

A Lightweight Approach to Semantic Web Service Synthesis

Jianguo Lu

School of Computer Science

 University of Windsor

jlu@cs.uwindsor.ca

Yijun Yu, John Mylopoulos

Department of Computer Science

 University of Toronto

{yijun, jm}@cs.toronto.edu

Abstract

Web service technologies are becoming a new paradigm

for distributed computing. With increasing number of web

services available on the internet, there is an urgent need

for information brokers that can autonomously integrate

web services on behalf of a user. To this end, we propose

web service specification, which defines what the service is

but not how the service is implemented, and service

synthesizer, which can dynamically synthesize the

implementation of the specification from existing web

services over the web.

1. Introduction

Web service technologies, embodied in the key W3C

standards WSDL [24], UDDI [23] and SOAP [22], are

becoming a new paradigm for distributed computing and

programming that have been adopted by major software

vendors. In this paradigm, software components described

in XML will be published, requested, composed and even

brokered over the Internet.

The essence of web service is its capability to be

consumed by computer programs and integrated with other

functionality of the system, ideally, in the same form of

web services. Web service composition has attracted

attention from both industry and the academic

communities. BPEL4WS [10] is an XML-based

programming language that can compose web services

manually. Many researchers also start to investigate the

automated service composition, such as [13] [26], to name

a few.

We propose an approach to automated dynamic web

service synthesis. It is lightweight in the sense that we can

only handle a portion of the web services that are generated

from databases and enterprise beans. We observe that many

web services are database query wrappers, with mappings

between XML Schema and database schema. As a matter

of fact, there are numerous products that generate web

services from database application and enterprise beans

 [15]. For this type of web services, there should be a

declarative and automated way to integrate them. Those

web services can be viewed as a database query, and hence

the integration of web services can be viewed as database

query rewriting [11].

This paper describes a web service synthesizer which

can produce composite web services from web service

specifications. End-users or programmers will provide the

specification. The service synthesizer will take the

specification as input, and search, customize, and integrate

constituent web services automatically. The essence of this

paper is to treat web services as first class citizens, hence

they can be integrated without resorting to process flow

languages or programming languages such as Java. In this

way, end-users can customize existing web services, and

compose new services without using a programming

language.

An application scenario is as follows: Suppose that you

want to construct a new web service that compares prices

from amazon.com and chapters.com, on the premise that

there are already implemented web services for amazon,

chapters, and currency converters on the web. Also notice

that you may not know the exact service name, and the

category they belong to. What you need to do is to write a

web service specification, which consists of mainly the

signature of the service similar to what is provided by

WSDL, and a database query to carry out that task. The

web service synthesizer will take that specification as input,

find relevant web services, and produce an implemented

web service.

In section 2 we will describe the background knowledge

of query rewriting that is used in our paper. Section 3

defines web services specification. Based on this definition,

Section 4 introduced web service synthesis and Section 5

describes how the concrete implementation is generated.

Section 6 draws the conclusion.

2. Background

2.1 Query rewriting

The query rewriting problem [11] has been extensively

studied in the areas of query optimization and data

integration. Informally speaking, the problem can be

formulated as follows: Given a query and a set of view

definitions, compose an answer to the query using answers

to the views.

Definition 1 (Query containment and equivalence) A query Q is

contained in another query Q’, denoted as Q Q’, if for
any instance of the base relations, the set of tuples
computed for Q is a subset of those computed for Q’.
Two queries Q and Q’ are equivalent (denoted as Q =

Q’) if Q Q’ and Q Q’.

Definition 2 (Query rewriting) Given a query Q and a set of

views V, a rewriting of Q using V is a query Q’ such that Q
= Q’, and Q’ refers to one or more views in V. A
rewriting is complete if Q’ only refers to views.

We should note that rewritings do not always exist.

2.2 Datalog notation

It is easier and a common practice to discuss query

rewriting in terms of the Datalog notation. Datalog is

similar to Prolog, but does not allow functions in Horn

clause expressions. In the following sections of this paper

we will use this notation.

A conjunctive query has the form:

Q(X) :-
 P

1
(X

1
), P

2
(X

2
),…, P

n
(X

n
),

 C
1
(Y

1
), C

2
(Y

2
), …,C

m
(Y

m
).

where Q, P
i

(i=1,…, n), and C
j
(j=1,…,m) are predicate

names. X, X
1
, …, X

n
, Y

1
, …, Y

m
are vectors of variables and

constants. Q(X) is called the head of the query. P
i
 (i=1,…,

n) refer to the relations in the database, and are called base

predicates. C
j
 (j=1, …, m) are arithmetic comparison

predicates.

3. Web service specification

Currently, most of the web service definition

mechanisms such as WSDL define the syntax of the web

services, such as the operations of the service, the signature

of the operation, and the binding information that describes

how to invoke the operation. The semantics of the

operations in web services are left unclear. The lack of

explicit semantic definitions of web services makes it hard

to search for the relevant services, and impossible for

automated synthesis of new services.

On the other hand, there are research efforts to add

semantics to agent-like web services. One example is

OWL-S [20], which is based on web ontology languages

and software agent description language [19]. These

description languages focus more on software agent

concepts rather than WSDL, hence are more complex and

farther away from industry applications.

We observe that a large portion of web services are

based on database applications. Most of the database

vendors (such as DB2) and EJB vendors are providing web

service construction tools to expose SQL statements as web

services [15]. Moreover, any web service can be consumed

inside a database query by the DB2 web service consumer.

Based on these observations, we propose to describe the

semantics of web service using queries.

More formally, a web service specification is defined as

follows:

Definition 3 (Web service specification) A web service

specification is S(Sig, Q), where Sig is the signature of a
web service and Q is the corresponding query of the web
service.

The signature of web service specification consists of

the input and output types, which are defined using XML

Schemas much in the same way as WSDL. Note that in this

definition we simplify the model and assume web services

can have only one operation. Also, we abstract away the

binding information which is essential for web service

implementation.

Web service specification defines what the service is,

but not how the service is implemented. Given a

specification, it can be implemented in different ways, such

as by a database engine or an EJB server.

With the understanding that a query can be represented

by Datalog, our definition of web service specification

share similarities with program specifications. Compared

with traditional program specification techniques, such as

pre/post conditions and algebraic specifications, our

approach has direct correspondence to the underlying

implementation. For example, IBM DB2 provides WORF

 [15] to specify the web service and its related query. From

a DADX specification, a WSDL file can be automatically

generated.

Web service specification serves two groups of people.

One is the service providers who want other people to use

the web services. In this case, the specification has a

corresponding implementation. By providing specification,

web services can be more effectively located and reused.

The other group of people is service consumers and

composer. When they create a new web service, what they

need to write is a web service specification. In analogous to

traditional program synthesis, the implementation of the

specification will be automatically synthesized.

It has always been a painful task to synthesize a

program from its specification. Part of the difficulty comes

from the lack of reusable software components. With the

proliferation of web services, the synthesis can become

easier as we show in this paper.

With this definition of web service specification, we can

discuss web service synthesis in the following sections.

4. Web service synthesis

Given a web service specification, we need to produce

the corresponding implementation for the specification. We

call the process to generate a web service implementation

from its specification the web service synthesis, which is

carried out by service synthesizer in a dynamic way.

More specifically, the input of the synthesizer is a web

service specification S to be implemented, and a set of web

service specifications {S1, S2, ..., Sn} which are already

implemented. The output of the synthesizer is an

implementation of S.

Intuitively, a web service specification S is implemented

if its query can be executed directly by a data source, or,

can be rewritten into several web services which are

implemented. There are two kinds of implementations of a

service. One is abstract implementation. S’ is an abstract

implementation of S if Q in S can be rewritten using the

queries in service S1, , or Sn. The concrete

implementation comprises the scaffolding code that carries

out the abstract implementation. An example of concrete

implementation is illustrated later in figure 1.

Correspondingly, the synthesis is carried out in two

steps. The first step is to synthesize an abstract

implementation. Based on the abstract implementation, we

can derive different concrete implementations.

Definition 4 (Abstract implementation) Given a web service
specification S(Sig, Q), and two web services S1(Sig1,
Q1), S2(Sig2, Q2), an abstract implementation of S(Sig,
Q) using S1 and S2 is S(Sig, Q’) where Q’ is a complete
rewriting of Q using Q1 and Q2.

Once we obtained an abstract implementation of a web

service, we can derive the concrete implementation in

different programming languages.

We assume that there will be a global database schema,

for all the existing web services that are based on

databases. The creation of such a global schema is not

covered in this paper. Based on this global schema, and the

mapping between the database schema and XML schema,

we can write web service specifications, i.e., the signature

of the service and the query to be carried out. Taking the

specification as input, the service synthesizer will search

from existing services over the web for the services that can

carry out the task, based on the signature and the semantic

description. In the case of matching of the semantic part of

the web service specification, the matching is reduced to

the query containment testing, since the semantic

annotations are represented by Datalog. If no such service

can be found, the synthesizer will decompose the

specification into sub specifications in the hope that the

sub-services are ready on the web. Once all the sub-

services are found, the resulting rewriting will be planned

and according to the executable planning, the composition

code is generated to reproduce the functionality of the

original query.

The drawback of our approach is that not every query

can have a complete rewriting, hence not every web service

specification is implementable. However, with the

proliferation of web services, more and more web service

specifications will become implementable.

Figure 1 illustrates the service synthesizer using a

concrete example. Suppose there are Amazon service and

Chapters service, both are implemented and annotated with

the underlying queries. We can write a new service

specification called metaBookService. The input of the

metaBookService specification is an ISBN, and the output

of the specification consists of the price and book rating

from amazonService, and the price from chaptersService.

In addition to the signature description of the service, there

is also a logic specification for the operation, i.e., the join

operation between the three database tables in two different

sites.

Taking the specification as input, the service synthesizer

will first search over the web to find relevant services. The

search process will be based on several criteria such as the

description of the web services, the similarities based on

the signature, and the relevance between the queries. An

earlier version of the searching mechanism is described in

 [19]. In our case, we are supposing the search result

consists of amazonService and chaptersService.

Once those two services are ready, the next step is to try

to find a complete rewriting of the query in

metaBookService using the queries in amazonService and

chaptersService. The result of the rewriting constitutes an

abstract implementation of the metaBookService.

With the abstract implementation in hand, the service

synthesizer can create a plan to execute the two existing

services and scaffolding code to integrate the results from

different services.

One of the key components of service synthesizer is

service matching. When the number of services is large, it

is not obvious how to locate two relevant services whose

queries can be used in rewriting. With the Datalog as the

semantics of the web service, the matching problem is

reduced to query containment problem which is well

studied.

code skeleton:

Set result;

Vector row;

amazonResults=run amazonService;

For each element in amazonResults{

chapterResults=run ChaptersService on ISBN,

For each element in chaptersResults {

row.add(price1, price2, rate);

}

result.add(row)

}

return result;

amazonService

V1(ISBN, Price1, Comment) :-

AmazonT1(ISBN, price),

AmazonT2(ISBN, rate, comment).

ChaptersService

V2(ISBN, price2):-

chapters(ISBN, price2)

Q(ISBN, Price1, Price2, Rate):-

V1(ISBN, Price1, Comment),

V2(ISBN, Price2)

Input: ISBN

Output: Price1, Price2, rate

Q(ISBN, Price1, Price2, Rate) :-

AmazonT1(ISBN, Price1),

AmazonT2(ISBN, rate, comment),

Chapters(ISBN, Price2)

rewrite

Implemented services
Service specification

Service implementation

 Figure 1: Example of web service synthesis

5. The concrete implementation of web

service

Once a complete rewriting is obtained for the query in

web service specification, we need to generate a plan for

the query so that program code can be generated to actually

execute the query. A query plan is a sequence of accesses

to the web services interspersed with local processing

operations. Given a query Q of the form:

Q(X):-V

1
(X

1
),…,V

n
(X

n
).

A plan to answer it consists of a set of conjunctive plans.

Conjunctive plans are like conjunctive queries except that

each subgoal has input and output specification associated

with it. For example, a plan for the above query could be

 Q(X):- V

1
(X

1
)(In

1
,Out

1
),

 V
2
(X

2
)(In

2
,Out

2
),…,

 V
n
(X

n
)(In

n
,Out

n
).

A plan is executable if the input of the i-th predicate

appears in the output of the preceding predicates, i.e., In
i

 Out
1

 … Out
i-1

Once we generated the execution plan, we can replace

the views with service invocations, and provide the input

parameters using input/output definitions.

To illustrate, we sketch a web service implementation

using IBM DB2 [40]. In DB2, RDB (Relational Data Base)

data and SOAP data are exchanged in two ways: WORF or

DB2 web services consumer (DB2WS) [15]. DADX (Data

Access Definition) is an XML extender that wraps up RDB

tables or SQL queries into web services and maps XML

data into RDB tables; DB2WS is a set of stored procedures

that supports User-Defined Functions (UDF) that consume

a web service as if it is a local function.

For our purpose, we adopt DB2WS to invoke web

services based on their web service specifications only.

After composing the web services, we can use the DADX

to publish the data as a composed web service.

For example, to consume the Barnes & Noble web

service, we declare a DB2 UDF based on the web service

published at the xmethods site as in List 1.

The user-defined function in DB2 sends a request SOAP

message to the web service using the input parameter

provided by the function, e.g. ISBN, and receives a

response SOAP message from the web services, which is

parsed into a temporary table using XPath expressions, e.g.

“/*/return”. The parsed result is further selected in SQL as

an output field, e.g. “price”. Along the round-trip, at the

client-side, DB2XML stored procedures are used as

marshalling mechanism for the SOAP messages. To the

caller, such a user-defined function appears the same as a

function querying the price from a local table, as the

service scaffolding code are buried in its implementation.

Both input and output of the function BN_PRICE are in

string format. In this function, the input ISBN string is used

to compose SOAP request with an envelope in XML

format. The SOAP response from the Barnes & Noble web

service is parsed into a PRICE string by an extractor

function based on the XPath “/*/return”. Thus, the Barnes

& Noble web service can be invoked as if an internal user-

defined function. The following is a use scenario of this

UDF.

create function bn_price (isbn varchar(10))returns varchar(10)
language sql reads sql data external
action not deterministic
return with
soap_input (in) as values varchar(xml2clob(
xmlelement(
 name "rns:getprice",
 xmlattributes(
 'urn:xmethods-bnpricecheck' as
 "xmlns:rns"),
 xmlelement(name "isbn", isbn))))),

soap_output(out) as (values db2xml.soaphttpc
('http://services.xmethods.net:80/soap/servlet/rpcrouter', '',
(select in from soap_input)))
 select cast(a.returnedchar as
 varchar(10)) as price
 from table(db2xml.extractchars((
 select cast(out as db2xml.xmlclob)
 from soap_output), '/*/return')) as a;

List 1: DB2 UDF for Barnes Noble

drop table books;
create table books(
 isbn varchar(10) not null);
insert into books values ('0439139597');
insert into books values ('0792386663');
select b.isbn, bn_price(b.isbn) as price
from books b;

Similarly we can wrap up the Amazon web service as the

following UDF. This web services take the ISBN as the

input and generates a tuple (bookname, ourprice, rating) as

the output.

drop function amazon_price;
create function amazon_price(
 isbn varchar(20))
returns table (
 bookname varchar(108),
 ourprice varchar(10),
 rating varchar(180)
)
 language sql reads sql data external action not
deterministic
return with
soap_input (in) as (values varchar(xml2clob(
xmlelement(name "typens:AsinSearchRequest",
xmlattributes('http://soap.amazon.com'
 as "xmlns:typens"),
xmlelement(name "AsinSearchRequest",
 xmlattributes('typens:AsinRequest' as
 "xsi:type"),
xmlelement(name "asin", isbn),
xmlelement(name "page", '1'),
xmlelement(name "mode", 'books'),
xmlelement(name "tag", 'webservices-20'),
xmlelement(name "type", 'heavy'),
xmlelement(name "devtag", 'D2Y0B3SQUFMPKI')))))),

soap_output(out) as (values db2xml.soaphttpc
('http://soap.amazon.com/onca/soap2',
'http://soap.amazon.com',
(select in from soap_input)))
 select *
 from table(tableextract((
 select cast(out as db2xml.xmlclob)
 from soap_output),
 '/*/return/Details/Details/',
 'Productname',
 'OurPrice',
 'Rating')) as x;

In the above implementation, the parsing of a more

complex response SOAP message body is done through a

generic UDF function “tableextract” where any parameter

names can be used to extract selectively several tags into a

table. To make sure the “tableextract” function is generic,

intermediate single column views were created using a

DB2XML stored procedure, and they are selectively joined

according to the arguments of “tableextract”. Here another

UDF “tableextract” is required to extract the SOAP

response into a table.

drop function tableextract;
create function tableextract(x db2xml.xmlclob,

root varchar(50),
 p1 varchar(50),
 p2 varchar(50),
 p3 varchar(50))
returns table(bookname varchar(250), ourprice

varchar(10),
 rating varchar(180))

language sql reads sql data no external action
not deterministic
return (
 select f1, f2, f3
 from
 (select row_number() over () as no,
 cast(t1.returnedchar as varchar(250)) as f1
 from table(db2xml.extractchars(x,
 concat(root,p1))) as t1) as t1,
 (select row_number() over () as no,
 cast(t2.returnedchar as varchar(10))
 as f2
 from table(db2xml.extractchars(x,
 concat(root,p2))) as t2) as t2,
 (select row_number() over () as no,
 ca st(t3.returnedchar as
 varchar(18)) as f3
 from table(db2xml.extractchars(x,
 concat(root,p3))) as t3) as t3
where t1.no = t2.no and t1.no = t3.no);

These UDFs (Amazon and BN) in DB2 can be regarded as

the concrete implementation of their web service

specifications. They can be synthesized into a composite

web service simplify by implementing its abstract web

service specification, that is, the complete query rewriting

of the two constitute web service specifications in Figure 1.

The following SQL query is an example of such

implementations.

select b.isbn, a.ourprice,
 bn.price, a.ratings
from books b,
 table(amazon_price(b.isbn)) as a,
 table(bn_price(b.isbn)) as bn;

6. Conclusions

Thanks to the widespread use of web based information

systems, and the introduction of industrial standards such

as WSDL, UDDI, and SOAP, there is a growing demand

for integrating web services dynamically.

Web service composition can be classified into two

categories, i.e., manual and automated. There are numerous

industry efforts in manual composition, leading by web

service composition language BPEL [10]. Automated

composition replies on the semantic specification of web

services. There are substantial researches on semantic web

services [21].

With the understanding that web service is a view

definition of the underlying database, new web services can

be defined using a query over global views and

implemented using query rewriting.

Unlike many information integration systems that have

their roots in heterogeneous database systems, we adopt a

different approach where each information source is

described as a function, rather than a database schema.

Moreover, such functions take XML documents as input

and produce XML documents as output.

The main contributions of this work are as follows.

Firstly, we propose a web service specification which can

handle a large portion of existing web services. Secondly,

we define web service synthesizer which can dynamically

generate the implementation of a service specification. We

have implemented the core components of the synthesizer

and matcher, i.e., the query matching and query rewriting,

and also experimented the mapping between database

queries and web services described in WSDL.

The obvious limitation of our approach is that our

specification language is Datalog, which is not expressive

enough to describe the semantics of all kinds of web

services. One example is that it has difficulty in describing

tree structured XML data.

Another constraint of our approach is the assumption of

the existence of global schemas that both the service

provider and the service specifier shall know and share. If

we view web services as information sources, and the new

web service specification as a query in the information

mediator, our approach can regarded as a Local-As-View

approach in data integration [11].

Another practical consideration of our approach is

whether the synthesizer can always find the implementation

for a specification. The viability of approach depends on

the availability of a large amount of web services annotated

with Datalog semantics, so that whenever people type in a

Datalog specification for a web service, our synthesizer

would be able to find the relevant services, and compose

them accordingly. To achieve this goal, we need to develop

efficient web service search engines, in the vein of software

agent searching as in [19]. Since one of the major

components in web service specification is the types of the

operations, which are defined in terms XML Schemas, we

have developed a mechanism to match XML Schemas [13].

Based on this, we are developing a web service matching

system.

Acknowledgement

The authors would like to thank the supports from NSERC

(Natural Sciences and Engineering Research Council of

Canada), IBM, and CITO (Communications and

Information Technology Ontario).

References

[1] W. van der Aalst, Don't go with the flow: Web services

composition standards exposed, IEEE Intelligent Systems,

Jan/Feb 2003.

[2] M. Aiello et al. A Request Language for Web-Services

Based on Planning and Constraint Satisfaction. In VLDB

Workshop on Technologies for E-Services (TES02), 2002.

[3] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey,

Farouk Toumani: Request Rewriting-Based Web Service

Discovery. International Semantic Web Conference 2003:

242-257

[4] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew

Layman, et al, Simple Object Access Protocol (SOAP) 1.1,

W3C Note, May 2000.

[5] Paul A. Buhler José M.Vidal, Toward the Synthesis of Web

Services and Agent Behaviors, In Proceedings of the First

International Workshop on Challenges in Open Agent

Systems, pages 25-29, 2002.

[6] D. Florescu and D. Kossmann. XL: An XML Programming

Language for Web Service Specification and Composition.

Proceedings of the eleventh international conference on

World Wide Web, 2002.

[7] W-J Van Heuvel, J. Yang, and M.P. Papazoglou. Service

Representation, Discovery, and Composition for E-

Marketplaces, Proc. of International Conference on

Cooperative Information Systems (COOPIS 01), Sep, 2001.

[8] Snehal Thakkar, Jose-Luis Ambite, and Craig A. Knoblock.

A view integration approach to dynamic composition of web

services, In Proceedings of 2003 ICAPS Workshop on

Planning for Web Services, Trento, Italy, 2003.

[9] H. Hosoya and B. C. Pierce, XDuce: A Typed XML

Processing Language, Int'l Workshop on the Web and

Databases (WebDB), Dallas TX, 2000.

[10] IBM, BPEL4WS, Business Process Execution Language for

Web Services, Version 1.0, July 2002

[11] Alon Levy, Answering queries using views: a survey, VLDB

Journal 2001.

[12] Jianguo Lu, John Mylopoulos, XIB: eXtensible Information

Broker, International Journal on Artificial Intelligence

Tools, Vol. 11, No. 1, March 2002. p.95-115.

[13] Jianguo Lu, Shengrui Wang, Ju Wang, An Experiment on the

Matching and Reuse of XML Schemas, International

Conference on Web Engineering, Sydney 2005

[14] S. McIlraith and TC Son. Adapting Golog for Composition

of Semantic Web Services, KR'2002.

[15] Malaika, S. et al. DB2 and Web Services. IBM System

Journal, 41(4), pp. 666-685. 2002.

[16] Tova Milo and Dan Suciu and Victor Vianu, Typechecking

for XML Transformers, 19th ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems,

ACM, 2000. p.11-22.

[17] Paulo F. Pires and Mario Benevides and Marta Mattoso,

Building Reliable Web Services Compositions, Net.Object

Days - WS-RSD'02,551-562, 2002.

[18] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, Dana

S. Nau: HTN planning for Web Service composition using

SHOP2. J. Web Sem. 1(4): 377-396 (2004).

[19] Katia Sycara, Jianguo Lu, M. Klusch, Advertisement and

Matchmaking among Information Agents, Technical Report

CMU-RI-TR-98-22, CMU.

[20] K. Sycara, M. Klusch, S. Widoff, Jianguo Lu, Dynamic

Service Matchmaking among Agents in Open Information

Environments, Journal of ACM SIGMOD Record, Special

Issue on Semantic Interoperability in Global Information

Systems, A. Ouksel, A. Sheth (Eds.), 28(1):47-53, 1999.

[21] OWL-S Coalition, OWL-S specification, 2004.

[22] W3C, SOAP, www.w3c.org.

[23] W3C, UDDI.org UDDI Technical White paper, http :

//www.uddi.org/pubs/lru UDDI Technical Paper.pdf, 2001.

[24] W3C, Web Service Definition Language.

http://www.w3.org/TR/wsdl.

[25] WordNet -- A Lexical Database for English.

http://www.cogsci.princeton.edu/wn/.

[26] L. Zeng, Dynamic Web Services Composition, PhD thesis,

Univ. of New South Wales, 2003.

