoc networks anytime
anywhere) and continuous reconfiguration which can enable
the network to resolve any problems itself [1]. Such applica-
tions of these networks include environmental monitoring [2],
disaster relief [3] and military communications [1].

With the next generation of wireless communication (5G)
in mind and as the number of personal devices such as mobile
phones and tablets with access to the Internet continues to soar
there has been a lot of work into the performance of MANETs.
One of the first papers to highlight the potential advantages
of an ad hoc network was by Grossgauler and Tse [4] who
showed that by exploiting a network’s mobility the increased
throughput increases linearly, although this did not take into
account the delay of the packets. As such this self configuring
arrangement is seen to be a desirable feature for future mobile
phone networks but would need to preserve coverage where
mobile devices could disconnect and reconnect independent of
location [5].

The aim of this paper is to look at modeling MANETs using
the stochastic Random Waypoint Mobility Model (RWPM),
which was proposed as one of the simplest models of
MANETs mobility patterns [6]. This simplicity translates to
mathematical tractability, and therefore has led to it being
studied extensively in the literature as to model mobility in
wireless networks [7]–[12], and more recently in robotics
[13]–[15].

The stationary distribution of RWPM allows us to more
effectively model a MANETs performance using the metrics of
connection probability and mean network degree. Namely, we
build upon previous work from Bettstetter and Hyttiä, Lassila
and Virtamo [8], [9] where both considered the RWPM and
investigated the probability of full connectivity on the unit
disk, but give little indication as to the impact of interference
would have on their results. This further motivates our present
work where we focus on the interference eld, and exemplify its
dependence to the domain geometry [16], [17]. Significantly,
we contrast how the said MANET performance metrics vary
for an inhomogeneous distribution of mobile nodes compared
with the homogeneous case [18]. Furthermore, we extend
the interference models with inhomogeneous node distribu-
tions to domains other than circles [19], [20]. Employing
tools from stochastic geometry, our analytical findings suggest
that regions of high node density suffer from an intensified
interference field thus hindering connectivity and coverage.
Under the RWPM, such regions are typically found away
from the domain borders, i.e. near the domain centre therefore
strengthening the case for location aware MAC and routing
protocols.

The main contributions of this paper are:

1) We give an exact expression for the probability density
function for the Random Waypoint Mobility model in a
rectangle, and use the result to analyse the performance
of the network.

2) We give an expression for the interference in a network
for a non-homogeneous density, and derive an analytic
formula for the case where the receiving node is posi-
tioned at the centre of a circular domain.

3) We give an explicit expression for the mean degree of
the network in the signal-to-noise regime and analyse
it by comparing it with numerical calculations for the
signal-to-interference-plus-noise regime.
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Fig. 1. Top: A random realisation of the RWPM where a node on the
domain V has travelled from its initial point P1 to P2, and then P3, where
it has chosen its next waypoint P4 from a uniform distribution. Bottom: A
representation showing how a1 and a2 are defined (see eq (4)), along with
the angle φ at apoint r within V .

The remainder of the paper is structured as follows: Sec.
II defines the Random Waypoint Mobility Model (RWPM)
and gives an explicit expression for the probability density
function (pdf) in a rectangular domain. Sec. III defines the
connectivity metric of interest and calculates the connection
probability under the RWPM for different domain shapes and
interference limits. Sec. IV utilises the expressions obtained
for the connection probability to investigate the spatial den-
sity of successful transmissions. Sec. V provides concluding
remarks and discusses potential areas of future work.

II. RANDOM WAYPOINT MOBILITY MODEL

A. RWPM definition

The RWPM assumes N nodes randomly distributed inside
a convex domain V ⊆ R2 of area V using a Binomial Point
Process (BPP) of density ρ = N/V . At any given instance
the node locations are given by ri ∈ V for i = 1, . . . N .
Each node moves independently from the other N − 1 nodes
so we can explain the process just by considering a single
node (refer to Fig. 1). A node located at P1 chooses a
random waypoint P2 uniformly inside V and travels to it
in a straight line at a constant speed. The speed is chosen
from a uniform distribution of speeds [vmin, vmax] where
0 < vmin ≤ kvmin = vmax. This results in a sequence
of waypoints defined as {P1, P2, . . .} and legs {L1, L2, . . .}
which completely characterise the paths taken by a node. At
each waypoint the node may pause for a “think time” drawn
from yet another uniform distribution [0, Tmax]. The RWPM
reduces to a random walk model if the think time is zero.

B. Spatial distribution of nodes under the RWPM

Defining ℘p ∈ [0, 1] to denote the probability that a node is
thinking (i.e. is not moving) we have that the RWPM nodes
remain static if ℘p = 1, in which case the spatial distribution
of nodes in V is uniform by definition. This enables us to
express the spatial distribution of nodes under the RWPM as

Fig. 2. Top: The 8 elementary segments of the rectangular domain in which
fX,m(r) is symmetrically identical. Bottom: The difference between the
approximate distribution (8) and the exact one which follows from (7).

a combination of mobile and static nodes probability density
functions fX,m(r) and fX,p(r) respectively

fX(r) = ℘pfX,p(r) + (1− ℘p)fX,m(r), (1)

such that fX,p(r) = 1/V and
∫
V fX(r)dr = 1 and where

℘p =
E[Tp]

E[Tp] + E[T ]
, (2)

as shown in [21], where E[Tp] is the expected pause time and
E[T ] is the mean time taken for a single leg. Using the fact
that the speed is taken from a uniform distribution and that
vmax = kvmin, the expected time for each leg is given by

E[T ] =
ln(k)

k − 1

l

vmin
, (3)

where l is the mean leg length and is exactly given by [22]

l =
1

V 2

∫
V

∫ π

0

a1a2(a1 + a2)dφdr, (4)

for any convex domain V , where the lengths a1 and a2 depend
on the position r ∈ V of the node as demonstrated in the lower
panel of Fig. 1 for a rectangular domain. The values of a1, a2

are defined by choosing a point r ∈ V and drawing a straight
line through it. The length of the line to the right is a1 and to
the left a2.

Similarly, the exact spatial distribution of nodes in any
convex shape V can be found by calculating [9]

fX,m(r) =
1

lV 2

∫ π

0

a1a2(a1 + a2)dφ. (5)

It is interesting to note that the distribution of nodes in
the RWPM, given by (5) is proportional to that for the
betweenness centrality measure where a node is said to have
a high betweenness if it is frequently used to transmit data
between two different nodes along the shortest path [23]. This
allows for some intuition as to what the spatial distribution of
nodes in the RWPM will be like since in [23] it was shown



the nodes located at the centre had a high betweenness value
so analogously we should expect the distribution of nodes to
be highest in the centre also.

1) Rectangular domain: Writing a1 and a2 as functions of
position r and φ ∈ [0, π] one can calculate that for a rectangle
of sides a and b [21]

l=
d

3
+
a2

6b
ln(

d+ b

a
)− b2

6a
ln(

d− a
b

) +
a3 − d3

15b2
+
b3 − d3

15a2
,

(6)

where a ≥ b and d = 2
√
a2 + b2. Note that when a1 and a2

meet the corners of the rectangle the integrands above are not
smooth functions thus requiring that the integrals be performed
within the elementary cells Ai for i = 1, . . . 8 as shown in
Fig. 2

We give here for the first time the exact spatial distribution
of mobile nodes under the RWPM within A1 elementary cell
of a rectangular domain, where the full expression follows
through symmetry.

f1(x, y) =
1

16a2b2l

{
d1(b− y)(a+ x)(a− 2x)

(a− x)

+
d4(a− x)(a+ 2x)(b− y)

(a+ x)

+ [d3(a− x) + d2(a+ x)]

[
(b− y)(b+ 2y)

(b+ y)

]
+ 2x(b− y)2 ln

∣∣∣∣a− xa+ x

∣∣∣∣+ 4ax(b− y) ln

∣∣∣∣b− yb+ y

∣∣∣∣
+ c1

[
ln

∣∣∣∣b− y + d1

a− x

∣∣∣∣+ ln

∣∣∣∣y − d4 − b
a+ x

∣∣∣∣]
+ c2 ln

∣∣∣∣d3 + a− x
d2 − a− x

∣∣∣∣+ c3 ln

∣∣∣∣d2 + b+ y

d1 + b− y

∣∣∣∣
+ c4 ln

∣∣∣∣d2 − a− x
d1 + x− a

∣∣∣∣− c5 ln

∣∣∣∣ y − d4 − b
−d3 − b− y

∣∣∣∣
+ c6 ln

∣∣∣∣d4 + a+ x

d3 + a− x

∣∣∣∣
}
,

(7)

where c1 = a(a − x)(a + x), c2 = b(b − y)(b + y), c3 =
(a + x)(b − y)2, c4 = (a + x)2(b − y), c5 = (x − a)(b −
y)2 and c6 = (x − a)2(b − y), d1 =

√
(a− x)2 + (b− y)2,

d2 =
√

(a+ x)2 + (b+ y)2, d3 =
√

(a− x)2 + (b+ y)2 and
d4 =

√
(a+ x)2 + (b− y)2.

Several approximations to the above have been reported in
the literature the simplest one being [8]

f̂�(x, y) =
9

16a3b3
(x2 − a2)(y2 − b2), (8)

by assuming two linearly independent processes in the x
and y directions. The � is used to indicate the rectangular
domain. Equation (8) deviates from the exact solution as
seen in the lower panel of Fig. 2. Hyytiä et al [9] give a
more accurate polynomial approximation than (8) however,
unlike the exact expression (7), all known approximations are

smooth everywhere whereas the exact solution is piecewise
continuous.

Later in this paper we will use the approximation given
by (8) due to its simplicity and thus ease in calculating
complicated connectivity integrals. We jsutify our use of the
approximations as we hope to give closed form expressions
where possible and argue that the results will not change
qualitatively.

2) Circular domain: A circular domain is much easier to
analyse than the rectangle as there are no discontinuities due
to corners. Therefore, by using (5), it can be shown that

f⊙(r, θ) =
2(R2 − r2)

lV 2

∫ π

0

√
R2 − r2 cos2(φ) dφ, (9)

in polar coordinates (r, θ), and l can be found by integrating
(9) over V , which can be approximated to [8]

f̂⊙(r) =
2

πR2

(
1−

( r
R

)2
)
, (10)

where R is the radius of the circular domain.

III. CONNECTIVITY ANALYSIS

Given N nodes which move under the RWPM within some
convex domain V , in this section we will investigate the
connectivity of the resulting network. We first present the
information theoretic model [24] that we adopt and later define
the observables of interest.

A. System Model

The attenuation in the wireless channel of any ad hoc
network affects the overall connectivity and capacity of that
network [25]. As a result we introduce the path loss function
g(dij) describing how the power of a propagating signal
decays with the distance dij = |ri − rj | between two nodes.
We assume that the function g(dij) is only concerned with
the long term average of the signal to noise ratio (SNR) at the
receiver which behaves like SNRij ∝ d−ηij and so we define
the path loss function g(dij) as

g(dij) =
1

ε+ dηij
, ε ≥ 0, (11)

where η is the path loss exponent and ε is chosen to be non-
zero so the path loss function is non-singular. For free space
propagation it is common to take η = 2 and for more cluttered
environments η > 2, typically taking values in the range [2, 6].

We now turn to the main connectivity metric the Signal to
interference plus noise ratio (SINR) defined as

SINRij =
P|hij |2g(dij)

N + γIj
Ij =

∑
k 6=i

P|hkj |2g(dkj),
(12)

where Ij is the interference received at node j, P is the
transmit power (equal for all nodes), N is the noise power
within the system, and |hij |2 is the channel gain between
nodes i and j and will be modelled as an exponential random



variable with mean one (assuming Rayleigh fading). In (12)
γ is used to quantify the amount of interference in the system
and can take values between zero and one. In the case where
γ = 0 there is no interference resulting in all k 6= i interfering
devices transmitting on a different channel [26]. Conversely
γ = 1 refers to the case when all transmissions occur in the
same channel.

In the RWPM (and other mobility models) the SINR be-
tween two nodes depends on the location of the receiver, the
underlying network topology and the spatial distribution of
the network defining the interference field experienced by the
receiver. All these can significantly affect the performance
of the network. Intuitively we can see that dense regions
will have more interference than sparse ones. On the other
hand, nodes in sparsely populated regions of the network
domain have less neighbours to connect to compared to dense
regions. This trade-off is already non-trivial in the case of a
uniform distribution of interfering nodes [18]. In this paper we
will study for the first time this trade-off in the non-uniform
distribution (1) generated by the RWPM.

B. Connection Probability

Let us first consider an interference limited network where
node i sends a signal to node j and we assume that all k 6= i
nodes are interfering with that transmission and ask what is
the probability Hij that node i can successfully transmit data
to node j, i.e. the complement of the outage probability given
some SINR threshold q

Hij = P[SINRij > q] = P
[
|hij |2 ≥

q(N + γIj)
Pg(dij)

]
(13)

By conditioning on Ij and using the fact |hij |2 ∼ exp(1) and
that |hkj |2 are i.i.d random variables, (13) can be rewritten as,

Hij = EIj

[
P
[
|hij |2 ≥

q(N + γIj)
Pg(dij)

∣∣∣∣Ij]
]

= EIj

[
exp

(
−q(N + γIj)
Pg(dij)

)]

= e
− qN

Pg(dij)LIj
(

qγ

Pg(dij)

) (14)

where LIj (s) is the Laplace transform of the random variable
Ij evaluated at s = qγ

Pg(dij) conditioned on the locations of
the transmitting and receiving nodes. Following [18] we have

LIj (s) = EIj
[
e−

sIj
P

]
= E|hkj |2,dkj

[
e−s

∑
k 6=i |hkj |2g(dkj)

]
= Edkj

N−1∏
k 6=i

1

1 + sg(dkj)

 .
(15)

Invoking the probability generating functional of a general
inhomogeneous Poisson point process (PPP) Ξ in R2 with
intensity function λ(ξ) given by

E

∏
ξ∈Ξ

f(ξ)

 = exp

(
−
∫
R2

(1− f(ξ))λ(ξ)dξ
)

(16)

we can see that when N � 1 we can approximate the BPP
by a PPP such that λ(ξ) ≈ NfX(r) therefore arriving at

LIj (s) ≈ exp

(
−N

∫
V
fX(rk)

sg(dkj)

1 + sg(dkj)
drk

)
. (17)

Remark 1: Equation (17) is the main result of this paper as
this can be computed numerically with the assistance of (5)
for any domain V in which nodes move under the RWPM.
Significantly, we note that the connection probability Hij of
a receiver at rj given by (14) depends exponentially on the
node distribution fX which is itself dependent on the mobility
model. We now proceed to consider specific cases.

1) Circular domain: Consider a receiver positioned at the
centre of the circular domain i.e. rj = 0. Using polar
coordinates and the approximation given in (10) with ρ = N

V
we calculate

LIj (s) = exp

{
−℘pρsπR

2

ε+ s
2F1

(
1,

2

η
,

2

η
+ 1,

−Rη

ε+ s

)
− (1− ℘p)πR2sρ

s+ ε

[
22F1

(
1,

2

η
,

2 + η

η
,− Rη

s+ ε

)
− 2F1

(
1,

4

η
,

4

η
+ 1,− Rη

s+ ε

)]}
.

(18)

For free space propagation η = 2 we can simplify (18) to

LIj (s) = exp

{
−℘psπρ ln

(
R2

s+ ε
+ 1

)
+

2ρπs(1− ℘p)
R2

[
R2 − (s+ ε+R2) ln

(
R2

s+ ε
+ 1

)]}
.

(19)

Similarly, for η = 4 we can simplify (18) to

LIj (s) = exp

{
− ℘psπρ√

s+ ε
arctan

(
R2

√
s+ ε

)
+
ρπs(1− ℘p)√

s+ ε

[√
s+ ε

R2
ln

(
R4

s+ ε
+ 1

)
− 2 arctan

(
R2

√
s+ ε

)]}
.

(20)

2) Comparison with other models: In this subsection we
compare the derived performance metric, the connection prob-
ability between two nodes Hij , with a number of other models
and receiver locations. The comparison is shown in Fig. 3 and
is performed in both a Circular (Disk) domain (left panel) and
a rectangular domain (right panel) using q = P = N = ρ = 1
and ε = 0. The connection probability is plotted as function
of transmitter-receiver distances dij for different receiver po-
sitions: centre, edge, and corner of the domain V for ℘p = 1



Fig. 3. A comparison between the connectivity from the centre to the edge
in all three cases where the volume of the domain is given by 4ab, with
a = b = 10, R = 2a√

π
and ρ = NV .

(uniform distribution) and ℘p = 0. Also plotted in Fig. 3
is the case of γ = 0 (i.e. no interference) referred to in
the key as SNR, and also the case where (γ, η) = (0,∞)
which interestingly corresponds to a deterministic unit disk
model where nodes connect (or not) if they are within a unit
distance of each other. We notice that interference significantly
deteriorates the connection probability. Moreover, we notice
that the receiver nodes near the border of the domain are
more likely to be connected than receiver nodes at the domain
centre. Interestingly, random waypoint mobility (i.e. ℘p < 1)
improves the connection probability near the domain border,
and worsens it near the domain centre. This is not surprising as
the density of interfering nodes near the centre is much higher
than near the domain border (c.f. (8)). This effect seems to be
even more dominant in the rectangular domain. For instance,
Hij(0.5) ≈ 0 for a node near the centre of the rectangular
domain whilst , Hij(0.5) ≈ 0.5 for a node located near the
domain corner; a huge difference in performance.

The effect of interference on connectivity is further illus-
trated by Fig. 4 where we observe in a rectangular domain
with N = 40 that Hij ≈ 0.1 for a node located at the centre
where as at the corner Hij ≈ 0.8. Clearly this is a direct
consequence of the interference field as shown in Fig. 4b.
The effect a rectangular domain has on the connectivity is
further highlighted by seeing that the side with the shortest
length has a lower distribution of nodes and thus the impact
of interference is less.

Note that similar observations are expected to hold for the
average achievable rate given by E[ln(1+SINRij)] (see [18]).

IV. SPATIAL DENSITY OF SUCCESSFUL TRANSMISSIONS

We now turn to the spatial density of transmissions that can
be successfully received by a receiver located at rj given by

µj(rj) = (N − 1)

∫
V
fX(ri)Hijdri. (21)

Closed form calculation of (21) is possible for the SNR case

Fig. 4. a. The spatial node distribution under the RWPM in a rectangular
domain V b. The interference field in the top right quadrant of V as calculated
through the integral of equation (17). c. The connection probability Hij(1/2)
of a receiver in the top right quadrant of the V as calculated through equation
(14) for N = 40. Parameters used: P = N = q = γ = 1, a = 5, b = 2,
η = 4, and ε = ℘p = 0.

where γ = 0 and η = 2 giving

µ(rj) = (N − 1)
℘pπ

4V

{
erf (a− x0) + erf (a+ x0)

}
×
{

erf (b− y0) + erf (b+ y0)

}
+ (N − 1)

9(1− ℘p)e−2(ax0+by0)

256(ab)3

{
e(x0−a)2[

−2(a+ x0)e2ax0 +
√
π(2x2

0 − 2a2)erf (a− x0)

]
+ e−(a2+x2

0)
[
−2(a− x0)

+
√
π(2x2

0 − 2a2)erf (a+ x0) e(a+x0)2
]}

{
e(y0−b)2

[
− 2(b+ y0)e2by0

+
√
π(2y2

0 − 2b2)erf (b− y0)

]
+ e−(b2+y20)

[
−2(b− y0)

+
√
π(2y2

0 − 2b2)erf (b+ y0) e(b+y0)2
]}

(22)



Fig. 5. A comparison between the spatial density µ(rj) for a receiver
located different positions within a circular and square domain where we
use numerical integration of equation (21), using (20), where rj ∈ V are the
Cartesian coordinates of the receiver. In the above figures ε = 0 in the left
panel and ε = 0.01 in the right and we take R = 5, a = b =

√
πR
2

such
that the two domains have the same volume V. We use the model where the
network is operating in a cluttered environment, η = 4, and not all nodes are
interfering with each other, γ = 1/2.

It should be noted that a closed form expression can be
achieved for the unit disk model where γ = 0 and η →∞ but
we only give here explicit expressions for the mean degree at
the centre, corner and the midpoint of the edges for the sake
of brevity.

µ(0, 0) =
(N − 1)℘pπ

lV
+

(N − 1)(1− ℘p)π
42(ab)3

{
− 6(a2 + b2) + 24(ab)2

}
µ(a, 0) =

(N − 1)℘pπ

8l(ab)
+

(N − 1)(1− ℘p)
426(ab)3

{
5π

− 64a− 30πb2 + 320ab2
}

µ(0, b) =
(N − 1)℘pπ

8l(ab)
+

(N − 1)(1− ℘p)
426(ab)3

{
5π

− 64b− 30πa2 + 320a2b
}

µ(a, b) =
(N − 1)℘pπ

16l(ab)
+ (N − 1)

(1− ℘p)
854(ab)3

{
5π

− 64(a+ b) + 120ab
}

(23)

From the closed form expressions of (22), (23) we can
clearly see that the number of successful transmissions in the
SNR and unit disk model µ grows linearly with ρ = N/V .

We note that an analytical expression for (21) cannot be given
for the SINR case γ > 0.

In contrast to the case of γ = 0, for interference limited
networks (i.e. γ 6= 0) for a circular domain, the spatial density
of successful transmissions µ plateaus for ε = 0 and is
unimodal (i.e. has a single maximum) for ε > 0, indicating a
deterioration in performance at large densities, Fig. 5a. This
suggests that ε 6= 0 may give a more accurate representation
of what happens in real life networks. Intuitively we can
see this as if we start with a single node in our system
and continue to add more then the amount of successful
transmissions that can be achieved will initially increase since
at low densities the effect of the interference field will not
be as great. However, at a particular density we would expect
this number to stop increasing and start decreasing since the
strength of the interference will have increased such that it
restricts the number of successful transmissions.

Both the uniform and RWPM distribution have a low µ at
the centre but we see much faster deterioration in performance
as the density increases for ℘ = 0, a result of the spatial
distribution of nodes; for a network with roughly 235 nodes,
µ(0,0) ≈ 0.5. We note that Fig. 5a and Fig. 5c are very similar
due to the chosen parameters, likewise for Fig. 5b and Fig. 5d.

Both Fig. 5d,5e show that for ℘ = 0 the behaviour of µ near
the borders is very poor. Even though a receiver at the border
(i.e. at the corner) is expected to have a higher connection
probability Hij in an interference limited network, the spatial
density of successful transmissions suffers greatly when the
density of nodes is small. Interestingly, we see that even for
ε = 0.01 the behaviour of ℘ = 0 changes very little as ρ
increases, insert of Fig. 5e, and in fact only as the number of
nodes in the network becomes very large, ≈ 103, do we begin
to see more noticeable degradation in µ, highlighting the non-
trivial trade-off between interference and boundary effects.
Interestingly when the distribution of nodes is a mixture of
RWPM and Uniform, ℘ = 0.5, we see that the performance
at the borders is significantly improved compared with that of
℘ = 0.

In terms of applications of these results, under the RWPM it
suggests that areas such as the centre of cities where the largest
number of mobile devices are typically found, a drop in ad hoc
network performance is expected due to interference, results
which are consistent with that of [7]. This is further intensified
near the borders simply due to the low spatial density of
transmitting nodes; however insert of Fig. 5e indicates that
the network performance could be greatly improved by having
a hybrid network. Efficient, interference and mobility aware
MAC protocols would have to be developed in line with
the above results as to optimise channel access and thus
connectivity throughout the network domain V .

The calculations shown in Fig. 3, 4, 5 were done using the
approximate pdf’s as the exact ones would not change the
result qualitatively.



V. DISCUSSION AND CONCLUSIONS

The random waypoint model assumes nodes moving from
waypoint to waypoint in a random fashion. The resulting
spatial distribution of nodes is not uniform but rather is con-
centrated in the domain’s bulk. As such, when wireless nodes
access the common Hertzian medium without any collision
avoidance mechanism (or similar) signals will interfere with
each other at the receiver end causing sever packet losses
which need to be catered for through retransmissions causing
further delay and requiring additional signalling overheads.

In this paper we have explored the Random Waypoint
Mobility Model where we have given an exact expression for
the spatial distribution of nodes in a rectangle and compared
this with earlier approximations. A closed form expression
for the connection probability for a receiver positioned at the
centre of a circular domain was also given, and numerical
calculations for receivers positioned at different locations and
in different domains. Due to the high number of nodes in the
bulk for the RWPM, it was shown that a successful connection
was less likely to happen since the interference is greater,
where the converse was true at the edges; an effect that
was magnified in the rectangular region due to its corners.
An exact expression was calculated for the mean degree of
a noisy network in free space and shown to grow linearly
with density. Numerical calculations were used to express the
spatial density of successful transmissions in different parts
of the domain where the performance of a network locally is
characterised by the trade off between the density of nodes
and the resulting interference field (i.e. too few nodes limits
the number of possible connections, too many results in too
much interference). Finally, we have illustrated that the non-
singular path loss function gives a more realistic analysis of
the networks performance and shows how important metrics
like the mean degree deteriorates at higher densities.

These results highlight one important challenge facing any
future deployment of MANETs, namely how can the inter-
ference experienced from neighbouring nodes be mitigated if
the underlying network intensity follows an inhomogeneous
spatial distribution. We see that in the RWPM nodes are
focused predominately in the bulk of the domain and thus
more mobile devices are competing for the same amount of
limited resources so efficient protocols would be needed to
ensure fair channel access. This observation is expected to
hold under more advanced protocols (e.g. CSMA/CA) than
the simple ALOHA assumed herein since despite careful
interference avoidance mechanisms, different parts of the
network have different densities of transmitters and receivers
which therefore suffer from different levels of co-channel
interference. Throughout this paper we do not assume any
neighbour association mechanism which is typical in cellular
networks and as such could be a line of future investigation. As
a final remark, we also point towards the common assumption
that the most efficient way to transmit data between nodes in
a multi-hop fashion is via the shortest path. However, with an
inhomogeneous distribution and interference limited environ-

ment, this may not be the most effective since going through
areas of high density, the levels of interference increase so
data may have to be continually resent thus increasing the
transmission time between sender and receiver. Instead the
optimal solution might involve minimising both the path and
the interference.
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