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Abstract 
XML is increasingly being adopted for information 
publishing on the World Wide Web. However, the 
underlying data is often stored in the relational databases. 
Some mechanism is needed to convert the relational data 
into XML data. In this work, we employ a semantically rich 
semistructured data model, the Object-Relationship-
Attribute model for semistructured data, as a middleware 
to support the schema conversion from semantically 
enriched relational schema to XML Schema. This 
approach allows us to handle the translation of a set of 
related relations and to distinguish attributes of 
relationship types from attributes of object classes, multi-
valued attributes, and different types of relationships such 
as binary, n-ary, recursive and ISA. The resulting XML 
structures are able to reflect the inherent semantics and 
implicit structure in the underlying relational database. We 
also show that the appropriate use of references is able to 
avoid unnecessary redundancy and the proliferation of 
disconnected XML elements. 

 
 

1. Introduction 
 
XML is emerging as a standard for information publishing 
on the World Wide Web. However, the underlying data is 
often stored in traditional relational databases. Some 
mechanism is needed to convert the relational data into 
XML data. We can classify existing approaches to publish 
XML data from relational databases as follows: 
1. Customized translation of relational data to a “pre-

defined” schema for XML data. For instance, a new 
language RXL to specify XML views of the relational 
data is proposed in [6] and extended Nested SQL 
statements are introduced in [12] to specify XML 
element construction. 

2. No “pre-defined” schema information is required. 
That is, default XML views are produced according to 
the structures of the relations in [1,13,15]. 
One of the major challenges in both the approaches is 

to find an effective way to generate an XML structure that 
is able to describe the semantics and structure in the 

underlying relational database. XML consists of nested 
element structures and the relationships of elements are 
modeled directly by hierarchies and references. In contrast, 
relational data is flat and normalized. As a consequence, 
the translation from relational data to XML is often not 
intuitional but rather complex. The first approach utilizes a 
significant amount of customized code to construct the 
XML structure, which is typically subjective and 
inaccurate. The transformation techniques employed in the 
second approach currently lack a detailed analysis of the 
relational schema and focus on single relation conversions. 
As a result, the XML data is either flattened into tuples 
containing many redundant elements, or has many 
disconnected XML elements. 

In this paper we develop a methodology which 
employs the semantically rich Object-Relationship-
Attribute model for semistructured data (ORA-SS) [5] in 
the translation process. ORA-SS has characteristics which 
are very similar to XML: self-describing, deeply nested or 
even cyclic, and irregular. At the same time, ORA-SS 
models a rich variety of semantic constraints in the 
underlying relational database, and represent the implicit 
structures of relational data using hierarchy and 
referencing. In our proposed relational to XML Schema 
translation, we want to satisfy the following requirements: 
1. Generate an XML structure that is able to describe the 

semantics and structure in the underlying relational 
database. 

2. Allow the translation of a set of related relations 
instead of simple single relation/relationship 
conversions. 

3. Obtain properly structured XML data without 
unnecessary redundancies and proliferation of 
disconnected XML elements. 
Figure 1 shows the steps in our proposed translation: 
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Figure 1. Relational-to-XML Translation 



In the semantic enrichment of a relational schema, we 
will identify the following inherent semantics and implicit 
structure in the relational schema: 
1. Object relations that represent regular and weak entity 

types.  
2. Relationship relations that represent various 

relationship types, such as binary, n-ary, recursive and 
ISA (inheritance) relationship types. 

3. Fragments of object relations or relationship relations 
that represent single-valued and multivalued attributes 
of entity types or relationship types. 

4. Cardinality constraints 
The semantic information is then represented 

explicitly in an ORA-SS schema diagram from which an 
XML Schema is subsequently derived. We will present a 
set of translation rules to translate a semantically enriched 
relational schema to an ORA-SS schema diagram, and an 
algorithm to generate an XML Schema from an ORA-SS 
schema diagram.  

The rest of the paper is organized as follows. Section 
2 reviews the concept of semantic dependencies and 
illustrates how it can be used to provide a more accurate 
analysis of the relational schema. Section 3 presents the 
rules to translate a semantically enriched relational schema 
to an ORA-SS diagram. An algorithm to generate an XML 
Schema from an ORA-SS diagram is also given. Section 4 
gives a discussion of related work and we conclude in 
Section 5. 
 
2.   Semantic Enrichment of Relational 

Schema 
 
The semantic enrichment of relational schemas has been 
extensively studied in [3, 7, 9, 11]. Functional 
dependencies and inclusion dependencies have 
traditionally been used to aid the translation of relational 
database into semantic data models such as the Entity-
Relationship model [4] and the object-oriented model [2]. 
However, functional dependencies and inclusion 
dependencies are basically constraints to enforce the 
integrity of a database. [9] introduces the concept of 
semantic dependencies to represent the relationship 
between two sets of attributes at a semantic level. We will 
use the relational schema of a university database shown in 
Figure 2 to review and illustrate the main concepts.  
1. An entity key denotes the identifying attribute(s) of 

real world entities. The notion of an entity key is 
different from the traditional concept of a key.  
For instance, in the all-key HOBBIES relation in 
Figure 2, the entity key is S# because it identifies the 
entity type STUDENT uniquely while HOBBY is just 
an attribute of STUDENT. 

2. An attribute A, which is not a part of any entity key, is 
said to be semantically dependent on a set of entity 
keys if the value of A needs to be updated whenever 
the value of some entity key in the set changes.  

Consider the STUDENT relation in Figure 2. Suppose 
REGISTRATIONDATE is the date when a student 
registers at a department. REGISTRATIONDATE is 
semantically dependent on {S#, D#}, denoted by 
{S#,D#} REGISTRATIONDATE. This indicates 
that REGISTRATIONDATE is meaningful only when 
associated with S# and D# together. Note that 
REGISTRATIONDATE is functionally dependent on 
only S# because a student can only register at only one 
department. 

3. Two entity keys are semantically equivalent if they 
both identify the same entity type. 

4. A set of entity keys is a semantic key K of a relation if 
any semantic dependency K’ A in R implies K is 
semantically equivalent to K’.  
For instance, entity keys CODE is the semantic key of 
Course, and {CODE, S#} is the semantic key of 
relation C_S_1. In Figure 2, all the semantic keys in 
the university database are indicated in bold. 
 

COURSE(CODE, TITLE)                              Group 1 
   The courses held in the university 
DEPT(D#, DNAME) 
   The department of the university 
TUTORIAL(T#, TUTORIALTITLE) 
   The tutorials of the courses 
NOTES(NOTE-ID, LECTURER) 
   The notes for a course, provided by one lecturer 
HOBBIES(S#, HOBBY) 
   The hobbies of a student 
STUDENT                                                      Group 2 
(S#, SNAME, REGISTRATIONDATE,D#) 
   The students registering to a department. 
COURSE_NOTES                                          Group 3 
(NOTE-ID, CODE) 

Defines a 1-m relationship between course and 
notes 

C_S_1(CODE, S#, GRADE) 
Defines a m-n relationship between course and 
student 

ATTEND(CODE, T#, S#) 
Defines a ternary relationship among course, 
student and tutorial 

COURSEMEETING 
(CODE, S#, MEETINGHISTORY) 
Records meeting histories of courses and students. 

Figure 2. Relational schema of a university database 
 
The above concepts are useful in clustering the 

relations and attributes in a relational schema. Relations 
are classified into the following three types: 
• Object relation whose semantic key consists of only 

one entity key, or more than one entity keys which are 
semantically equivalent. 



• Relationship relation whose semantic key consists of 
more than one entity keys which are not semantically 
equivalent. 

• Mix-type relation which does not have any semantic 
key. This type of relations will be subsequently split 
into object relations and relationship relations.  

Example 1. Consider the university database in Figure 2. 
The relations are classified into object relations, mix-type 
relations and relationship relations as indicated by Group 1, 
Group 2 and Group 3 respectively. STUDENT relation 
under Group 2 is a mix-type relation because it has two 
semantic dependencies S# SNAME and {S#, D#}  
REGISTRATIONDATE, but S# and {S#, D#} are not 
semantically equivalent. We split relation STUDENT into 
an object relation and a relationship relation as follows:  

STUDENT (S#, SNAME) 
STUDENTDEPT (S#, D#, REGISTRATIONDATE) 

Attributes are classified into object attributes and 
relationship attributes: 
• If an attribute is semantically dependent on exactly 

one entity key or more than one entity keys which are 
semantically equivalent, then it is an object attribute. 

• If an attribute is semantically dependent on more than 
one entity keys which are not semantically equivalent, 
then it is a relationship attribute.  
REGISTRATIONDATE, GRADE and MEETING-

HISTORY are relationship attributes in the university 
database (See Figure 2).  

By using semantic dependencies together with 
functional dependencies and inclusion dependences, we 
can identify relationship relations that represent binary, 
ternary, recursive1, or ISA relationship type2, and object 
relations that represent weak entity type3. From the 
multivalued dependencies, we can identify that the 
HOBBIES relation is a fragment4 of the object relation 
STUDENT, and COURSEMEETING is a fragment of the 
relationship relation C_S_1. Furthermore, we can also 
establish the cardinalities of relationship types. This 
is important to generate an XML Schema correctly. 
The different possible cardinalities include 1-1, 1-m, m-
1 and m-n. For the rest of the paper, we shall assume that 
the relations and attributes in a relational schema have 
been clustered, and the various relationship types and 
cardinality constraints have been identified as shown in 
Figure 2. 

                                                           
1 A recursive relationship type is one in which an entity type participates 
more than once, assuming a different role upon each entry type into the 
relationship type. 
2 An ISA relationship type indicates that a lower-level entity type is 
formed by taking a subset of a higher-level entity type. 
3 The existence of a weak entity type entity depends on the existence of 
an associated regular entity type entity. 
4 Fragment relations are caused by the existence of multi-valued attribute 
of the entity type. 

3.   Relational to XML Translation 
 
3.1   ORA-SS Model 
 
In our study, we found that the quality of the resulting 
XML Schema depends not only on the transformation 
methodology, but also on the expressiveness of the chosen 
semistructured data model. We adopt ORA-SS because it 
is a semantically richer data model that has been proposed 
for semistructured data compared to the existing models 
such as OEM [10], XOM [17]. We will briefly review the 
ORA-SS model in this section. 

ORA-SS distinguishes between object classes, 
relationship types and attributes. In an ORA-SS schema 
diagram, object classes are denoted by labelled rectangles 
and relationship types are denoted by directional labelled 
edges. The direction of the edge is from the parent object 
class to the child object class. The label indicates the 
information of relationship name, degree, cardinality 
constraint on the parent and child object class. Attributes 
are denoted by labelled circles and keys are indicated by 
filled circles. ORA-SS not only reflects the hierarchy 
structure of semistructured data, but also provides 
references to indicate that the referenced object class is not 
materialized in a nesting relationship within its parent. 
References are denoted by the dashed arrows from a 
referencing object class to a referenced object class.  

Figure 3 shows one of the possible ORA-SS schema 
diagrams that models the university database. COURSE, 
STUDENT and DEPT are root object classes. COURSE 
has a child object class NOTES.  The label (2,1:n,1:1) on 
the edge between COURSE and NOTES indicates a binary 
relationship type between COURSE and NOTES (denoted 
by 2). There can be one or many NOTES for each 
COURSE (denoted by 1:n). A NOTES is used by only one 
COURSE (denoted by 1:1). Note that such cardinality 
constraints can be obtained from the semantically enriched 
schema. 

By employing the ORA-SS schema diagram as a 
middleware in the relational to XML translation, we can 
separate the task of designing XML Schema from the 
detailed analysis of semantics and structures of underlying 
legacy data. Furthermore, ORA-SS offers a visually 
effective way of designing and maintaining XML Schema. 
We note that traditional semantic data models such as the 
Entity-Relationship model cannot support XML naturally 
and fully. For example, reference is an important concept 
in XML schema. This feature can be explicitly represented 
using an ORA-SS schema but not the ER model. 

 
3.2   From Semantically Enriched Relational 
schema to ORA-SS 
 
We will now present three sets of rules for translating a 
semantically enriched relational schema to an ORA-SS 
schema diagram. 
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Figure 3. An ORA-SS Schema Diagram 

 
1. Object relation rules that translate object relations 

into ORA-SS object classes. 
2. Relationship relation rules that translate relationship 

relations into ORA-SS relationship types represented 
as hierarchies and references. 

3. Combination rules that are applied to the result 
obtained from the application of object and 
relationship rules to generate the final translation. 

We note that the translation of a relational schema to 
an ORA-SS schema diagram differs from the translation 
of a relational schema to a hierarchical model. This is 
because there are distinct differences between ORA-
SS/XML and traditional hierarchical databases (e.g., IMS 
system). For example, we can have cycles or self-
referencing in XML but not in hierarchical database (e.g., 
IMS system). Moreover, virtual pointers in hierarchical 
databases cannot have further structures (e.g. attributes 
and child record types) as reference elements in XML.  

 
3.2.1 Object Relation Translation Rules 

 
Rule O1: Regular Object Relation Rule. Create an 
ORA-SS object class O for each regular object relation R. 
The connecting structure of these object classes depends 
upon the relationship types among them. Each attribute of 
R is mapped to an ORA-SS object attribute of O. The 
primary key of R becomes the key of O. Note that 
attributes of a regular object relation are mapped into 
single-valued attributes of O.       □ 

Rule O2: Fragment of Object Relation Rule. Each 
fragment Rf of an object relation R is mapped into an 
ORA-SS attribute A of an object class OR, where OR is the 
ORA-SS object class corresponding to R. The cardinality 
of A is determined by the cardinality of Rf.. Table 1 shows 
the mapping rules.        □ 

Example 2. HOBBIES (Rf) is a fragment of the object 
relation STUDENT (R). Attribute HOBBY (K1) in the 
relation HOBBIES is mapped to a simple multivalued 
attribute HOBBY (A) (labelled by “*”) of STUDENT (OR).  
 

 
 

 
This mapping is shown in Figure 4.   
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Figure 4. A fragment relation is mapped to a multivalued 

object attribute 
 
Rule O3: Weak Entity Type Rule. Each object relation 
RB which represents a weak entity, is mapped to a child 
object class OB of OA which represents the associated 
regular object relation RA. Note that RB is viewed as a 
composite multivalued attribute of OA if RB does not 
contain non-key attribute. Each attribute of RB is mapped 
to an object attribute of OB., except the entity key EB 
(which is a part of the primary key of RB) with the 
inclusion dependency: RB[EB] ⊆ RA[KA], where KA is the 
semantic key of RA.           □ 
 

NOTES

VERSIONS

2,0:n,1:1

NOTE-ID LECTURER

VERSION DATE  
Figure 5. An object relation representing weak entity type 

is mapped to a child object class 
 
Example 3. Suppose object relation VERSIONS (NOTE-
ID, VERSION, DATE) defines the versions of a lecture 
notes. Assume that we identify VERSIONS (RB) represents 
a weak entity type entity of NOTES, then it is mapped to a 
child object class VERSIONS (OB) of the object class 
NOTES (OA). The entity key NOTE-ID will not be 
mapped as the key of VERSIONS. This indicates that 
VERSIONS must be associated with the object class 
NOTES. Figure 5 shows the mapping. 
 
 



Mapping Rules  
Definition of Rf n>1 n=1 

Cardinality of 
OR  - {A1…An} 

    Rf (K, A  1…A  n)  K {A1…An} m-n 
    Rf (K, A  1…A  n)  K {A1…An} 

{A1…An} is mapped to a 
composite multivalued 
attribute  

A1 is mapped to a simple 
multivalued attribute  

1-m 
    Rf (K , A  1…A  n) K {A1…An} 1-1 
    Rf (K, A1…An)  K {A1…An} 

{A1…An} is mapped to a 
composite single-valued 
attribute  

A1 can be viewed as an 
attribute  m-1 

*   Rf [K]⊆R[KR], where KR is the semantic key of relation R. 

Table 1. Mapping Rules for the Cardinality of an Attribute 
 
3.2.2 Relationship Relation Translation Rules 

 
Theoretically, ORA-SS allows the cardinality constraint 
on the child object class to be “zero”. However, in an 
XML document, each child element must be associated 
with a parent element. Here, we enforce the cardinality 
constraint on the child object classes to be “one” or more.  

In the following rules, we assume RAB is a binary 
relationship relation where its semantic key consists of 
two entity keys of two entity types A and B. A and B are 
represented as two object relations RA and RB respectively. 

Rule R1: 1-m Relationship Rule. Let RAB represent a 1-
m relationship type (say R), the cardinality of entity type 
A is “one”, and the cardinality of entity type B is “many”. 
Case 1: If all the entities of B participate in R, then RA is 

mapped to a parent object class OA and RB is 
mapped to a child of OA. 

Case 2: If all the entities of A participate in R, and RB has 
been mapped as a child of another object class or 
not all the entities of B participate in the 
relationship, then RB is mapped to a parent object 
class OB and RA is mapped to a child of OB. 

Case 3: If there exist entities of either A or B not 
participating in R, then RA and RB are mapped to 
OA and OB respectively. OA and OB is connected 
using reference. 

Each relationship attribute is mapped to an attribute of an 
ORA-SS relationship type. If the associated relationship is 
represented using references, then we attach the attribute 
to the referencing object class. Otherwise, we attach it to 
the child object class.        □ 

Example 4. Suppose STU_ADVISOR(S#, STAFF#) 
represents a 1-m relationship type involving object 
relations ADVISOR(STAFF#, POSITION) and STUDENT. 
The cardinality of ADVISOR is “one” and that of 
STUDENT is “many”. Note that STUDENT cannot be 
mapped as a child of ADVISOR if not all students are 
assigned to an advisor. According to Case 2 in Rule R1, 
ADVISOR is a child object class of   STUDENT   if every  
advisor  must advise  one  or   more students.  

 
 

 
This mapping is shown in Figure 6. 
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2,1:1,1:n

 
Figure 6. A 1-m relationship type is mapped to a 

hierarchical structure 
 

Rule R2: m-n Relationship Rule. Let RAB represent a m-
n relationship type, it is translated as follows: The 
referencing object is set below one object class (say OA) 
to connect the other (say OB) (the referencing direction 
may be decided by applications). Particularly, referencing 
object is used on both sides in order to describe the 
symmetric relationship. The relationship attributes are 
attached to the referencing object(s).      □ 

Example 5. Consider the m-n relationship relation C_S_1 
with object relations COURSE (RA) and STUDENT (RB). 
Existing works have handled m-n relationship types by 
creating a new object class to aggregate the references 
which connect the participating object classes. Figure 7 
shows an ORA-SS schema diagram that aggregates 
referencing attributes for the C_S_1. This creates too 
many references and cause poor query response time 
while avoiding data redundancies. In additional, such a 
flat structure is not suitable to represent the relationship at 
the semantic level. In contrast, Figure 8 shows one of 
possible ORA-SS schema diagrams produced according 
to Rule R2. We conducted some experiments to compare 
the performance of the various ways to map an m-n 
relationship. Our experiments proved that the 
performance of direct referencing is much better than 
introducing a new structure to aggregate the references as 
we try to navigate from one element (say COURSE) to 
others (say STUDENT) through references. Besides, such 
hierarchical structure is semantically richer. 
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Figure 7. A m-n relationship is mapped to a new object 
class 
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Figure 8. A m-n relationship is mapped to a reference 

 
Rule R3: Recursive Relationship Rule. Recursive 
relationship type is translated as follows: The 
participating object relation is mapped to an ORA-SS 
object class (say O), and the referencing object is set 
below the object class to connect O. In order to describe 
the symmetric relationship, two collections of referencing 
attributes need to be used to reference to O. One 
collection holds those objects to which it contributes, and 
the other holds those objects that it comprises.     □ 

Rule R4:  ISA Relationship Rule. ISA relationship type 
is represented as the hierarchy structure. If B ISA A, then 
RB is mapped to a child object class (OB) of OA. Note that 
the entity key EB of RB with the following inclusion 
dependencies: RB[EB]⊆RA[K], where K is the semantic 
key of RA, need to be contained in OB.      □ 

 
Example 6. Suppose we have an object relation 
PERSON(SSNO, GENDER, RACE), where social security 
No. (SSNO) also appears in STUDENT relation as a 
candidate key. We can identify that STUDENT ISA 
PERSON by the enrichment algorithm [9]. Figure 9 shows 
the mapping of such an ISA relationship type. The entity 
key SSNO (EB) is mapped to the candidate key attribute of 
both PERSON (OA) and STUDENT (OB) because it is the 
identifying attribute of PERSON as well as STUDENT. 

 
PERSON

STUDENT

2,0:1,1:1

SSNO GENDER RACE

S# SSNO SNAME
 

Figure 9. An ISA relationship type is mapped to a 
hierarchical structure 

 

Rule R5: n-ary Relationship Rule. Object relations such 
as R1, R2, …, Rn participating in n-ary relationship type 
can be translated as follows: Let object relations R1, R2, …, 
Rn be mapped to ORA-SS objects O1, O2, …, On 
respectively. We choose a path and create the referencing 
objects sequentially (the path may be decided by 
applications). Without loss of generality, create a 
referencing element (say O2

r) below O1 to connect with 
O2, and then create a referencing object O3

r below O2
r to 

connect with O3, and so forth until all the participating 
objects are connected. Particularly, the level of each 
referencing object is determined by the aggregations, 
where aggregations are a means of enforcing inclusion 
dependencies in a database, if the aggregations are 
available.         □ 

Example 7. Suppose the object relations COURSE, 
STUDENT and TUTORIAL participate in a ternary 
relationship ATTEND. If we have the following inclusion 
dependencies: ATTEND[CODE,S#] ⊆ C_S_1[CODE,S#], 
then we will create the referencing object class 
TURORIAL at the lowest level to enforce referential 
integrity as shown in Figure 3.   

Rule R6: Fragment Relationship Relation Rule. Each 
fragment of relationship relation is mapped to a composite 
and/or multivalued attribute in the same way as the 
translation of the fragment of object relation. The edge 
connecting to such attributes is tagged with the 
relationship name in order to show which relationship it 
belongs to.         □ 

 
Example 8. Attribute MEETTINGHISTORY in the 
relation COURSEMEETING, which is a fragment of CS 
(COUSEMEETING[CODE, S#] ⊆ C_S_1[CODE,S#]), is 
mapped to a simple multivalued attribute MEETING-
HISORY below the referencing object STUDENT (ref. to 
Figure 8). Figure 10 shows the mapping. 
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Figure 10. A fragment relation is mapped to a multivalued 

attribute of a relationship type 
 
3.2.3 Combination Rules 
 

Consider the case where an object relation R is a 
candidate child object class for more than one relationship 
type. For example, we can have STUDENT and PERSON 
participate in the ISA relationship type. At  the same time, 

 



Translation of Priority Reasons 

Fragments of Object class 1st These fragments actually represent attributes of an object. 
ISA, weak type and recursive relationship type 
and their fragments 2nd 

 

There exist high semantic cohesion among these participating 
objects. 

1-1 and 1-m relationship type and their 
fragments 3rd 

These relationship types are potentially represented as hierarchy 
structure. 

m-1 relationship type and their fragments 4th 
M-1 relationship is potential hierarchy structures. Note that we 
usually view it as 1-m relationship in order to reduce 
redundancies caused by nesting.  

m-n, n-ary relationship type and their fragments 
5th 

 

Table 2. Priority rules 
 
STUDENT and DEPT participate in the 1-m 
relationship type STUDENTDEPT. We observe that 
STUDENT is a potential child object class of either 
PERSON or DEPT, and we need to decide which one 
should be its parent object class. Note that if we use 
references to connect STUDENT with DEPT and 
PERSON, it will induce many disconnected XML 
elements and cause poor query response time. With this 
in mind, we use the notion of cohesion proposed in [14] 
to represent the strength of the relationship among 
entities. This notion has been applied in clustering 
technique to generate some desired level of abstraction. 
The cohesion concept helps us to decide which object  
class can be the parent in the case where one object 
relation O potentially has “multiple parent”. Here, we 
choose the one which has stronger cohesion with O as 
the parent object class. We therefore prioritize the 
translations of different relationship types to ensure the 
parent object classes derived always have the strongest 
cohesion with O. 

Rule C1. Translations are prioritized according to 
cohesion between object classes. Translations are 
produced sequentially according to their priorities. The 
translation with the lowest priority will be carried out 
last. Table 2 shows the priorities of translations.  □ 

According to Table 2, STUDENT is translated to a 
child object class of PERSON first, and then DEPT is 
placed below STUDENT according to Case 2 in Rule 
R1. The prioritized translations ensure that PERSON 
can be mapped as the parent of STUDENT. Note that 
user’s input is needed in the case when it is not clear 
which relationship has higher cohesion. 

Rule C2. If an object class O participates into more 
than one relationship type, then it should not be mapped 
to a child object class of either relationship type if the 
mapping induces O to be referenced by other object 
classes.      □ 

Example 9. Consider the object relation STUDENT (R), 
which is involved in the m-n relationship C_S_1 and the  
 

 
1-m relationship type STUDENTDEPT. REGISTRA-
TIONDATE and GRADE is relationship attribute of 
STUDENTDEPT and C_S_1 respectively. Rule C1 
will generate the ORA-SS diagram in Figure 11. 
Users can travel from COURSE elements to STUDENT 
elements but not vice versa. However, a better ORA-SS 
diagram can be obtained in Figure 12 if we apply Rule 
C2. STUDENT, DEPT and COURSE will be translated 
into root object classes. STUDENT is connected to 
DEPT and COURSE using references.  The benefits are 
(1) such a structure ensures that the referenced elements 
will not contain repeated instances, and (2) attributes 
belonging to different relationships can be distinguished 
separated from each other as well as other object 
attributes. 

Example 10.  The ORA-SS diagram shown in Figure 3 
can be derived as follows. We assume that the essential 
information are DEPT and COURSE, and translate 
them into root object classes. Object relation HOBBIES 
is identified as a fragment of STUDENT and therefore 
mapped as a simple multivalued object attribute 
according to Rule O2. NOTES is mapped to a child 
object class of COURSE according to Case 1 in Rule 
R1. According to Rule C2, STUDENT is translated to a 
root object class that COURSE and DEPT connect with 
it using references. COURSEMEETING is identified as 
a fragment of C_S_1 and mapped as a simple 
multivalued relationship attribute according to Rule O2. 
COURSE, STUDENT and TUTORIAL participate in a 
ternary relationship type ATTEND, so they are 
translated according to Rule R5. Note that there exist 
two different m-n binary relationship types, C_S_1 and 
C_S_2 between COURSE and STUDENT. In such case 
that a ternary relationship type (i.e., ATTEND) involves 
only one of the binary relationship types (i.e., C_S_1) 
between two object classes, we need to explicitly 
separate the two referencing objects in order to  
distinguish which binary relationship type it involves. 
The whole translation order is in accordance to Rule 
C1.
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Figure 12. A preferred structure 

 
3.3 From ORA-SS to XML Schema 
 
When the ORA-SS schema diagram of a relational 
database is obtained, an XML Schema can now be 
derived relatively easily because of the additional 
semantics captured in ORA-SS.  In addition, XML 
features such as the concept of reference has also been 
taken into consideration in the process of deriving 
ORA-SS diagram (recall the relationship translation 
rules). The following algorithm gives the translation of 
an ORA-SS schema diagram to an XML schema. 

Algorithm ORASS-to-XML 

Step 1 Declare an XML element for whole schema and 
create a complex type. 

Step 2 For each object o in ORA-SS schema diagram 
Do 
Case 1: o is a root object class 

Declare an element directly below Ro and 
create the corresponding complex type. 

Case 2: o is a referencing object 
Declare referencing attribute(s) Kr, or a sub-
element which contains such attribute(s) Kr if 
there exists relationship attribute(s) below o. 
The sub-element is named to the relationship 
name. 

Case 3: o is a child object class 
Declare a sub-element of the corresponding 
element, and create the corresponding 
complex type. 

- Set the content of the generated XML elements 
to EMPTY because they are either references, or 
indirectly translated from relations, which have 
no value. 

- Set the cardinality constraints5 of each element 
according to corresponding cardinality label in 
ORA-SS diagram. 

Step 3 Declare a XML attribute (or element) for each 
attribute of each ORA-SS object, and assign 
proper XML type6 and cardinality7. 

Step 4 Add keys and key references in XML Schema 
for the keys of ORA-SS object. 

Note that in Step 3 of the algorithm, single-valued, 
multivalued and composite attributes can be represented 
as various XML structures. Usually it is hard to tell 
which structure is better. For example, a multivalued 
attribute can be declared as an XML attribute and typed 
as NMTOKENS, which is a list type. Alternatively, it 
can be declared as a sub-element which consists of one 
or more occurrences. For our example, we declare 
multivalued attribute as sub-element while single-
valued attribute as XML attribute. However, the 
relationship attribute, which is attached in a child object 
class (say O), is declared as a sub-element in order to be 
distinguished from the object attributes of O. It is 
worthwhile to point out that, if an ORA-SS edge is 
tagged with several labels, it indicates that there exist 
several relationship types between the two object 
classes. In this case, we need to materialize the 
component object class in each relationship it 
participates. In order to reduce redundancies, we may 
materialize it in the one with smaller degree first, and 
then use keyref to refer it from other relationship types. 
Appendix A. shows the XML Schema derived from 
Figure 3. 
 
4.   Related Works and Discussions 

 
Existing approaches to the relational to XML 

translation do not regard whether the resulting XML 
structure correctly describe the semantics and structure 
in the underlying relational database. The works in [1, 
13, 15] basically focus on single relation conversions. 
In order to handle a set of related relations, the relations 
are first denormalized to one single relation. 
Unfortunately, this will lead to a lot of redundancies in 
the resulting XML instances. In addition, the resulting 
schema is semantically weak. For instance, suppose 
some user requires all the information of the relations 
COURSE and STUDENT. The XML structure produced 
by [1, 13, 15] will have the following flat structure:  

        RESULTS(CODE, TITLE, S#,  SNAME, GRADE) 

                                                           
5 The default cardinality defined in XML schema for elements is 
exactly one, denoted by minOccurs = “1” and maxOccurs = “1” 
6 XML schema provides rich types which can support most types in 
the underlying database.  
7 The cardinality defined in XML schema for attributes is zero or one 
(denoted by use="optional”), or exactly one (use="required”). The 
default value is optional. 



The authors in [8] propose a Nesting-based 
algorithm to convert a single relation to a DTD. 
However, this algorithm is applied on extracted data 
sets. Different data sets extracted will lead to different 
structures which do not reflect the semantics in the 
underlying database. For instance, suppose COURSE 
and STUDENT participate in a m-n relationship. 
However, if a particular extracted data set shows that a 
student only takes one course, then the XML structure 
derived will depict a 1-m relationship and not a m-n 
relationship. 

A naive approach to handle a set of related 
relations will be to translate each relation to an XML 
element. The various elements are then connected by 
referencing elements or attributes in order to model the 
foreign key constraints. One of the major problems of 
this approach is the proliferation of references that will 
lead to performance degradation. Furthermore, the 
schema of XML data obtained is flat.  

[16] develops a method to generate a hierarchical 
DTD for XML data from a relational schema. First, one 
or more relations are chosen as the XML root elements, 
and then each sub-element is progressively defined by 
travelling across relations via the foreign key 
constraints. While this translation is intuitive and 
effective, problems still arise. For example, if we define 
STUDENT as a sub-element of ADVISOR, then we 
cannot represent those students who have not been 
assigned advisor yet. 

In contrast, our proposed relational to XML 
translation method provides for the translation of a set 
of related relations and distinguishes attributes of 
relationship types from attributes of object classes, 
multivalued attributes, different types of relationships 
such as binary, n-ary, recursive and ISA. The structure 
of the XML data obtained is able to reflect the inherent 
semantics and implicit structure in the underlying 
relational database without unnecessary redundancy 
and proliferation of disconnected XML elements. 

 
5.  Conclusion 

 
In this paper, we have proposed an alternative 

practical methodology for publishing XML data from 
relational databases. We have shown the importance of 
proper analysis of semantics in relational schema. The 
design of a semantically sound XML structure for 
relational data is a complicated task that needs users’ 
input. With user input, we can provide an XML schema 
that is closer to the user expectation, and that preserves 
the inherent semantics and implicit structure in 
relational schema. For future work, we would like to 

examine how data mining techniques can be used to 
mine the semantic information in XML schemas. 
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Appendix A. XML Schema derived from Figure 3

<!— declare an element  for whole schema --> 
<  element name=“UNIVERSITY”  
                  type=  “UNIVERSITY_TYPE” />  
 
<  complexType name=“UNIVERSITY_TYPE”                   
                           content=“empty” > 
   <  element name=“STUDENT” type=“STUDENT_TYPE”  
                     maxOccurs=“ unbounded”/>  
   <  element name=“DEPT” type=“DEPT_TYPE” 
                     maxOccurs=“ unbounded”/>  
   <  element name=“COURSE” type=“COURSE_TYPE”  
                     maxOccurs=“ unbounded”/>  
   <  element name=“TUTORIAL” type=“TUTORIAL_TYPE”  
                     maxOccurs=“ unbounded”/> 
</ complexType > 
 
<!— define a complex type for each sub-element of 
UNIVERSITY, and declare its sub-elements progressively --> 
 
<  complexType name=“DEPT_TYPE” content=“empty” > 
   <  attribute name=“D#” type=“string” use="required”/> 
   <  attribute name=“DNAME” type=“string” use="required”/> 
   <  element name=“STUDENT” minOccurs=“0”> 
       <  complexType content=“empty”> 
           <  attribute name=“STU_REF” type=“string” /> 
           <  attribute name=“REGISTRATIONDATE”  
                             type=“date” > 
       </ complexType > 
   </ element > 
</ complexType > 
 
<  complexType name=“COURSE_TYPE” > 
   <  attribute name=“CODE” type=“string” use="required”/> 
   <  attribute name=“TITLE” type=“string” use="required”/> 
   <  element name=“C_S_2” minOccurs=“0” > 
       <  complexType content=“empty”> 
           <  attribute name=“STU_REF” type=“string” /> 
       </ complexType > 
   </ element > 
   <  element name=“C_S_1” minOccurs=“0” > 
       <  complexType content=“empty”> 
           <  attribute name=“GRADE” type=“number” />      

           <  element name=“MEETINGHISTORY”type=“string”  
                             minOccurs=“0” maxOccurs=“unbounded”  />   
           <  attribute name=“STU_REF” type=“string” /> 
           <  attribute name=“TUTORIAL_REF” type=“string” />  
      </ complexType > 
  </ element >             
  <  element name=“NOTES” > 
       <  complexType content=“empty” > 
           <  attribute name=“NOTE-ID” type=“string”  
                             use="required”/> 
           <  attribute name=“LECTURER” type=“string” /> 
       </ complexType > 
   </ element > 
</ complexType > 
 
<  complexType name=“STUDENT_TYPE” content=“empty” > 
    <  attribute name=“S#” type=“string” use="required”/> 
    <  attribute name=“SNAME” type=“string” use="required”/> 
<!— declare an element for multivalued  ORA-SS attribute 
“HOBBY”  --> 
    <  element name=“HOBBY” type=“string” 
                      minOccurs=“0” maxOccurs=“unbounded” /> 
</ complexType > 
 
<  complexType name=“TUTORIAL_TYPE”  
                           content=“empty” > 
    <  attribute name=“T#” type=“string” use="required”/> 
    <  attribute name=“TUTORIAL_TITLE” type=“string”/> 
</ complexType > 
 
<!— define keys and keyref  constraints. --> 
 
< key name=“STUDENT_KEY” > 
         < selector >UNIVERSITY/STUDENT</ selector > 
         < field >@S#</field> 
</ key> 
< keyref name=“STUDENT_REFERENCE”  
              refer= “STUDENT_KEY” > 
         < selector >UNIVERSITY/DEPT/SUTENDT</ selector > 
         < field >@STU_REF</ field > 
</ keyref > 

 … 
 


